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Abstract

Todays scientific applications have huge data require-
ments, and these requirements continue 10 increase dras-
tically every year. Furthermore, these data are generally
accessed by many users from all across the country, or even
the globe. So, there tends to be a predominant necessity
to move huge amounts of data around wide area networks
to complete the computation cycle, which brings with it the
problem of efficient and reliable data placement. Current
approach to solve this problem of data placement is either
doing it manually, or employing simple scripts which do not
have any automation or fault tolerance capabilities. Our
goal is to make data placement activities first class citi-
zens in the Grid just like the computational jobs. They will
be queued, scheduled, monitored and managed, and even
check-pointed. More importantly, it will be made sure that
they complete without any human interaction.

1. Introduction

As the Grid [10] [14] evolves, the data requirements of
scientific applications increase drastically. Just a couple of
years ago, the data requirement for an average application
was measured in Terabytes, whereas today we use Petabytes
to measure it. Moreover, these data requirements continue
to increase rapidly every year. A good example for this
is the Compact Muon Solenoid (CMS) [6] project, a high
energy physics project sponsored by the Grid Physics Net-
work (GriPhyN) [13]. According to the Particle Physics
Data Grid (PPDG) [21] deliverables to CMS, the data vol-
ume of CMS, which is currently a couple of Terabytes per
year, is expected to subsequently increase rapidly, so that
the accumulated data volume will reach 1 Exabyte (1 mil-
lion Terabytes) by around 2015 [22]. This is the data vol-
ume required by only one application, and there are a couple
of dozens of other data intensive applications with similar
data needs, ranging from genomics to biomedical, and from

metallurgy to cosmology. .

The problem is not only the huge I/O needs of these data
intensive applications, but also the number of users who will
access the same datasets. For each of the projects, num-
ber of people who will be accessing the datasets range from
100s to 1000s. Furthermore, these users are not located at a
single site, rather they are distributed all across the country,
even the globe. So, there tend to be a predominant necessity
to move huge amounts of data around wide area networks
to complete the computation cycle, which brings with it the
problem of efficient and reliable data placement. Data need
to be located, moved, staged, replicated, and cached; stor-
age should be allocated and de-allocated for the data when-
ever necessary; and everything should be cleaned up when
the user is done with the data.

Just as compute resources and network resources need
to be carefully scheduled and managed, the scheduling of
data placement activities all across the Grid is crucial, since
the access to data have the potential to become the main
bottleneck for data intensive applications. Especially this
is the case when most of the data is stored on tape storage
systems, which slows down access to data even further due
to the mechanical nature of these systems.

Currently, data placement activities in the Grid are per-
formed either manually or by simple scripts. We can say
that data placement activities are simply regarded as sec-
ond class citizens of the computation dominated Grid world.
Our goal is to make data placement activities first class citi-
zens in the Grid just like the computational jobs. They need
to be queued, scheduled, monitored and managed, and even
check-pointed.

In the second section, we mention the challenges in the
Grid to reach this goal. In the third section, we discuss the
related work in this area. In the fourth section ,we introduce
Stork, a prototype scheduler for data placement activities in
Grid and how it can provide solutions for Grid data place-
ment problems. In the fifth section, we give a quick view
of Stork’s basic components. Then we conclude with our
future work and final remarks.




2. Grid Data Placement Challenges
2.1. Heterogeneous Resources

Grid is a heterogeneous environment in which many dif-
ferent storage systems, different data transfer middleware
and protocols coexist. And it is a fundamental problem that
the data required by an application might be stored in het-
erogeneous repositories. It is not an easy task to interact
with all possible different storage systems to access the data.
So there should be a unified interface using which you can
access all different kind of storage systems, and also you
can make use of all different underlying middleware and
file transfer protocols.

2.2. Scheduling of Data Transfers

When there is a data intensive application, access to the
data may become the main bottleneck in the system. Es-
pecially this is the case when the most of the data is stored
on tape storage systems. The user application may not be
able to access the data whenever the data is actually needed.
The data should be staged from tertiary storage (tape) to
secondary storage (disk), then it should be moved over the
wide area network to a local storage area close to the ex-
ecution site on which the application is running. If all of
these are not scheduled well and the data is not made ready
before hand, the application has to stay there idle for a long
time waiting for the data or it will fail. Both the computa-
tional resources will be wasted and also the response time
and throughput for the application will be reduced. If the
data is transfered well before the application is assigned
to that node, the storage resources might be held idle for
a long time, not allowing other applications to use them
meanwhile.

So, it should be decided well in harmony when to stage
the data, when to transfer it, and when to assign the CPU
on the execution site to that job. To achieve this, higher
level planners and the CPU and data schedulers should work
together and in harmony.

