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Abstract

The problem of finding the best answers to a query quickly, rather than finding all answers, is
of increasing importance as relational databases are applied in multimedia and decision-support
domains. We propose an approach to efficiently answering such “Top N” queries by augmenting
the query with an additional selection that prunes away the unwanted portion of the answer set.
The risk is that if the selection returns fewer than the desired number of answers, the execution
must be restarted (with a less selective filter). We propose a new, probabilistic approach to
query optimization that quantifies this risk and seeks to minimize overall cost including the
cost of possible restarts. We also present an extensive experimental study to demonstrate that
probabilistic Top N query optimization can significantly reduce the average query execution
time with relatively modest increases in the optimization time.

1 Introduction

In the multimedia domain, Top N or “Get the best matches” queries are common. The notion of the best
match is typically fuzzy, and the cutoff (how many answers to return) is approximate, but the intent is
clear. The other area where Top N queries are important is decision support, where users often want to
see the high or the low end of some ordered result set. A typical example is “Find the 10 cheapest cars.”
The importance of Top N queries is underscored by the fact that most major commercial DBMSs include
language constructs for expressing such queries. Informix supports FIRST N, Microsoft has SET ROWCOUNT
N, IBM’s DB2 has FETCH FIRST N ROWS ONLY, and Oracle supports LIMIT TO N ROWS.

The simplest way to support Top N queries is to execute the query, sort the result in the desired order,
and then discard all but the first N tuples. Computing and sorting a large intermediate result and then
discarding most of it is a waste of resources. It was shown [7] that large gains in performance are possible
when the database system utilizes the fact that only a certain number of answers are needed.

We propose a new approach to optimizing Top N queries based on the following observation. A Top N
query on an attribute X, denoted by Top%, is equivalent to the simple selection query:

Top”]’f, EOxsK (1)

where & is a cutoff parameter determined by N and by the data distribution. Consider the following
example query on a table that is neither sorted nor indexed: “List the top 10 paid employees in the sales
department”. This query translates into: “List the employees from the sales department whose salary is
greater than k", where & is determined by the distribution of employees’ salaries, and must be determined
by the optimizer. If x is too high, we will retrieve less than N employees and therefore will have to restart
the query with smaller k. On the other hand, if & is too small, the query will unnecessarily run longer.
Because restarts involve repetition of work, they are characterized by a large jump in query cost.

How to estimate % is a nontrivial problem. If the query optimizer had complete knowledge of the
data distributions, it could estimate x exactly, and eliminate restarts. However, because the optimizer’s
knowledge of data distributions (usually maintained in the form of histograms) is not perfect, it is better
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Figure 1: The plan with equivalent selection (b) may be much cheaper to execute.

to underestimate s as a guard against restart. The main contribution of this paper is to propose a
probabilistic optimization framework that takes into account imprecision in the optimizer’s knowledge
of data distribution and selectivity estimates. Using probabilistic reasoning, the optimizer arrives at the
ezpected cost, and the optimal cutoff parameter is the one that minimizes expected cost. While we apply the
probabilistic optimization framework to the problem of estimating cutoffs for Top N queries, the approach
clearly has broader applicability to optimization problems in the presence of important parameters (e.g.,
number of available buffers, number of concurrent queries) that can only be approximately estimated.

The rest of this paper is organized as follows. After reviewing related work, we introduce our proba-
bilistic framework in Section 3. We introduce probabilistic optimization of Top N queries in Section 4. We
develop this idea further in Section 5, where we show how to obtain selectivity and cardinality distributions
for various kinds of selection predicates, starting with traditional histograms. We then present performance
results for Top N queries involving selections and joins in Section 6. Next, in Section 7 we consider two
classes of Top N queries that are more complex, involving aggregates and unions. The first class, involving
aggregates, shows an interesting and useful connection to the class of Iceberg queries [2]. In Section 8, we
then revisit the basic Top N problem formulation and identify two useful variants that can be supported
using our techniques. These include an “online” variant in which answers are eagerly returned, together
with some confidence bounds that they are indeed in the “top N”, and a variant in which the user can
specify a probability that returned answers will include all “top N”, thereby controlling the time required
to compute answers.

