Shoring Up Persistent Applications

Michael J. Carey
David J. DeWitt
Michael J. Franklin
Nancy E. Hall
Mark L. McAuliffe
Jeffrey F. Naughton
Daniel T. Schuh
Marvin H. Solomon
C.K. Tan

Odysseas G. Tsatalos
Seth J. White
Michael J. Zwilling

Technical Report #1222

April 1994

Shoring Up Persistent Applications®

Michael J. Carey, David J. DeWitt, Michael J. Franklin] Nancy E. Hall,
Mark L. McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon,
C. K. Tan, Odysseas G. Tsatalos, Seth J. White, Michael J. Zwilling

Computer Sciences Department
University of Wisconsin—Madison
shore@cs.wisc.edu

Abstract

SHORE (Scalable Heterogeneous Object REpository) is a
persistent object system under development at the Univer-
sity of Wisconsin. SHORE represents a merger of object-
oriented database and file system technologies. In this paper
we give the goals and motivation for SHORE, and describe
how SHORE provides features of both technologies. We also
describe some novel aspects of the SHORE architecture, in-
cluding a symmetric peer-to-peer server architecture, server
customization through an extensible value-added server fa-
cility, and support for scalability on multiprocessor systems.
An initial version of SHORE is already operational, and we
expect a release of Version 1 in mid-1994.

1 Introduction

SHORE (Scalable Heterogeneous Object REpository)
is a new persistent object system under development at
the University of Wisconsin that represents a merger of
object-oriented database (QODB) and file system tech-
nologies. While the past few years have seen significant
progress in the QODB area, most applications (and ap-
plication areas) have not chosen to leave file systems be-
hind in favor of OODBs. We feel that more applications
could benefit from QODB support, but are impeded by
limitations in current technology.

1. Many current QODBs are closed and restricted
to one language (most often persistent C++ or
Smalltalk), unlike both file systems and relational
database systems. Large-scale applications often
require multilingual data access.

2. With most current OODBs, application program-
mers face an “either/or” decision—either they put
their data in the OODB, in which case all of their

*A version of this paper appeared in Proceedings of the
1994 ACM-SIGMOD Conference on the Management of Data,
Minneapolis, MN, May 1994. This research is sponsored by
the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research
Laboratory under contract DAABO07-91-C-Q518.

tCurrent Address: Department of Computer Science, Univer-
sity of Maryland, College Park, MD

existing file-based applications must be rewritten, or
they leave their data in files.

3. Most current OODBs provide a fairly “heavy”
solution in the area of transaction management,
dictating the adoption of serializability and up-to-
the-last-transaction data recoverability.

4. Most current OODBs have strongly client-server ar-
chitectures, and are thus inappropriate for execu-
tion in peer-to-peer distributed systems or on the
kinds of high-performance multicomputer hardware
needed for certain large scale applications.

The goal of the SHORE project is to provide a system
that addresses these issues, thereby enabling “holdout”
applications to finally move their data (incrementally)
out of files and into a modern persistent object repos-
itory. We also expect many current OODB clients to
find SHORE to be an attractive alternative.

1.1 EXODUS

Many of us were involved in an earlier object-oriented
database effort called EXODUS [CDF*86]. Version
3.0 of EXODUS provides a client-server architecture
with page-level locking, log-based recovery based on the
ARIES algorithm [FZT+92], and support for multiple
servers and distributed transactions. The EXODUS
package includes the E programming language [RCS93],
a variant of C-+-+ that supports convenient creation
and manipulation of persistent data structures. The
functionality, performance, robustness, and low cost
(free!) of EXODUS has made it a popular piece
of software. EXODUS and its associated toolkit
have been used in several projects at Wisconsin and
elsewhere. Over 350 different groups from over 30
countries have taken copies of it from our ftp site,
it is used as the storage manager in the TI Open
Object-Oriented Database System, it serves as the
storage engine for at least one commercial product
(MediaDB, a recently announced multi-media DBMS),
and it has been shown to have commercially competitive
performance on an OODBMS benchmark [CDN93].

Nonetheless, EXODUS suffers from several limitations
shared by many current persistent object stores. An
exploration of these limitations may help to explain the
motivation for SHORE.

EXODUS storage objects are untyped arrays of
bytes; correct interpretation of their contents is the
responsibility of application programs. Although E
allows instances of any C-++ type to be stored in the
database, no type information is stored. This “compile-
time” approach to data types has several disadvantages
including the following:

o It is too easy to access objects under the wrong type,
because of programming or configuration errors such
as version mismatch.

e Restricting type support to the compiler locks users
into single-language solutions.

¢ Sharing data between applications is difficult.

e Lack of stored types prevents the DBMS from
providing such facilities as support for heterogeneous
hardware platforms, data browsers, or garbage
collectors.

At the time we designed EXODUS, we felt there was too
much variability in type systems to legislate a common
solution. Since then, there has been a growing consensus
on the level of type support that an OODBMS system
should provide [Cat93].

A second limitation of the EXODUS storage man-
ager (ESM) is its client-server architecture. Users have
constructed database servers or object servers as EXO-
DUS client processes, leading to the “client-level server”
problem illustrated in Figure 1. Even a query-shipping
(as opposed to data-shipping) SQL server would be diffi-
cult construct efficiently with the existing software base.
In contrast, a more open architecture would have al-
lowed clients to customize the ESM server process di-
rectly. The ESM process architecture also fails to sup-
port a clean mapping onto parallel processors such as
the Intel Paragon or IBM SP/2. Although one could
simply run an EXODUS server on each node with mass
storage attached, support for distributed transactions
is not sufficient; efficient parallelism also requires the
availability of extensive server-to-server communication
facilities.

A third limitation of EXODUS is its lack of support
for access control. As with other aspects of the
system, our original thinking was that different clients
might wish to implement very different protection
models, and thus we provided no built-in protection
support. Furthermore, EXODUS allows client processes
to manipulate objects directly in cached copies of
database pages, so an errant pointer can destroy not
only client data but also metadata, rendering the entire
database unusable. The original design of EXODUS

Client #1

SQL. Server Manager

| EXODUS Storage <@

An EXODUS Client The EXODUS Server
Client #n

SQL Applications

Figure 1: The client-level server problem.

envisioned client processes as being database systems
and object servers (i.e., other trusted software layers).
SHORE aims to support environments in which a single
storage volume may be shared by mutually mistrusting
applications.