2.3. Fault Tolerance and Hiding Failures from Ap-
plications

The Grid is not a perfect environment for computation. It
brings failed network connections, performance variations
during transfers, crashed clients, servers and storage sys-
tems with it. But generally the applications are not prepared
to these kind of problems. Most of the applications assume
perfect computational environments like failure prone net-
work and storage devices, unlimited storage, availability of
the data when the computation starts, and low latency. We

cannot expect every application to consider all possible fail-
ures, and performance variations in the system and be pre-
pared for them. Instead we should be able to hide these from
application by a middleware.

2.4. Different Job Requirements

Each job may have different policies, different priorities.
Scheduling should be done according to the needs of each
individual job. Global scheduling decisions should be able
to be tailored according to the individual requirements of
each job. Using only global policies may not be affective
and efficient enough.

2.5. Limited Resources

The staging area or the local storage area that the appli-
cation is using can be limited, which is the case generally.
So the available storage area should be utilized efficiently.
Suppose all of the jobs running remotely finish at the same
time and try to send their outputs back to the local system.
If the local storage system is not capable of storing all of
the output data of those jobs, what will happen? Some of
these data should be moved to other storage before the local
storage are gets filled and all of the transfers fail due to lack
of storage.

2.6. Resource Overloading

A common problem in distributed computing environ-
ments is that when all jobs submitted to remote sites start
execution at the same time, they all start pulling data from
their home storage systems (stage-in) concurrently. This
can overload both network resources and the local disks of
remote execution sites. It may also bring a load to the home
storage systems from where the data is pulled. This prob-
lem can be easily solved by controlling the number of jobs
submitted at any given time. Most job schedulers can con-
trol the number of jobs being submitted at any given time,
but this solution is not sufficient always and it is not the best
solution in most cases either. The reason is that it does not
do any overlapping of CPU and I/O, and causes the CPU
to wait while I/O is being performed. Moreover, the prob-
lem gets more complex when all jobs get completed and try
to move their output data back to their home storage sys-
tems (stage-out). In this case stage-ins and stage-outs of
different jobs may interfere, overloading especially the net-
work resources more. An intelligent scheduling mechanism
should be developed to control the number of stage-in and
stage-outs from and to any storage system, and meanwhile
do not cause any waste in CPU time.



3. Related Work

Visualization scientists at Los Alamos National Lab
(LANL) found a solution for data placement by dumping
data to tapes and sending them to Sandia National Labo-
ratory (SNL) via Federal Express, because this was faster
than electronically transmitting them via TCP over the 155
Mbps(OC-3) WAN backbone [8].

Reliable File Transfer Service(RFT) [19] allows byte
streams to be transferred in a reliable manner. RFT can
handle wide variety of problems like dropped connections,
machine reboots, and temporary network outages automati-
cally via retrying. RFT is built on top of GridFTP [1], which
is a secure and reliable data transfer protocol especially de-
veloped for high-bandwidth wide-area networks.

Lightweight Data Replicator (LDR) [16] can replicate
data sets to the member sites of a Virtual Organization
or DataGrid. It was primarily developed for replicating
LIGO [17] data, and it makes use of Globus [11] tools to
replicate data. Its goal is to use the minimum collection
of components necessary for fast and secure replication of
data. Both RFT and LLDR work only with a single data trans-
port protocol, which is GridFTP.

There is ongoing effort to provide a unified interface
to different storage systems by building Storage Resource
Managers (SRMs) [25] on top of them. Currently, a cou-
ple of data storage systems, such as HPSS [24], Jasmin [4]
and Enstore [9], support SRMs on top them. SRMs can
also manage distributed caches using “pinning of files”. The
SDSC Storage Resource Broker (SRB) [2] aims to provide
a uniform interface for connecting to heterogeneous data
resources and accessing replicated data sets. SRB uses a
Metadata Catalog (MCAT) to provide a way to access data
sets and resources based on their attributes rather than their
names or physical locations.

Thain et. al. propose the Ethernet approach [26] to Grid
Computing, in which they introduce a simple scripting lan-
guage which can handle failures in a manner similar to ex-
ceptions in some languages. The Ethernet approach is not
aware of the semantics of the jobs it is running, its duty is
retrying any given job for a number of times in a fault toler-
ant manner. Kangaroo [27] tries to achieve high throughput
by making opportunistic use of disk and network resources.