2 Related Work

Carey and Kossman [7, 1] proposed a new operator called STOP AFTER N (STOP for short) to terminate
computation after the first N results are computed. Large performance gains are possible when the STOP
operator is pushed down the plan tree. In contrast, while we can use the STOP operator at the root of
the query plan, we never push the STOP operator down the plan tree. Instead, we push the equivalent
selection (1), using standard techniques for handling selections. Our approach can lead to significantly
better plans in some situations, as illustrated in example plans in Fig. 1. Suppose that the best plan found
by the STOP pushdown is the one shown in Fig. 1 (a). Obviously, this plan can only be made cheaper
by replacing the STOP operator above relation A with the equivalent selection and thus eliminating the
sorting, as shown in Fig. 1 (b). Notice that the final SORT is still necessary in both versions because the
hash join does not preserve sorting. All the implementations of STOP require at least partial sorting of
the input stream, and [1] proposes techniques for reducing the sorting cost. In contrast, our approach does
not require sorting, except for the final result.

Technically, the focus of our paper is on a probabilistic framework for optimization, specifically for
computing the selection cutoff for Top N queries. This problem is not considered in [7, 1] or other previous
work.

A related approach to retrieving partial query results is presented in [12]. The focus of this work is on




rewriting initial queries into a number of subqueries in the hope that only a few subqueries will be executed.
In this work, the size of the answer subset is not explicitly stated by the user, which distinguishes it from
the Top N query. Selections that determine the size of each answer subset are determined by the availability
of indexes, user profile (historic behavior) or other similar heuristics. Our approach to estimating selection
cutoffs can be adapted to complement this work.

3  Framework for Probabilistic Query Optimization

Every Top N query is equivalent to a selection query (see Eq. (1)) with a specific cutoff parameter
K = Kerit. Formally, kerit is defined as the largest cutoff parameter x that does not cause restart. If
complete knowledge of all selectivities and data distributions were available, restarts would never happen
since one would always choose K = k¢riz. However, since the optimizer only has approximate knowledge
of distributions and selectivities, it is impossible to guarantee that more than N tuples will be eventually
retrieved, short of choosing k = —oo. Nonetheless, we can still reason about the likelihood of restart and
choose k accordingly. To enable such probabilistic reasoning, we propose to generalize selectivity estimates
to selectivity probability distributions.

In our probabilistic framework, a traditional (constant) selectivity estimate is replaced by a single value
with the probability one. More generally, when the selectivity is estimated from a histogram, we get a
selectivity distribution, as shown in Fig. 2. The width of this distribution is directly related to the quality
of the underlying histogram. The selectivity distribution of Fig. 2 suggests that selectivity can take one
of the following values: 0.65 (with probability 10%), 0.675 (with probability 20%), 0.7 (with probability
40%), etc.
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Figure 2: Selectivity probability density Figure 3: Example of an initial selectivity density.

Once we associate probability distributions with selectivities, we obtain similar distributions for result
cardinalities (which are estimated using selectivities) as well. Traditionally, a selection operator with
selectivity ¢ reduces the cardinality of its input n according to the expression m = ¢ n where m denotes
the output cardinality. A probabilistic generalization of this expression for the input cardinality distribution
p1(n) and selectivity distribution p(¢) is given by the following equation:

pa(m) =Y _ p(o)p1(n)d(m — on) (2)

where po(mm) is the resulting cardinality distribution and ¢ is defined as follows:
6(z)=0ifz#0, 6(0)=1 (3)

The & function is needed in Eq. (2) to ensure that the probability contributions to the cardinality m come
only from the combinations of the input cardinality n and the selectivity ¢ such that m = no.



Notice that the definition of § (Eq. (3)) implies the following properties:
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where f stands for any function.

Cardinality of a query with more than one predicate can be estimated by successively applying Eq.
(2) for each predicate, provided that predicates are not correlated. Every group of correlated predicates
must be treated as one atomic selection (as in the traditional case), i.e., their combined selectivity must
be estimated from a multidimensional histogram (or a sample).

The cost of a relational operator is a function of input sizes and cardinalities. The size of a relation is
in turn a function of the cardinality and fixed relational properties such as the number of attributes and
their sizes.! Therefore, we can think of the cost as only depending on the cardinality, and denote it by
C(n). The expected cost of a relational operator is:

E(C) =) C(n)p(n) (6)
where p(n) is the probability of n being the cardinality of the input to the operator.