Finally, while EXODUS objects are similar to Unix
files (they are untyped sequences of bytes), the interface
for manipulating them is completely different. As
a result, existing applications built around Unix files
cannot easily use EXODUS.

The design of SHORE strives to retain the good fea-
tures of the EXODUS Storage Manager (such as trans-
actions, performance, and robustness) while eliminating
some of these limitations.

1.2 How SHORE differs from EXODUS

Each object in SHORE contains a pointer to a fype
object that defines its structure and interface. The
SHORE Data Language (SDL) provides a single lan-
guage-neutral notation for describing the types of all
persistent datal

SHORE’s process architecture is different from that
of EXODUS in two key ways. First, SHORE has a
symmetric, peer-to-peer structure. Every participating
processor runs a SHORE server process regardless
whether it has local disks. A client process interacts
with SHORE by communicating with the local SHORE
server (see Figure 2). The design is scalable; it can
run on a single processor, a network of workstations,
or a large parallel processor such as the Intel Paragon
or IBM SP/2. Second, SHORE supports the notion of
a “value-added” server. The server code is modularly
constructed to make it relatively simple for users to
build application-specific servers without facing the
“client-level server” problem. For example, the Paradise
project [DLPY93] is already using the SHORE server to
build a geographic information system.

Finally, SHORE is intended to be much more of
a complete system than ESM. In addition to a more
flexible process structure and support for typed objects,
SHORE provides other services that end users should
find attractive, including a name space and access-

1SDL is very closely related to ODL, a data definition language
recently proposed as a standard by ODMG, an OODB vendor
consortium [Cat93].

Workstation 1 Workstation 2

ORI (%)

SHORE

i

D!

Server 2

Server 1

Figure 2: The SHORE process architecture.

control model similar to Unix, a Unix-compatible
interface for legacy software tools, openness in the area
of language bindings, and traditional database services
such as associative data access, indexing, and clustering.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the services provided
by SHORE, including both its file system and database
features. The SHORE process architecture is described
in Section 3. Section 4 describes the tools that we are
developing for writing parallel, object-oriented applica-
tions using SHORE. We conclude in Section 5. The soft-
ware described here is not simply “paperware.” Much
of the basic SHORE software is already operational; the
system is now sufficiently complete that its C++ bind-
ing can run much of the O0O7 benchmark [CDN93] in
both client-server and parallel environments. We are
expecting a full release of Version 1 of SHORE in mid-
1994.

2 Basic SHORE System Concepts

As a hybrid system, SHORE may be described as
a file system augmented with database features or a
DBMS with file-system features. In this section, we will
describe the basic features of SHORE, explaining how it
combines important ideas from these two areas in order
to arrive at a system capable of addressing the variety of
application requirements discussed in the introduction.

2.1 The Big Picture

SHORE is a collection of cooperating data servers, with
each data server containing typed persistent objects. To
organize this universe of persistent SHORE objects, a
Unix-like namespace is provided. As in Unix, named
objects can be directories, symbolic links, or individual
(typed) objects (the counterpart of Unix “plain” files).
Unlike Unix, SHORE allows each object to be accessed

by a globally unique Object Identifier (OID) that is
never reused. SHORE also introduces a few new types
of objects, including types and pools, as described in
more detail in Section 2.3. The type system for SHORE
objects is language-neutral, supporting applications
in any programming language for which a language
binding exists. For objects whose primary data content
is textual or untyped binary data, Unix file system
calls are provided to enable legacy applications (such
as existing language compilers or CAD tools) to access
their data content in an untyped manner. SHORE is
structured as a peer-to-peer distributed system; each
node where objects are stored or where an application
program wishes to execute contains a SHORE server
process that talks to other SHORE servers, interfaces
to locally executing applications, and caches data pages
and locks in order to improve system performance.

2.2 SHORE Object Basics

The SHORE object model, like many database object
models, consists of objects and values. Every persistent
datum in SHORE is an object, and each object has an
identity denoted by a unique object identifier or OID.
Structurally, an object is a container for a value; the
value can be simple or structured, and may include
references to (typed OIDs of) other objects. Every
value has a type, as does every object. Behaviorally,
each object has a set of methods through which its
contents can be accessed and manipulated. The internal
structure and methods available for a given object
are dictated by the object’s type, referred to as its
interface type, and every SHORE object is tagged
with a reference to a type object that captures this
information.

A SHORE object is much lighter-weight than a Unix
file, but it may still be too heavy to support fine-grained
data structures that are customarily represented as
linked lists, trees, or other graph structures in non-
persistent programs. To support the flexibility of
dynamic structures with the efficiency of (logically)
contiguous blocks on secondary storage, SHORE allows
each object to be extended with a variable-sized heap
(see Figure 3). The core of an object is described by
its type. The heap is used by the system to store
variable-sized components of its value such as strings,
variable arrays, and sets. The heap can also contain
dynamic values which are similar to “top-level” objects,
but do not have independent identity (for example,
when the object is destroyed, all of its dynamic values
are destroyed as well). Dynamic values can be linked
together with local references, which are stored on
disk as offsets from the start of the heap, but are
swizzled in memory to actual memory addresses. The
02 commercial OODBMS [Deu91] provides a related
facility with its objects/values distinction; the main
difference is that in Q2 the encapsulated values must

form a set, list, or array, whereas in SHORE the
heap can contain an arbitrary data structure. With
demand-paging support for very large objects, each
object heap closely resembles a small Object Store
database [LLOW91].

Object Heap ———- -

§<-— Object Core :

Figure 3: SHORE object structure.

2.3 File System Features

From a file system standpoint, SHORE provides two
major services. First, to support object naming and
space management in a world with many persistent
objects, SHORE provides a flexible object namespace.
Second, to enable legacy Unix file-based applications to
continue to exist while new SHORE applications are
being developed, mechanisms are provided that permit
SHORE object data to be accessed via Unix file system
calls.