Stork can use GridFTP, RFT, LDR or any other service
available for reliable and secure data transfer and replica-
tion. It can make use of the services provided by SRM and
SRB o access heterogeneous storage systems. It has its
own fault tolerance mechanism including “retry on failure”
which is the core of the Ethernet approach. One of the main
goals of Stork is to work in collaboration with the on-going
efforts in the data placement area and integrate or interact
with them in order to provide solutions for the challenges
the Grid puts in front of the users all over the globe.

file:/ -> local file

ftpi// -> FTP

http:// -> HITP

gsiftp:// ~> GridFTP

nest:// -> NeST (Network Storage Technologies)
srb:// -> SRB (Storage Resource Broker

stmi// -> SRM (Storage Resorce Managers)
unitree:// -> UniTree (NCSA's Mass Storage System)
diskrouter:// -> UW DiskRouter Tool

Figure 1. Protocols Already Supported by
Stork. The list of data transport protocols and stor-
age systems already supported by Stork, and how they
are represented as URLs in Stork system.

4. Stork Solutions to Grid Data Placement
Problems

Stork provides solutions for many of the data placement
problems encountered in the Grid environment.

4.1. Interaction with Heterogeneous Resources

Stork is completely modular, and can be extended easily.
It is very straightforward to add support to Stork for your
favorite storage system, data transport protocol, or middle-
ware. This is a very crucial feature in a system which de-
signed to work in a heterogeneous Grid environment. The
users or applications may not expect all storage systems to
support the same interfaces to talk to each other. And we
cannot expect all applications talking to all different kinds
of storage systems, protocols, and middleware. There needs
to be a negotiating system between them, which can interact
to those systems easily and even translate different proto-
cols to each other. Stork has been developed to be capable
of this. Modular feature of Stork allows users to insert a
plugin to support their favorite storage system, protocol, or
middleware easily.

Stork already has support for several different storage
systems, data transport protocols, and middleware. Users
can use them immediately without any extra work. The list
of storage systems, protocols, and middleware that Stork
can interact and the corresponding URLSs that Stork uses to
represent them are given in Figure 1. This list currently in-
cludes data transfer protocols such as FTP [20], GridFTP,
HTTP and DiskRouter [15]; data storage systems such as
SRB, UniTree [5], and NeST [3]; and data management
middleware such as SRM.
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Job A A.submit
DaP X ¥.submit
Job C C.submit
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“ Stork
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Figure 2. Interaction with Higher Level Plan-
ners. In this prototype model, Stork interacts with
DAGMan. A DAG specification file consisting of
both computational and data placement jobs is sub-
mitted to DAGMan. DAGMan then submits computa-
tional jobs to Condor/Condor-G, and data placement
Jjobs to Stork.

4.2. Interaction with Higher Level Planners

Stork can also interact with higher level planners like
DAGMan [7] [28]. This allows the users to be able to sched-
ule both CPU resources and storage resources together. We
made some enhancements to DAGMan, so that it can dif-
ferentiate between computational jobs and data placement
jobs. It can then submit computational jobs to a com-
putaional job scheduler, such as Condor [18] or Condor-
G [12], and the data placement jobs to Stork. Figure 2
shows a sample DAG specification file with the enhance-
ment of data placement nodes, and how this DAG is handled
by DAGMan.

In a DAG, both computational jobs and data placement
jobs can be represented as nodes, and the dependencies be-
tween them can be represented as directed arcs. In this way,
it can be made sure that an input file required for a compu-
tation arrives to a storage device close to the execution site,
before actually that computation starts execting on that site.
Similarly, the output files can be removed to a remote stor-
age system as soon as the computation is completed. No
storage device or CPU is occupied more than it is needed,
and jobs do not wait idle for their input data to become
available.

dap_type  ='reserve",
dest_host = "db18.cs.wisc.edu”;
reserve_size =100 MB”",

duration “2 hours”;
reserve_id =3;

dap_type = "transfer”,
src_url = “srb://ghidorac sdsc.edu/mome/kosart.condor/1.dat”;
dest_url ="nest://dh18.cs wisc.edu/1.dat";

dap_type ='‘release”
dest_host = "db18.cs.wisc.edu”; ;
reserve_id = 3;

] , 1

Figure 3. Job representation in Stork. Three
data placement requests are shown: first one to allo-
cate space, second one to transfer a file to the reserved
space, and third one to de-allocate the reserved space.

4.3. Failure Recovery

Stork hides any kind of network, storage system, mid-
dleware, or software failures from user applications. It has
a “retry” mechanism, which can retry any failing data place-
ment job any given nuber of times before returning a fail-
ure. It has also a “kill and restart” mechanism, which al-
lows users to specify a “maximum allowable run time” for
their data placement jobs. When a job exceeds this specified
time, it will be killed by Stork automatically end restarted.
This will be repeated a number of times, again specified
by the user. This feature provides to overcome the bugs in
some systems, which causes the transfers to hang forever
and never return.

4.4. Global and Job Level Policies

Stork enables users to specify job level policies as well as
global ones. Global policies apply to all jobs scheduled by
the same Stork server. Users can overwrite them by spec-
ifying job level policies in job description classads. The
example below shows how to overwrite global policies at
the job level.