3.1 Practical Considerations

In this section we describe how to practically maintain cardinality distributions; the ideas apply to main-
taining selectivity distributions as well. In general, a cardinality distribution is completely specified by
(cardinality ~ value, probability) pairs, but maintaining all such pairs is not practical. We can use two
alternative approximations:

1. Store the probability values for a certain limited set of equi-distant cardinality values.
2. Store a certain number of cardinality values whose associated probabilities are all the same.

We can think of these alternatives as simple versions of equi-width and equi-depth histograms, respectively,
with each bucket further summarized by a single representative value and a count. (The simplification is
motivated by the fact that we will carry out operations that involve combining approximations.} Of course,
unlike histograms on the data, these “histograms” summarize the distribution of cardinalities rather than
the distribution of data values.

Possible cardinalities in a typical database system vary greatly from 0 to more than 10°. In spite of
such a large range, the most likely values will commonly be within a relatively small region. Because of
this locality of the cardinality values, we dismiss the first option since it cannot capture a small region with
great detail. The size of the probability vector is system dependent. For example, a selectivity vector of
size 7 could be represented as an array:

o= {01,02,...,0n}

where o; are all equally probable selectivities. A cardinality distribution can be represented in a similar
manner.

To find the result of multiplying a cardinality distribution with a selectivity distribution (Eq. 2), we
just multiply every possible selectivity with every possible cardinality. However, the resulting distribution
will have n? elements and must be reduced to only 7 elements; this approximation can be carried out in
a way analogous to the construction of equi-depth histograms. The new 7 values are the centroids of the
buckets in the newly constructed histogram.

11f an attribute size is variable, one can approximate it by the average value, which is fixed for the relation.




4 Probabilistic Optimization of Top N Queries

We have discussed how to generalize traditional query optimization to work with selectivity and cardinality
densities. As a result, we can model input to the Top N operator as having a cardinality probability
distribution, allowing us to calculate the probability of restart for a given cutoff value. 'The probability of
restart r for a Top N operator is the probability that fewer than N answers are generated:

N-1

r=Y" pln) (7)

n=0

where p(n) is the probability that the input cardinality to the Top N operator will be n.
Given the probability of restart (r), we can write the expected cost of a plan subtree as:

TotalCost(x) = Cost(k) + r - RestartCost(x) (8)

where Cost(k) denotes the cost of processing the query with cutoff parameter « and RestartCost(x) denotes
the cost of processing the restart that will complete the answer to the query. Notice that Eq. (8) implies
that only one restart is possible. In general, if we allow for more than one restart, Eq. (8) should be
generalized to:

TotalCost(k1, K2, . . .) = Cost(k1) + 71 - RestartCost(k1, £2) + 2 - RestartCost(kz, k3) + ... 9)

where r, is the probability of the first restart, ro is the probability of the second restart, and so omn.
However, the cost formula presented in Eq. (9) is very difficult to minimize since it is a function of many
cutoff parameters. Therefore, for practical purposes, we will work with the simpler cost formula (Eq. (8)).

A cutoff parameter, k, is optimal if it minimizes the value of the query cost function (Eq. 8). We
restate the problem of optimizing a Top N query as the problem of finding the optimal cutoff parameter
Kopt and the associated execution plan. To find the minimum of the cost function (Eq. (8)) we can use a
standard function minimization algorithm such as Golden Section Search [14]. The probability of restart is
evaluated for every trial x using Eq. (7). Cost(x) and RestartCost(x) are expensive expressions to evaluate
because they require optimization of the query subtree. However, in our experiments we have found that
Eq. (8) is mostly dependent on the probability of restart and it is therefore acceptable to optimize Cost
and RestartCost only once. Of course, Cost(x) and RestartCost(x) should be re-evaluated for every trial
& because the cost will change depending on & even if the plan does not change.

5 Estimating Initial Probability Densities

We have discussed how to propagate cardinality densities through the plan tree, by multiplying the oper-
ator selectivity and the input cardinality densities. However, we have not yet addressed the problem of
estimating the initial cardinality density and the initial selectivity density for every predicate in the query;
we turn to this next. Database systems usually maintain exact cardinalities for the base tables. Therefore,
initial cardinality densities are likely to be single values with probability one. Estimating selectivity den-
sities is much more complex. Keeping in mind that our estimates will be used for optimization purposes
only, precision is not of crucial importance, so we choose simplicity as our guiding principle.