2.3.1 SHORE Object Namespace

SHORE provides a tree-structured, Unix-like name-
space in which all persistent objects are reachable, either
directly or indirectly, from a distinguished root direc-
tory. By doing so, SHORE gives users a framework in
which to register both individual persistent objects and
the roots of large persistent data structures, a frame-
work that provides a much richer naming environment
than the single-level “persistent root” directory found
in EXODUS and most other current OODBs.? The re-
alization of this framework involves extending the set of
familiar Unix object types (directories, symbolic links,
and “regular files”) with cross references, pools, mod-
ules, and type objects.

SHORE directory objects provide the same facilities
as Unix directories. Familiar Unix concepts such as
path name, subdirectory, parent directory, link (both
hard and symbolic), and root directory are all defined
as they are in Unix [RT74]. As in Unix, a directory
is a set of (name, OID) pairs. The OID can refer to
any other SHORE object, but the system maintains the
Unix invariant that the set of directories forms a single
rooted tree. Directories and the objects they contain
are called registered objects. Each registered object
contains a superset of the Unix attributes: ownership,

2Many of the commercial systems use a tree-structured name
space for naming databases, but not for naming or organizing
individual persistent objects or collections.

access permissions, and timestamps.®> To support
lighter-weight objects, SHORE introduces a new kind
of (registered) object called a pool. Members of a
pool, called anonymous objects, are clustered near each
other on disk and share most of the Unix attributes
(ownership, etc.) with the pool. Anonymous objects
do not have path names, but they can be accessed by
OID like any other object. There is also an operation
to enumerate the contents of a pool (which can be
accessed by OID or path name). The registered property
is orthogonal to type: Any type of object can be created
either in a pool (as an anonymous object) or in a
directory {(as a registered object). We expect that in
a typical SHORE database, the vast majority of objects
will be anonymous, with a few registered objects serving
as roots or entry points to graphs of anonymous objects.

To preserve the invariant that all objects are reach-
able from the root of the directory system, SHORE
imposes different deletion semantics on registered and
anonymous objects. As in Unix, a registered object
is not explicitly deleted; it is reclaimed by the system
when its link count (the number of directory entries re-
ferring to it) drops to zero. An anonymous object can
be deleted at any time, but a pool can only be deleted
when it is empty. An OID is thus a “soft” reference,
in that it may dangle if the object to which it refers is
deleted. (Since OIDs are never reused, however, it will
never accidentally capture a new object.) Since OIDs
can be stored in the contents of arbitrary objects, any
stronger integrity guarantee would be impractical to en-
force.

SHORE introduces three more fundamental kinds of
objects, modules, type objects, and cross references.
Modules and type objects are similar to pools and
anonymous objects, respectively, but have different
deletion semantics to preserve the existence dependency
from objects to their types. Cross references are similar
to symbolic links in that they provide a way to insert
an alias for an object into the directory name space.
While a symbolic link contains a path name for a
registered object, a cross reference contains the OID
of an arbitrary object. Cross references, like symbolic
links, are “soft” (permitted to dangle). They are
intended primarily for the Unix compatibility feature
described in the following section.

Figure 4 illustrates these concepts. The direc-
tory /u/smith contains the entries project, doc, and
pooll, referring to another directory, a cross refer-
ence, and a pool, respectively. The registered object
/u/smith/project/entries contains pointers to mem-
bers of pooll. It might be some sort of application-
defined “directory” of entry points to a data struc-

3The semantics of timestamps are slightly different from those
of Unix in order to make them efficiently maintainable while
retaining their usefulness to applications that rely upon them.

ture. The symbolic link /u/smith/project/READNE is
an alias for the cross reference /u/smith/doc, which
is itself an alias for a member of pooll. An attempt
to access either of these path names through the Unix
compatibility interface will resolve to that anonymous
object.

/u/smith/project

/u/smith/project/README
proj-root | [3.]
entries 3 v/u/smith/doc®
/u/smith / \

/u/smith/doc
project

Py B’/
/u/smith/project/entries
pooll B\

N

/u/smith/pooll

Figure 4: The SHORE name space.

2.3.2 Legacy Unix Tool Support

While SHORE provides a much richer environment
than traditional file systems, there are many situations
where tools designed to be used on files need to
be invoked on database objects. A typical example
is provided by the CAPITL project [AS93], which
uses EXODUS. CAPITL improves on current software-
development environments by maintaining a rich set
of attributes and relationships for each object in its
repository (program sources, object files, specifications,
documents, etc.) It represents each object as a directed
graph, with intra- and inter-object links represented by
0OIDs. While tools developed as part of CAPITL take
full advantage of this rich structure, it is occasionally
necessary to invoke existing tools such as compilers
or editors on objects stored in the database. Three
possible approaches were to rewrite the tools to access
CAPITL objects, to copy the contents of an object to a
file before operating on it (and copy back the results),
or to keep the contents permanently in files, storing
only metadata and file names in the CAPITL database.
All of these approaches are unsatisfactory for various
reasons. The solution found for CAPITL, which we have
generalized and expanded in SHORE, is to provide a
special Uniz compatibility feature. Each SHORE object

may optionally designate a range of bytes as its text
field. A compatibility library provides versions of Unix
system calls such as open, read, write, and seek,
interpreting pathname arguments in the SHORE name
space and satisfying requests by fetching or updating
the text field of objects. Registered objects without text
fields behave like /dev/null (they read as zero length
and ignore attempts to change them). Anonymous
objects can be accessed via cross references.

For applications that cannot even be re-linked, we
have constructed an NFS file server [SGK*85]. An
entire subtree of the SHORE name space can be
“mounted” on an existing Unix file system. When
applications attempt to access files in this portion of
the name space, the Unix kernel generates NFS protocol
requests that are handled by the SHORE NFS value-
added server.

2.4 Object-Oriented Database Features

As we mentioned in Section 1.1, one important motiva-
tion for SHORE was to rectify some of the shortcom-
ings of EXODUS, many of which are shared by other
existing object-oriented databases. Access control and
name space limitations were addressed in the previous
section. Process structure is addressed in Section 3. In
this section we describe the design and implementation
of the SHORE type system and indicate how it supports
hardware and language heterogeneity.