(

dap_type = ‘‘transfer’’;

10;
**2 hours’’;

max_retry
restart_in

]

(]

In this particlar example, the user specifies that this spe-
cific job should be retried up to 10 times in case of fail-



Source: Destination:
local file local file
FTP FTP
gZridFTP eridFTP
HTTP HTTP
NeST NeST
SRB SRB
SRM SRM
UniTree UniTree
DiskRouter DiskRouter

Stork Job

Figure 4. Protocol Translation using Stork
Memory Buffer or Thirdparty Transfers. Trans-
fers between some storage systems and protocols can
be performed directly using one Stork job via mem-
ory buffer or thirdparty transfers.

ures, and if the transfer does not get completed in 2 hours,
it should be killed and restarted.

4.5. Efficient Resource utilization

Stork can control the number requests coming to any
storage system it has access to, and makes sure that nei-
ther that storage system nor the network link to that storage
system get overloaded. It can also perform space alloca-
tion and deallocations to make sure that the required stor-
age space is available on the corresponding storage system.
The space reservations are supported by Stork as long as the
corresponding storage systems have support for it.

5. Stork Architecture

Two main components of Stork architecture are its flexi-
ble job representation and protocol translation features.

5.1. Job Representation

Stork uses the ClassAd [23] job description language to
represent the data placement (DaP) jobs. The ClassAd lan-
guage provides a very flexible and extensible data model
that can be used to represent arbitrary services and con-
straints.

Figure 3 shows three sample data placement requests.
First request is to allocate 100 MB of disk space for 2 hours
on a NeST server. Second request is to transfer a file from

Source: Destination:
Stork
local file Disk local file
FIP Cache FTP
gridFTP aridPTP
HTTP HTTP
NeST NeST
§RB ERB
SRM 6RM
UniTree UniTree
DiskRouter DiskRouter
Stork Job Stork Job

Figure 5. Protocol Translation using Stork
Disk Cache. Transfers between all storage systems
and protocols supported can be performed using two
Stork jobs via an intermediate disk cache.

an SRB server to the reserved space on the NeST server.
And the third request is to de-allocate previously reserved
space. In addition to the “reserve”, “transfer”, and “re-
Jease”, there can also be other data placement job types such
as “locate”, “stage” and “remove”.

5.2. Protocol Translation

Stork maintains a library of pluggable “data placement”
modules. These modules get executed by data placement
job requests coming to Stork. They can perform inter-
protocol translations either using a memory buffer or third-
party transfers whenever available. Inter-protocol transia-
tions are not supported between all systems or protocols
yet. Figure 4 shows the available direct inter-protocol trans-
lations that can be performed using a single Stork job.

In order to transfer data between systems for which inter-
protocol translation is not supported, two consecutive Stork
jobs can be used instead. First Stork job performs transfer
from the source storage system to the local disk cache of
Stork, and the second Stork job performs the transfer from
the local disk cache of Stork to the destination storage sys-
tem.

6. Future Work

Currently, the scheduling of data placement activities us-
ing Stork are performed at the file level. The users can move
around only complete files. We are planning to add support
for data level or block level scheduling. In this way, the




users will be able to schedule movements of partial files, or
even any specific blocks of a file.

We are planning to add more intelligence and adaptation
to transfers. Different data transfer protocols may have dif-
ferent optimum concurrency levels for any two source and
destination nodes. Stork will be able to decide the concur-
rency level of the transfers it is performing, taking into con-
sideration the source and destination nodes of the transfer,
the link it using, and more importantly, the protocol with
which it is performing the transfers. In case of availabil-
ity of multiple protocols to transfer data between different
nodes, Stork will be able to choose the on with the best
performance, or the most reliable one according to the user
preferences. And in case of a failure of a transfer due to a
protocol problem, Stork will be able to try the same transfer
using other protocols available.

Stork will be able to decide through which path, ide-
ally the optimum one, to transfer data by an enhanced in-
tegration with the DiskRouter tool. It will be able to se-
lect nodes on which DiskRouters should be deployed, start
DiskRouters on these nodes, and transfer the data through
them by optimizing both the path and also the network uti-
lization.

Another enhancement will be done with adding check-
pointing support to data placement jobs. Whenever a trans-
fer fails, it will not be started from scratch, but rather only
the remaining parts of the file will be transfered.

7. Conclusion

We have introduced a specialized scheduler for data
placement activities in Grid. Data placement efforts, which
has been done either manually or by using simple scripts,
are now regarded as first class citizens just like the compu-
tational jobs. They can be queued, scheduled, monitored
and managed in a fault tolerant manner. We have showed
the current challences with the data placement efforts in the
Grid, and how Stork can provide solutions to them.
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