We will estimate initial selectivity distributions from histograms. In order for the selectivity distribution
to be consistent with the traditional (single value) histogram estimate, we require that the expected value
of the selectivity distribution coincide with the traditional selectivity estimate. 2 Therefore, we propose
to construct a selectivity distribution whose average is equal to the traditional selectivity for a predicate,
call it o. As described in Sec. 3.1, our distribution consists of a set of equally probable cardinality values.
Finally, we need to bound our distribution to the left and to the right. Distribution spread reflects the
precision of the histogram estimates; the more accurate the histogram is the tighter the bounds.

2Given a predicate, say X < 100, its selectivity is estimated from a histogram on the data distribution by adding counts
in buckets to the left of the point X = 100 and taking the ratio to the total count over all buckets.



Summarizing these ideas, we arrive at the generic distribution shown in Fig. 3. Notice that, in general,
the left bound (By) need not be equal to the right bound (BR). For example, bounds for a predicate can
be asymmetric because a predicate selectivity may not exceed one nor be less than zero. Given the average
value (traditional estimate o from a histogram) and bounds (B, and Bg) one can easily construct a simple
distribution with a certain number of possible values located equi-distantly to the left of the average and the
remaining values positioned equi-distantly to the right. Equi-distant positioning is chosen for simplicity,
notice that the distance between the left hand side values may not be the same as the corresponding
distance on the right. The total number of values in a selectivity distribution is a predetermined constant
(we used 32 in our experiment). Number of values to the left of o is calculated so that the expected value
of all the distribution is equal to o. In the following sections we will discuss how to estimate the two
distribution parameters By, and Bg for common predicates.

5.1 Estimating the Quality of a Histogram

Distribution parameters By and Bpr are dependent on the quality of the histogram on the referenced
column. Research on histograms has mainly focused on improving their precision [8]. The first paper
to introduce the idea of augmenting a histogram with some measure of accuracy is [3]. They suggest
maintaining the largest equality selection error within each bucket. This error is determined by comparing
histogram estimates to the actual result of an equality selection.

Although the idea of maintaining some error estimates within a histogram is a good one, maintaining
per bucket information has the following disadvantages: (1) Per bucket error information will increase the
size of the bucket and therefore use space that could otherwise be used to increase histogram precision. (2)
Selection errors for range queries will be largely overestimated if they are based on the largest errors per
bucket. This is because errors in single values tend to cancel each other, and simply adding them up will
greatly overestimate the error.

‘We propose to maintain the worst-case error for an open-ended range predicate. This has an advantage
of requiring little space, independent of the number of buckets, and it provides good bounds for queries
of type field < value. More specifically, let z denote the domain values, Ppon)(z) denote the cumulative
probability distribution of the real data set and Fyjg (z) denote the cumulative probability distribution
deduced from a histogram. Then, we define € as:

€= _Juax | Preal(®) — Phist () | (10)
In other words, € is the maximum deviation of the selectivity of the predicate field < value between the
histogram and the real data set. We propose to experimentally measure ¢ for each histogram and maintain
this value as a part of the system statistics. Notice that a table without a histogram is usually assumed
to have uniform distribution that corresponds to the trivial histogram, with only one bucket. Therefore,
without the loss of generality, we consider every table to have an associated histogram.

The most precise (and the most expensive) way of measuring € is by sorting the original table and
performing the full scan. A much cheaper way is to take a random sample of the original table and
measure € from the random sample. The crucial question here is how big a sample is needed in order
to estimate ¢ correctly. In general, this depends on the precision of the histogram: the more precise the
histogram is, the larger the required sample. Histogram precision in turn depends on the type of the
histogram and on the number of buckets 8. The most commonly used histogram in current database
systems is the equi-depth histogram, and so we present a short analysis for it here. The value of € for an
equi-depth histogram is bounded as:

1
€< — 11
<3 (11)
where 3 is the number of buckets. Also, by the theorem due to Kolmogorov [5] we have:
A
D< —= ‘
< (12

where s is the size of the random sample, D is the maximal deviation between the real data set and its
sample (Eq. (10)), and X is a number that depends on the confidence limit. For 80% confidence, A =~ 1.




So, the pessimistic estimate of D for 80% confidence is:

1
D~ —
7 (13)
To reliably estimate €, D should be much smaller than e, say
€
D~ —.
10 (14)

From formulas (11), (13), and (14) it follows that s can be approximated by:
s > 100 % (15)

We have verified experimentally that the sample size of approximately 100 B2 produces satisfactory results.
(See Fig. 7).