2.4.1 The SHORE Type System

The SHORE type system is embodied by the SHORE
Data Language, SDL, the language in which SHORE
types are defined. SDL is quite similar in nature to
the Object Definition Language (ODL) proposal from
the ODMG consortium [Cat93], which is descended
from OMG’s Interface Description Language (IDL), a
dialect of the RPC interface language used in OSF’s
Distributed Computing Environment (DCE). Our work
on SDL started at roughly the same time as ODMG’s
work, and we also used OMG’s IDL as a starting point.
‘We have been following the development of ODL, but we
had to proceed as well rather than waiting for ODMG
to complete their work. (At this time, the ODMG
standards are still only in the late paper design stage,
and portions are not yet entirely clear or internally
consistent.) The goals of ODMG are also somewhat
different from ours. They concentrate on a standardized
interface to existing C++ oriented OODBs, while our
focus has been support for inter-language object sharing
within a large namespace of objects.

All objects are instances of interface types, types con-
structed with the interface type constructor. Interface
types can have methods, attributes, and relationships.
The attributes of an interface type can be of one of the
primitive types (e.g., integer, character, real), or they
can be of constructed types. SHORE provides the usual

set of type constructors: enumerations, structures, ar-
rays, and references (which are used to define relation-
ships). In addition, SHORE provides a variety of bulk
types, including sets, lists, and sequences, that enable a
SHORE object to contain a collection of references to
other objects. Finally, SHORE provides the notion of
modules, to enable related types to be grouped together
for name scoping and type management purposes. To
provide a brief taste of SDL, Figure 5 shows how one of
the 007 benchmark [CDN93] types can be defined.*

module o007 {
const long TypeSize = 10;
enum BenchmarkOp { Travl, Trav2, Trav3, etc };

// forward declarations
interface Connection;

interface CompositePart;

interface AtomicPart {

public:

attribute char ptype[TypeSizel ;
attribute long X, ¥;
relationship set<Connection>

to inverse from;
relationship set<Connection>

from inverse to;
relationship ref<CompositePart>

part0f inverse parts;

void swapX¥();

long traverse(in BenchmarkOp op,
inout PartIdSet visitedlds) const;
void init(in long ptld,
in ref<CompositePart> cp);
I
// Connection, CompositePart, and other types

3

Figure 5: Contents of the file 0o7.sd1.

2.4.2 SHORE Language Bindings

SHORE is intended to allow databases built by an
application written in one language (e.g., C++) to
then be accessed and manipulated by applications
written in other object-oriented languages as well (e.g.,
CLOS). This capability will be important for large-scale
applications, such as VLSI CAD; C++ might be used
for efficiency in simulating large chips, while CLOS
(or perhaps Smalltalk) might be more convenient for
writing the associated design-rule checking and user
interface code. In SHORE, the methods associated with
SDL interfaces can therefore be written using any of the

4In the interest of brevity, some of the details have been
omitted.

languages for which a SHORE language binding exists.
Currently, only the C++ binding is operational, so we
will illustrate SHORE’s language binding concepts by
briefly discussing the SHORE C++ binding.?

An application, such as the OO7 benchmark, is
created as follows. The first step is to write a
description of the types in SDL. In our OO7 example,
this description is saved in a file called 0o7.sdl. The
next step is to use the SDL type compiler to create
type objects corresponding to the new types. The
type compiler is a SHORE application that creates
type objects from SDL definitions.® A language-specific
tool (in our case, c++extract) is then used to derive a
set of class declarations and special-purpose function
definitions from the type objects. In our example,
this generated code is placed in two files: o007.h,
and 007.C. The header file 007.h is included both
in the C++ source files that supply the (application-
specific) implementation of member functions such
as traverse and swapXY, and in source files that
manipulate instances of AtomicPart, etc. The OID of
the type object is compiled into these files and used to
catch version mismatches at runtime.

A fragment of the generated oo7.h file is shown
in Figure 6. Some of the data member types in
Figure 6 correspond directly to SDL types, as C++ (like
most languages) offers direct support for those simple
types. For SHORE types with no corresponding C+-+
type, like sets and references, a language-appropriate
presentation of the SDL type is generated. For C++,
SHORE presents references, sets, and other collection
types using pre-defined template classes (parameterized
types) such as Ref and Set in Figure 6. The
class Ref<CompositePart> encapsulates an OID; C++
overloading features make it behave like a pointer
to a read-only instance of CompositePart. The
class Set<Connection> encapsulates a data structure
containing a set of OIDS, and it provides member
functions that enable its contents to be accessed.

50ther bindings are planned, of course, but work on them will
not begin until SHORE is fully operational and delivering good
performance through its C+4+ binding.

6Note, however, that any SHORE application can create type
objects. For instance, one could write a graphical schema design
tool to create type objects and install them in the database.

class AtomicPart {
public:
char ptype[10];
long x;
long y;
Set<Connection> to;
Set<Connection> from;
Ref<CompositePart> part(f;
virtual void swapXY();
virtual long traverse(Benchmark(Op op,
PartIdSet &visitedIds) const;
virtual void init(long ptld,
Ref<CompositePart> cp);
// Additional SDL-generated members
// are included here.

Figure 6: C++ Class generated from 0o7.sdl.

Given the header file generated by the binder, the
application programmer can implement the operations
associated with the OOQ7 interfaces. In the C++
binding, access to simple data members is provided
safely through the use of several techniques. As
mentioned above, Ref-generated classes behave like
read-only pointers, so information about an atomic part
could be printed by a function as follows:

void printPart(Ref<AtomicPart> p) {
cout << "Type " << p->ptype
<< " part at (" << p—>x << "M
<< P_>y << n)\nn;

}

This function can directly access the part_type, x, and
y data members of an atomic part, but it cannot update
them. (Attempts to do so would be flagged as an error
by the C++4 compiler.) Similarly, member functions
that do not update the contents of an object are flagged
as const in their SDL definition, as illustrated in
Figure 5 (and attempts to call a non-const member
function through a Ref are also caught by the compiler).

To modify an object, the C++ application must
first call a special generated member function, update,
which returns a read-write reference. For example, the
following code fragment directly exchanges the x and y
attributes of an atomic part:

Ref<AtomicPart p> = ... ;
long tmp = p->x;
p.update()->x = p->y;
p.update()~>y = tmp;

The function update coerces the type of p from
Ref<AtomicPart> to (non const) AtomicPart *. It
also has the runtime effect of marking the referenced
object as “dirty” so that changes will be transmitted
to the server when the transaction commits. Since the
member function swapXY is not declared to be const in

Figure 6, another legal way to accomplish this exchange
would be to define this member function as follows:

void AtomicPart::swapXY() {
long tmp = Xx;
x = y;
y = tmp;

¥

Given this definition, swapXY could then be invoked to
do the job.

Ref<AtomicPart p> = ... ;
p-update () ->swapX¥();

The SHORE C++ binding implements collection
types similarly to C++ OODBs [LLOW91, Obj92,
Ont92, Ver92): A template type such as Set<Connec-
tion> in Figure 6 contains a member function members
that returns an iterator. For example, the printPart
function could be extended to print an atomic part’s
outgoing connections as follows:

void printPart(Ref<AtomicPart> p) {
cout << "Type " << p->ptype << " part at ("
<< p=>x << M," KL pdy
<< ") with outgoing connections\n";
Iter<Connection> m = to.members();
for (Ref<Connection> ¢ = m.first();
c¢!=NULL; ¢ = m.next())
{ ¢->print(); cout << "\n"; }
}

2.4.3 Other OODB-Like Services

SHORE provides support for concurrency control (via
locking) and crash recovery (via logging); these services
are integrated with the support for data caching
described below. Shore will also provide users with
a choice of lower levels of consistency and recovery.
Details of these reduced levels are still being worked out.
Other SHORE services include optimized object queries
over bulk types and a flexible, user-controllable notion
of “sticky” object clusters to permit users to cluster
(and later recluster) related objects.

3 The SHORE Architecture

3.1 Peer-to-Peer Server Communication

Figure 2 in Section 1.2 illustrates the process struc-
ture of SHORE. SHORE executes as a group of com-
municating processes called SHORE servers. SHORE
servers consist exclusively of trusted code, including
those parts of the system that are provided as part of
the standard SHORE release, as well as code for Value
Added Servers (VASs) that can be added by sophis-
ticated users to implement specialized facilities {(e.g.,
a query-shipping SQL server) without introducing the
“client-level server” problem described earlier. Applica-
tion processes (labeled “App” in Figure 2) manipulate
objects, while servers deal primarily with fixed-length

pages allocated from disk volumes, each of which is man-
aged by a single server.” Applications are not trusted,
in the sense that a buggy or malicious application can
only modify objects that it is authorized to access; in
particular, it cannot corrupt metadata such as slot ta-
bles, indexes, or the directory structure.

Each SHORE server plays several roles. First, it is
a page-cache manager. The cache may contain pages
from local volumes as well as pages from remote servers
containing objects that were requested by local client
applications. Second, the server acts as an agent for
local application processes. When an application needs
an object, it sends an RPC request to the local server,
which fetches the necessary page(s) and returns the
object. (More details are provided in the following
section.) Finally, the SHORE server is responsible for
concurrency control and recovery. A server obtains and
caches locks on behalf of its local clients. The owner
of each page (the server that manages its volume) is
responsible for arbitrating lock requests for its objects,
as well as logging and committing changes to it.
Transaction management is described in more detail
below.

This process structure provides a great deal of
flexibility. When acting as an owner of a page, the
SHORE server performs the role of the server in a
traditional data-shipping, client-server DBMS; when
acting as the agent for an application, it plays the role
of client. Letting the SHORE server assume both roles
allows data placement to be optimized according to
workload. For example, data that is largely private to a
single user could be owned by the SHORE server on that
user’s workstation. The location-transparency (from
the application’s viewpoint) provided by the caching-
based architecture allows an application on such a
workstation to access both local and remote persistent
data in an identical manner. Furthermore, the ability
to cache pages at the local server can greatly reduce
any observed performance penalty for accessing remote
data. In Figure 2, applications running on Workstation
2 can access data that is largely private through the
local SHORE server, while obtaining other shared data
from the other SHORE servers. With a query-shipping
architecture implemented by a “higher level” value-
added server (such as an SQL server), applications
would communicate directly with remote servers.

3.2 SHORE Software Components
3.2.1 The Language Independent Library

Figure 7 depicts the components of the SHORE software
linked with each application. When the application
attempts to dereference an “unswizzled” pointer, the
language binding generates a call to the object-cache
manager in the language-independent library (LIL). If

7 At present, disk volumes are not replicated.

Client

Application Code

Language Object Cache
Independent < o
Library Q=

RPC Interface

SHORE VAS Interface

Storage Manager
Jif
Page Cache ﬁgﬁ

Server

Figure 7: Application/Server Interface

the desired object is not present, the LIL sends an
RPC request to the local server, which fetches the
necessary page(s) if necessary by reading from a local
disk or sending a request to another server.® If the local
operating system supports shared memory, the server
uses it to deliver a page of objects to the LIL more
quickly. We are experimenting with cache-management
strategies that cache objects which come “for free” on
the same page as a requested object.

To avoid paging, the object cache manager locks the
cache in memory and uses LRU replacement if it grows
too large. All OIDs in the cache are swizzled to point
to entries in an object table. This level of indirection
allows objects to be removed from memory before the
transaction commits, without the need to track down
and unswizzle all pointers to them.

The LIL also contains the Unix compatibility library,
with procedures that emulate common file system calls
such as open, read, and seek. Finally, the LIL
is responsible for authenticating the application to
the server using the Kerberos authentication system
[MNSS87].

3.2.2 The SHORE Server

Figure 8 shows the internal structure of the SHORE
server in more detail. It is divided into two main
components: a Server Interface, which communicates
with applications, and the Storage Manager (SM),
which manages the persistent object store.

The Server Interface is responsible for providing

8An OID contains a volume identifier. The server uses a
global volume-location service to find the appropriate server and
establishes a network connection if necessary.