Notice that € can be calculated at the histogram construction time, using the single sample for both,
building the histogram and estimating e. In fact, the required sample size is, for the most cases, of the
same order of magnitude. For example, a histogram with 100 buckets (8 = 100) would require a sample
of size of 1 million (Eq. (15)). On the other hand, a recent paper on equi-depth histogram construction
[11] suggests that for the reasonable values of confidence, data size and deviations from true equi-depth
histogram, 0.8 million is the recommended sample size.

5.2 Estimating Selectivity Probability Density for Open Range Selection

From the definition of e (Eq. (10)) and the definition of the cumulative probability density it is clear that
the maximal error in the open range selection is e. Therefore, we construct a selectivity density shown in
Fig. 3 with the average equal to the selectivity estimate from the histogram and By, =Bp =e€.

5.3 Estimating Selectivity Probability Density for Equality and Closed Range
Selection

By knowing €, one can bound the error in an equality selection as well. If one denotes the histogram error
in the frequency of a domain value i by Af; then the following condition must hold:

J
—e< Y Afi<e (16)

=00

for any j element of the value domain. One can express the error in frequency Af; as:

J j—1
Afy= 30 Afi= D0 Afi

from which it is seen than Af; is bounded as:
—-2e < Af; < 2 (17)

Following the same argument, it can be shown that the error in the cardinality result R of the closed range
query (like a < = < b) is bounded by:
—2¢e < AR < 2¢ (18)

i.e., it is independent of the range. Similar to the open range selection, we construct a selectivity density
shown in Fig. 3 with the average equal to the selectivity estimate from the histogram and Br = Bg = 2¢.



5.4 Estimating Selectivity Probability Density for Equi-join Selection

The resulting cardinality of an equi-join (R) can be expressed as:
R=Y_ fig: (19)

where f and g stands for the frequency vectors of the two tables to be joined and 7 ranges over all domain
values in the join columns. Error in R can be obtained by differentiating Eq. (19):

AR=ZAf,~gi+ZfiAgi (20)

where we have ignored the term Y, Af; Af; because it is small compared to the other terms. This
expression can be further simplified by rewriting:

fi = fitAfR (21)
g = Gi+Ag (22)

where f; and §; stand for the histogram estimate of f; and g; respectively. After substituting the above
expressions into Eq. (20) and ignoring the terms with two differentials we get:

AR~ Y Afigi+ ) fibgi (23)

or by noticing that f (and §) is constant within a bucket b:
AR~ G STAfi+Y T > Agi (24)
b jeb b jeb

Finally, using the bounds from Eq. (18) we obtain:
AR < 25y Gb + 26 > h (25)
b b

From this bounds, we construct a selectivity density shown in Fig. 3 with the average equal to the selectivity
estimate from the histogram and By = Br = AR.

5.5 FEstimating Selectivity Probability Density for Selections on Union
We examine the issues related to Top N queries over unions motivated by the following observations:

1. Many database integration systems, that are expected to have significant presence on the Web, are
build as unions over the base tables (see for example [6] and [9]).

2. Top N queries are one of the most common queries in the Web environment. We will then especially
be concerned with running a Top N query on a distributed union.

Maximum error in the resulting cardinality AR of a selection on union is just the sum of all the component
errors AR;.
AR = |AR;| + |ARs| + ... + |AR,| (26)

From this bounds, we construct a selectivity density shown in Fig. 3 with the average equal to the selectivity
estimate from the histogram and Br = Bp = AR.




6 Performance Evaluation for Selection and Join Queries

In the following sections, we have applied the ideas developed so far to the optimization of Top N queries
on a single table or a join. We compare execution times for the following three algorithms, using average
execution time for 15 randomly generated input data sets:

Traditional: Compute all answers, sort, and return the top N.
Najve: Estimate the cutoff parameter for top 1.2 N (20% safety margin) using available system statistics.

Probabilistic: Determine the cutoff parameter probabilistically, using available system statistics (includ-
ing the measured ¢).

We varied several parameters: (1) Skew of the underlying data distribution (Zipf parameter[15] Z, by
default one). (2) Number of buckets in the histogram. (3) N, the number of tuples selected, by default
1,000. (4) s, the size of the random sample used to estimate . We fixed the total number of tuples in the
data file (100,000), and the total spread of the data, which is approximately equal to the number of distinct
values (5,000). We estimated execution times by using standard analytical formulas for cost estimation,
estimating the cost of a disk I/O as 10ms and the cost of a cpu operation as 10ps. Our results show
the performance gains to be sufficiently large that the relative merits of our probabilistic approach hold
regardless of the approximations inherent in this simple estimation of execution time.