—

(App“cntluu‘ i

SHORE VAS

]
|
Name Space L ________

Object Access Control

[— orfice
Operating | VAS-SM Interface

Systen Transaction Object Index
Interface 1"’—“"*‘~——*—SA zu——-—u“_,p____
? core oooo
Communication | Transaction Mgr. Logical-ID Cache 20Uy
I s
Threads |
| Lock Table Recovery Mgr. Page Gache

Async 10 |
@ T T SM S rerface S

Distributed Locking

Page Cache
} Transactions Ci 3

onsistency

Logging

\Dala/t Other SHORE Servers

Figure 8: SHORE Server Components

access to SHORE objects stored in the SM. It manages
the Unix-like name space and other structures described
in Section 2.3. When an application connects with
the server, the server associates Unix-like process state
(such as a user ID and current directory name) with
the connection. User ID information is checked against
registered objects when they are first accessed to protect
against unauthorized access. As in Unix, the current
directory name information provides a context for
converting file (path) names into absolute locations in
the name space.

The Server Interface is actually an example of a
value-added server (VAS). Another VAS is the NFS
server described in Section 2.3.2. Each VAS provides
an alternative interface to the storage manager. They
all interact with the storage manager through a common
interface that is similar to the RPC interface between
application processes and the server. It is thus possible
to debug a new VAS as a client process and then
migrate it into the server for added efficiency when it
is completely debugged. Another example of a VAS
could be an SQL server that provides a query-shipping
interface to a relational database.?

Below the server interface lies the Storage Manager.
As shown in Figure 8, the SM can be viewed as
having three sub-layers. The highest is the VAS-
SM interface, which consists primarily of functions
to control transactions and to access objects and
indexes. The middle level comprises the core of
the SM. It implements records, indexes, transactions,
concurrency control, and recovery. At the lowest
level are extensions to the core that implement the

9An SQL server VAS is an example of a rather different use of
the SHORE Server; the upper layers and type system of SHORE
would essentially be thrown away, and the facilities provided by
the SHORE Storage Manager would be used in the construction
of a completely different, customized server.

distributed server capabilities described in Section 3.1.
In addition to these three layers, the SM contains
an operating system interface that packages together
multi-threading, asynchronous I/0O, and inter-process
communication.

3.3 Some Implementation Details

A detailed description of the storage manager is beyond
the scope of this paper. However, in this subsection we
highlight three of the important technical issues that
arise in its implementation: cache consistency, transac-
tion management, and object identifier implementation.

3.3.1 Cache Consistency

In SHORE, there are two types of caches—the ob-
ject caches used by applications and the page caches
maintained by SHORE servers. These two types of
caches are managed very differently. The SHORE
servers’ page caches are allowed to retain their contents
across transaction boundaries (called inter-transaction
caching). Cache consistency is maintained through the
use of a callback locking protocol [HMN*88, LLOWYL,
WR91, FC92). The application/server interface, how-
ever does not support “upcalls.” Requiring application
processes to respond to remote procedure calls would
interfere with other synchronization mechanisms used
by many application programs such as threads pack-
ages, graphics (X11 or InterViews), and networking in-
terfaces. Therefore, the object cache is invalidated (and
locks are released) at the end of a transaction. We plan
to explore techniques to extend the use of the object
cache across transaction boundaries later in the SHORE
project.

To balance efficiency against the need for fine-grain
concurrency, SHORE uses an adaptive version of call-
back locking that can dynamically adjust the granular-
ity (e.g., page vs. object) at which locking is performed
depending on the presence of data conflicts [CFZ93].
This adaptive algorithm is based on the notion of lock
de-escalation [LC89, Jos91].

3.3.2 Transaction Management

When an application wishes to commit a transaction,
a commit request is sent to its local server. If
the transaction has modified data that is owned by
multiple servers, then a two-phase commit protocol is
used among the relevant servers. If the local server
has a log, it will coordinate the distributed commit
protocol; otherwise, it will delegate the coordinator
role to another server. Transactions that only access
data that is owned by the local server can commit
locally. Thus, the peer-to-peer architecture incurs the
additional overhead of distributed commit only when it
is necessary.

The transaction rollback and recovery facilities of
SHORE are based on the ARIES recovery algorithm

[MHL*92] extended for the client-server environment of
SHORE. The client-server distinction reflects the roles
played by the server with respect to an object. A server
that owns an object is the one that stores the log for that
object and that performs all recovery operations on the
object. Servers caching the object behave as clients and
generate log records that are shipped to the owner of the
object. The initial implementation of SHORE relies on
a simple extension of ARIES that we call redo-at-server.
In this extension, a client never ships dirty pages back to
the server, only log records; when the server receives log
records from a client, it redoes the operations indicated
by the log records. This is easy to implement, and it
has the advantage of eliminating the need to send dirty
pages back to the server.!® The primary disadvantage
is that the server may need to reread pages if it has
flushed them from its cache. In the future, we plan
to implement the client-server extension to ARIES that
was developed and implemented for the EXODUS Stor-
age Manager [FZT+92] and compare its performance to
our simpler redo-at-server implementation.

3.3.3 OID Implementation

The implementation of object identifiers (OIDs) has
a considerable impact on how the rest of an object
manager is implemented and on its performance. The
SHORE Storage Manager uses two types of OIDs. A
physical OID records the actual location of an object
on disk, while a logical OID is position independent,
allowing transparent reorganization such as recluster-
ing. The higher levels of SHORE (including the object
cache manager) use logical OIDs to represent object ref-
erences.

A logical OID consists of an 8-byte volume identifier
and an 8-byte serial number. The former is designed to
be long enough to allow it be globally unique, allowing
independently developed databases to be combined.
The latter is large enough to avoid reuse of values
under any conceivable operating conditions. When
an OID is stored on disk, only the serial number is
recorded. The volume identifier is assumed to be the
same as the volume containing the OID. For cross-
volume references, the serial number identifies a special
forwarding entry that contains the full OID of the object
(the identifier of the volume that contains it and its
serial number relative to that volume).

To map serial numbers to physical OIDs or remote
logical OIDs, each volume contains a B+ tree index
called its LID inder. An in-memory hash table is
used to cache recently translated entries. The server
also eagerly adds translations to this per-transaction
translation cache. For example, whenever a server
receives a request for an object whose logical OID is not

10Generally, the computational cost of the redo is small enough
to be ignored, especially when compared to the cost of receiving
a page of data via the network.

currently in the cache, it requests the page containing
that object from the object’s server. When that page
arrives, the server enters mappings for all of the objects
on that page into the translation cache. This technique
effectively reduces the number of LID index accesses
from one lookup per object to one lookup per page of
objects.

4 Parallelism in SHORE

Among the goals of SHORE is to be able to support
parallel applications as well as single-threaded applica~
tions. As in any parallel environment, the challenge is
to identify the available sources of parallelism, to define
services and interfaces that allow applications to exploit
this parallelism, and to provide high-performance im-
plementations of these services. We divide parallelism
into inter-transaction parallelism and intra-transaction
parallelism.

Inter-transaction parallelism merely means running
independent transactions concurrently on multiple pro-
cessors. Qur target architecture for Parallel SHORE is
a shared-nothing multiprocessor. (Such a multiproces-
sor could either be a commercial shared-nothing multi-
processor or a network of workstations). The SHORE
symmetric peer-to-peer server architecture is an ideal
basis for constructing a parallel persistent object store
on such a platform; as in client-server SHORE, a process
on one node of the multiprocessor can obtain an object
stored anywhere in the multiprocessor by presenting the
object’s OID to its local server.

Intra-transaction parallelism is not easy to identify a
priori. One way we can address the needs of large-scale
parallel applications is by noting that persistent object
store applications become large and slow by accessing
large amounts of data, and that object bases grow large
by storing large collections of homogeneous objects.
Thus, the primary target of our work in Parailel SHORE
is to provide a framework under which operations over
these large collections of objects can be run in parallel.

4.1 SHORE ParSets

Currently, the basic parallel construct in SHORE is
the ParSet {short for “Parallel Set.”) The ParSet
concept was proposed by Kilian [Kil92] as a way of
adopting the data parallel approach to object-oriented
parallel programming. There are two ways in which
ParSets expose parallelism. First, set-oriented queries
over ParSets can be parallelized in the same way
that relational queries are parallelized in relational
systems. Second, when coupled with object-oriented
programming, ParSets can be used to provide a parallel
“set-apply” operation, which invokes a method on every
element of the ParSet in parallel. A similar approach (in
parallel, apply an arbitrary function to every member
of a set) was used in the “filter” operation in the Bubba

project at MCC [BBKV87].

For Parallel SHORE, we distinguish between two
forms of ParSets: primary and secondary. We use the
terms “primary” and “secondary” by analogy to their
common use with database indexes. Primary ParSets
have a physical implication, in that primary ParSets
are used for data partitioning. In contrast, secondary
ParSets are just logical collections of objects; they can
denote a set of objects over which an “apply” is to be
executed, but they do not imply anything about where
the objects actually reside. Thus, an object can be in
any number of secondary ParSets, but it can only be in
one primary ParSet.

4.2 Using ParSets

Due to space constraints, instead of giving a detailed
description of ParSet semantics and implementation '*,
we will give an informal description of how we have
used ParSets to parallelize the OO7 benchmark. This
code is currently running on our prototype ParSet
implementation on a network of workstations. For the
purposes of the following discussion, it suffices to know
that the OO7 database contains a set of Composite
Parts, each of which has an associated subgraph of
Atomic Parts. In the parallel OO7 implementation,
the composite parts are stored in a ParSet that is
distributed over the nodes of the system by hashing on
composite part ID'?. At any given node, the portion of
the ParSet at that node looks like any other SHORE
collection. That is, if there are N processors, node 1 has
a collection with 1/N of the composite parts in it, node
2 has another 1/ N of the composite parts, and so forth.

Figure 9 illustrates the process and communication
structure of a Parallel SHORE (PSHORE) application.
Like any PSHORE application, parallel OO7 has a
designated “main” or “master” process running on one
of the nodes of the system. In addition to this “master”
process, slave processes will be running on all of the
other nodes of the multiprocessor; slaves are forked by
the master when required, and have exactly one master
throughout their lifetimes. Slave processes contain all
of the methods that could be invoked on objects in
ParSets, and they loop waiting for messages from the
master process. For example, suppose that the main
program executes the ParSet method “apply T1 to the
composite parts in the composite part ParSet.” (“T1”
applied to a composite part traverses the subgraph of
atomic parts contained within that composite part.)
This will cause the master to send messages to all of
the slaves, saying “apply T1 to all composite parts in
your partition of the ParSet.” The slaves will execute
this request in parallel by talking to their local servers,

1 More detail appears in [DNSV93].
12CompositePart has an attribute called partID, which is
separate from the OID of the composite part object

fetching composite part objects into their object caches,
and calling the T1 method on each one.
Node 1

Node 2 Node 3

I—

Shore
Server

5

Figure 9: Parallel Shore Architecture

The parallelism just described is largely transpar-
ent to the application programmer, who simply writes
a single-threaded C++ SHORE program containing
ParSet “apply” calls. Slave code is generated at com-
pile time, and all of the necessary communication and
synchronization between the master and the slaves is
handled by the PSHORE runtime system. State in-
formation (such as ParSet catalog information, process
ids, and port numbers) can be obtained by the runtime
system by consulting the ParSet server. Note that exe-
cuting T1 on a composite part at one node may require
access to atomic objects residing on another node; this
is also transparent, in this case to the slave executing
T1. The slave just requests the objects from its local
SHORE server, which is then responsible for contact-
ing other SHORE servers for any remote objects that
are needed. Since all slaves (and the master) share a
global OID space, this gives PSHORE applications a
shared-memory flavor even though the processors do not
actually share any memory. We are currently designing
synchronization primitives to support this programming
model (although the OO7 implementation does not cur-
rently require these primitives).

4.3 Portability

Our goal is that PSHORE, like SHORE itself, will
run on a wide range of hardware platforms. To
support this goal, the ParSet implementation uses the
“new threads” package [FM92], which in turn uses
PVM [Sun90] for interprocess communication. (PVM
is a public-domain message passing library for writing
parallel programs that runs on platforms ranging from
networks of workstations to multiprocessors.) By using
this portable parallel programming environment in the
PSHORE implementation we hope to ensure that, like

SHORE, PSHORE will also be usable by anyone with
a network of workstations.