6.1 Top N on a Single Table Selection Query

Consider the query that asks for the Top N employees by salary. Assume that the Employees table is
neither sorted nor indexed on salary field. As suggested by [1], the best plan for this query is probably to
use range-partitioning sort. However, the crucial question is how many partitions to materialize. In order
to simplify our presentation, we consider only two partitions, one which is materialized and sorted and the
other with the rest of the data. (In the terminology of the paper [1] these two partitions are called the
winner and the loser, respectively.) In the case of multiple (memory-sized) partitions, there will still be two
large groups, one that contains materialized partitions and the other that contains unmaterialized ones.
Therefore, our simplified analysis and conclusions would still hold in the more complex multi-partition
case. We discuss the parameters varied and the corresponding figures next.

Data Skew: Fig. 4 has the number of histogram buckets fixed to one, implying the uniformity
assumption. When data is really uniform (Z = 0), the naive and the probabilistic algorithm have the same
performance. With a large data skew, uniformity assumption becomes significantly violated and the naive
algorithm frequently runs into restarts. Notice that restarts are more expensive that the traditional scan
+ sort approach. The probabilistic algorithm handles skew gracefully by just becoming more pessimistic
in choosing the cutoff.

Number of Buckets: Fig. 5 shows that as the number of buckets increases, the difference between
the probabilistic and the naive algorithm becomes less pronounced. This is due to the fact that with a
Jarger number of buckets, the histogram error falls below 20% in which case the naive algorithm will not
restart.

Top N selected: Fig. 6 shows that the naive and the probabilistic algorithm converge as N increases.
This is because of the fact that eventually the 20% overestimate becomes adequate (conservative), provided
that N is large enough. For small N, 20% obviously does not provide enough safety margin.

Sample Size: Fig. 7 shows that the sample size of 100 or more (as predicted by Eq. (15)) is
satisfactory for this experiment, and that the performance of the probabilistic algorithm is not sensitive to
small variations in the sample size.

6.2 Top N on Equi-Join Queries

Consider the query that asks for the Top N paid employees from certain departments depts. This involves
a join of two tables, Employees and Departments. In this section, we compare the performance of naive
and probabilistic algorithms on equi-join queries such as this. We used the same data generator as for the
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selection queries, which implies that the average number of duplicates for a certain attribute value is 20.
We discuss the parameters varied and the corresponding figures next.

Data Skew: Fig. 8 shows the increased gap in performance as the data skew increases initially, due to
the fact that the naive algorithm runs into restarts. Restarts for the Naive algorithm become more common
for increasing skew because the histogram estimates become increasingly unreliable. However, algorithms
converge for the extreme skews because the result of the equi-join query goes to zero (no matches) and
both algorithms select the whole result (N is larger than the result size).

Size of Histogram: Fig. 9 shows that the naive algorithm improves as the histograms become larger,
as expected. The probabilistic algorithm improves too but the trend is too small to be visible.

Top N Selected: Fig. 10 shows that the differences between algorithms are less pronounced when
larger N is selected, because the 20% overestimate becomes adequate for larger N. The reasoning here is
the same as in single table case.

Number of Joins: Fig. 11 shows that the naive algorithm does not work for more than 2 way joins on
the test data. The reason for this is twofold. First, the quality of the estimates deteriorates rapidly with
the number of joins, thus making the restarts more likely. Second, the punishment for restart skyrockets
due to the large join size (100,000 * 20 * 20 tuples for the 3-way join).

In general, join experiments reflect the fact that estimating join selectivity is much more difficult than
estimating selectivity of range predicates, and consequently, the probabilistic approach is of greater value
in this case.
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Figure 10: Execution time for different values of Top Figure 11: Execution time dependency on the num-
N selected (in thousand of tuples). ber of joins.

7 Improvements on Some Common Top N Query Evaluations

In this section we consider two cases in which significant additional improvements over the standard Top
N query processing are possible: Top N on aggregate queries and Top N over distributed unions.

7.1 Efficient Evaluation of Top N Queries on Aggregates
Consider a Top N aggregate query such as this one asking for the N most common ages among employees:

select age, count(age) from Employees emp
group by age order by count(age)
stop after N

Given a small candidate set of “frequent” ages, we can scan the data to compute accurate frequency
counts, maintaining one main memory counter per candidate age, and then select the top N by frequency.
The main problem is to identify a small set of frequent age values that includes the top N ages by frequency.
We discuss two alternative evaluation strategies.