5 Conclusion

SHORE is an integration of file system and OODB
concepts and services. From the file system world,
SHORE draws object naming services, support for lower
(and cheaper) degrees of transaction-related services,
and an object access mechanism for use by legacy Unix
file-based tools. From the QODB world, SHORE draws
data modeling features and support for associative
access and performance acceleration features. To
provide scalability and a basis for parallelizing the
system, SHORE also employs a novel architecture,
including support for symmetric peer-to-peer server
communication and caching; in addition, it includes
support for extensibility via the value added server
facility. Like our previous system, EXODUS, we
will make the SHORE system publicly available via
anonymous FTP; we expect the first release of SHORE
to occur in mid-1994.

References

[AS93] Paul Adams and Marvin Solomon. An
overview of the CAPITL software de-
velopment environment. In Proceedings
of the Fourth International Workshop on
Software Configuration Management, Balti-

more, MD, 1993.

[BBKV87] F.Bancilhon, T. Briggs, S. Khoshafian, and
P. Valduriez. FAD, a powerful and simple
database language. In Proc. VLDB Conf.,

Brighton, England, 1987.

[Cat93] R. Cattell. The Object Database Standard:
ODMG-93. Morgan Kaufmann, San Mateo,

CA, 1993.

Michael J. Carey, David J. Dewitt, Daniel
Frank, Goetz Graefe, M. Muralikrishna,
Joel E. Richardson, and Eugene J. Shekita.
The architecture of the EXODUS Extensi-
ble DBMS. In Proceedings of the Twelfth In-
ternational Conference on Very Large Data
Bases, pages 52-65, 1986.

Michael J. Carey, David J. DeWitt, and
Jeffrey F. Naughton. The OO7 benchmark.
In Proceedings of the 1993 ACM-SIGMOD
Conference on the Management of Data,
Washington D.C., May 1993.

[CDF*86]

[CDN93]

[CFZ93] M. Carey, M. Franklin, and M. Zahari-
oudakis. Fine-grained sharing in a page-
server OODBMS. Submitted for publica-

tion., December 1993.

[Deudl]

[DLPY93]

[DNSV93]

[FC92]

[FM92]

[FZT+92]

[HMN+88]

[Jos91]

(Kil92]

[LC89]

[LLOW91]

0. Deux et al. The oy system. Communica-
tions of the ACM, 34(10), October 1991.

D. DeWitt, J. Luo, J. Patel, and J. Yu. Par-
adise — a parallel geographic information
system. In Proceedings of the ACM Work-
shop on Advances in Geographic Informa-
tion Systems, November 1993.

D. DeWitt, J. Naughton, J. Shafer, and
S. Venkataraman. ParSet design document.
Unpublished manuscript, November 1993.

M. Franklin and M. Carey. Client-server
caching revisited. In Proceedings of the In-
ternational Workshop on Distributed Object
Management, Edmonton, Canada, August
1992. (published as Distributed Object Man-
agement, Ozsu, Dayal, Vaduriez, eds., Mor-
gan Kaufmann, San Mateo, CA, 1993).

Edward W. Felten and Dylan McNamee.
Newthreads 2.0 user’s guide. August 1992.

Michael J. Franklin, Michael J. Zwilling,
C. K. Tan, Michael J. Carey, and David J.
DeWitt. Crash recovery in client-server
EXODUS. In Proceedings of the ACM-
SIGMOD Conference on the Management
of Data, pages 165-174, June 1992.

J. Howard, M. Kazarand S. Menees,
D. Nichols, M. Satyanarayanan, R. Side-
botham, and M. West. Scale and perfor-
mance in a distributed file system. ACM
Transactions on Computer Systems, 6(1),
February 1988.

A. Joshi. Adaptive locking strategies in a
multi-node data sharing environment. In
Proc. 17th VLDB Conf., Barcelona, Spain,
Sept. 1991.

Michael F. Kilian. Parallel Sets: An Object-
Oriented Methodology for Massively Paral-
lel Programming. PhD thesis, Harvard Cen-
ter for Research in Computing Technology,
Cambridge, MA, 1992.

Tobin J. Lehman and Michael J. Carey. A
concurrency control algorithm for memory-
resident database systems. In Proc. of the
9rd Int’l. Conf. on Foundations of Data
Organization and Algorithms, Paris, France,
June 1989.

C. Lamb, G. Landis, J. Orenstein, and
D. Weinreb. The ObjectStore database
system. Communications of the ACM,
34(10), October 1991.

[MHL*92] C. Mohan, D. Haderle, B. Lindsay, H. Pi-

[MNSS87]

[0bj92]

[Ont92]
[RCSO3]

[RT74]

[SGK+85]

[Sun90]

[Ver92]

[WRO1]

rahesh, and P. Schwarz. ARIES: A trans-
action recovery method supporting fine-
granularity locking and partial rolibacks us-
ing write-ahead logging. ACM Transactions
on Database Systems, March 1992.

S. P. Miller, B. C. Neuman, J. I. Schiller,
and J. H. Saltzer. Section E.2.1: Kerberos
authentication and authorization system.
Technical Report Project Athena Technical
Plan, M.I.T. Project Athena, Cambridge,
MA, December 1987.

Objectivity, Inc. Objectivity reference man-
ual. 1992.

Ontos, Inc. Ontos reference manual. 1992.

Joel E. Richardson, Michael J. Carey, and
Daniel T. Schuh. The design of the E
programming language. ACM Transactions
on Programming Languages and Systems,
15(3), July 1993.

Dennis M. Ritchie and Ken Thompson. The
unix time-sharing system. Communications
of the ACM, 17(7):365-375, July 1974.

R. Sandberg, D. Goldberg, S. Kleiman,
D.Walsh, and B.Lyon. Design and imple-
mentation of the sun network filesystem. In
USENIX Summer Conference Proceedings,
1985.

V. Sunderam. PVM: A framework for par-
allel distributed computing. Concurrency:
Practice and FEzperience, 2(4), December
1990.

Versant, Inc. Versant reference manual.
1992.

Y. Wang and L. Rowe. Cache consistency
and concurrency control in a client/server
dbms architecture. In Proceedings of the
ACM SIGMOD Conference, Denver, CO,
June 1991.