(I) Reduction to an Iceberg Query: The idea is to replace the Top N operator by the equivalent
selection. We need to estimate the cutoff value & for count(age), then group employees by age and compute
the counts above the cutoff. Given the cutoff x, we can turn the above Top N query into an Iceberg query,
allowing us to use the algorithms proposed in [2], as follows: just replace the stop after clause with having



Number of candidates

count(age) > k. Using this approach, the algorithms of [2] require two full scans of the dataset (one to
identify the “frequent” ages, and one to compute their counts), and there is the possibility of additional
scans in the case of restart (due to the Top N nature of our main query).

(ITI) Direct Use of a Histogram: This approach requires a histogram on the Top N attribute (age
in this example). Let the largest error in equality selection on this histogram be E. Using the histogram,
choose an attribute value V that has the smallest frequency F among the N attribute values with the
largest frequencies. The actual dataset may have a frequency for value V that is as low as F' — E. Also,
other frequencies in the histogram may be underestimated, and so the candidate set (for inclusion in the
Top N) is any value whose histogram frequency is above F' — 2E. The existence of a histogram therefore
allows us to identify a candidate set of frequent attribute values that is conservative: the top N values
by frequency are guaranteed to be here (provided that the error bounds stored with the histogram are
accurate!). This eliminates the problem of restart, and further, the candidate set generation is based
purely on the histogram. The database is scanned once to count frequencies for each candidate “frequent”
attribute value.
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Figure 12: Number of candidates generated by the direct histogram usage as a function of data skew,
histogram size, and number of tuples requested.

In Fig. 12 we present experimentally measured number of candidates for the example Top N query on
a synthetically generated data set. The three graphs in Fig. 12 show expected trends in the effectiveness
of the direct histogram alternative, which can be summarized as follows:

1. Number of candidates decreases as the data skew increases. This is expected behavior since it is
easier to identify the Top N candidates when there are large differences among frequencies.

9. Number of candidates decreases as the histogram precision (size) increases. This is because the error
decreases when the size is increased, making the candidate threshold frequency F' — 2F higher.

3. Number of candidates exponentially increases with N (number of tuples requested). This is mainly
an artifact of the Zipf distribution, which is exponential.

The conclusion of this section is that the direct histogram method of finding the candidate set is
an excellent way to answering Top N queries on aggregates under the circumstances of high skew, large
histograms (> 1K B), and small N.

7.2 Lazy Evaluation of Top N Over Distributed Unions

In a distributed environment, a Top N query could be run in parallel, ensuring the shortest response time.
However, this may unnecessarily waste the computing resources of remote sites. We can reduce resource
consumption by waiting to access a new site until it is necessary to do so, at the cost of slowing the
execution.

If the user chooses to conserve the resources, what is the proper order of accessing the sites so that the
number of accessed sites is minimal? We propose to access the sites in the order of estimated probabilities
that they will be useful in answering the query. Suppose that at a certain site S the maximum value for
the field of interest is Mg. If Mg is less than the cutoff parameter «, we will certainly not access the site
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Figure 13: Total resource usage for a union consist- Figure 14: Execution time dependency on user-
ing of 20 members with trivial histograms. specified restart probability for single table scans

S. However, even if k < Mg there is still a chance that the site S will not be accessed because the £ might
be underestimated. The probability of accessing the site S is the probability of restart when x = Msg.
(The Top N query is translated to selection above the cutoff parameter.) In other words, if kK = Mg and
no restart occurs than the site S need not be accessed. So, the sites should be accessed in the order of the
decreasing probability of being needed. Because the probability of restart is a monotonically decreasing
function of the cutoff parameter, this order coincides with the order of decreasing Ms. The benefits of the
lazy approach can be potentially large, as shown in Fig. 13. The reduction of the resource usage for certain
values of N is due to the fact that one connection to the remote source was saved. In this experiment, we
used a union with 20 members whose data are identically but independently distributed.

8 TUseful Variants of Top N Queries

8.1 Online Top N with Confidence Estimates

Motivated by the ideas of Online Aggregation [4], we consider an online version of the Top N operator.
Online operators are characterized by providing (1) approximate answers that are periodically updated,
and (2) some probabilistic guarantees about the (degree of) correctness of the current answers. An online
Top N operator should therefore provide a set of N or fewer answers that are likely to be in the Top N list,
along with associated probabilities indicating the likelihood that a given answer will be in the final Top N
list.

Our probabilistic framework provides the infrastructure to implement such an operator. Consider, for
example, a Top N query on a single table. The system will periodically display the current set of tuples that
satisfy the cutoff predicate. The probability of a value z not being in the Top N results is the probability
of no restart happening when x = z. Equivalently, the probability of a selected value z being in the final
Top N values is the probability of restart when x = z, where the probability of restart is calculated using
Eq. (7). These probabilities do not depend on the order in which the data is read.

In the event of restart, while getting all N results will take longer, the user at least has a subset of K
results which, as of the time restart is initiated, are guaranteed to be the top K. If K is sufficiently close to
N, the user may well terminate computation at this point (after all, the choice of N is likely to be rather
ad hoc in the first place).

8.2 Fuzzy Top N: An Alternative Formulation of Top N

Top N queries require exactly N answers, and the system has to guarantee N results by restarting the query
if necessary. We observe that many times, users may not insist on exactly N answers but may be ready to



accept less. We formalize this intuition by allowing a user to specify a bound on the likelihood of restarts.
So if a user is willing to accept a small likelihood of restart, the system can compute the cutoff k more
aggressively, and find answers in less time. Of course, as k is set more and more aggressively, the likelihood
of restart increases, and intuitively, the number of answers computed as of the time of restart decreases.
So the user indirectly also controls the number of answers that are likely to be computed at the time of
restart by directly controlling the bound on the likelihood of restart.

In this formulation of the problem, the cutoff x is determined solely by p and N (and of course data
distribution) but not by the estimated execution time. The desired cutoff is such that it minimizes |r — p|
where r is the probability of restart (defined in Eq. 7) and p is the probability of calculating N or more
answers (given by the user). For minimization one can again use the Golden Search technique. After
this cutoff is determined, we could just use a traditional optimizer to optimize the query augmented with
equivalent selection. This makes it very easy to support Fuzzy Top N in an existing system; all that is
needed is a thin layer (using the probabilistic estimation techniques presented here) to augment a query
with a cutoff selection predicate.

We have experimentally measured the query execution times (not including restart) for various restart
probabilities requested and the skew of the input data. In Fig. 14 we show the results for the single table
Top N query for input data files of 100,000 tuples spread over attribute range of 5,000 distinct values. The
top 10,000 answers were requested and the histogram size was fixed to 0.25 KB. For comparison, we also
include the time for the Traditional alternative which would sort all the data and return first N tuples
only. Fig. 14 indicates that for low skews the execution time is not very dependent on the probability of
restart. This is due to the fact that a 0.25KB compressed histogram can bound the possible cutoff values
well within a small range of attribute values. On the other hand, datasets with high skew require much
longer execution time for low values of the probability of restart. This can be explained by the fact that
with high skew there are certain attribute values that make up the bulk of the distribution. Selecting
such a value ensures no restart with certainty and not selecting it ensures a restart with certainty. When
choosing between zero or one, the system chooses zero for small restart probabilities, effectively selecting
and sorting large chunks of input data.

9 Future Work

We plan to examine the benefits of the probabilistic optimization for traditional select-project-join queries.
Probabilistic query optimization should reduce the average execution time in cases when plan’s cost depends
on unpredictable but crucial resource, such as main memory, network bandwidth or machine loads. For
example, it is well known that the cost of index nested loop join depends crucially on the available memory
and is generally a viable plan if the index (together with the associated relation) can fit in memory. If this
is not the case, the cost of such plan suddenly becomes very large. Another example is the problem of
executing queries that refer to relations scattered over a wide-area network [13]. The challenge here is to
come up with plans whose execution times are not too sensitive to the possible delays in the network. Yet
another example can be found in distributed query processing, where the optimizer has to distribute the
jobs to the sites depending on the machine loads.

10 Conclusion

We have presented a new solution to the optimization of Top N queries that offers an interesting, and in
some ways simpler, alternative to the approach of [7, 1]. Our extensions to a traditional query optimizer
are relatively easy to implement and they show significant improvements in execution times over the naive
approach to aggressive pushing of STOP operator. The underlying idea of taking imprecision in estimates
into account during query optimization has much wider applicability than just Top N queries.
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