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ABSTRACT

In real-time database systems (RTDBS), the policy used for assigning priorities to transactions may lead to a
biased treatment of different transaction classes. Such bias is not necessarily a reflection of differences in the tightness
of the time constraints of these classes. Instead, it may be due to discrimination in the allocation of system resources.
While bias due to differences in time constraint tightness is arguably reasonable, discrimination based on other class
features (e.g., mean transaction size) may be unacceptable in many real-time applications.

In this study, we focus on firm RTDBSs with multiclass workloads where classes are distinguished by their tran-
saction sizes. Our results reveal that the Earliest Deadline scheduling principle, upon which a number of existing prior-
ity assignment policies are based, discriminates significantly against longer transactions. This observation has
motivated the development of a new dynamic priority assignment scheme that improves the chances for long transac-
tions to meet their time constraints, thereby providing a fairer mechanism for use in multiclass RTDBS transaction
scheduling.

T A slightly abridged version of this paper that will appear in the proceedings of the 13th Real-Time Systems Symposium, December 1992.



1. INTRODUCTION

In real-time database systems (RTDBS), priorities are used to translate time constraints into scheduling decisions.
Most researchers who have studied RTDBS algorithms have adopted the Earliest Deadline (ED) principle for priority
assignment in their performance studies [e.g., Abbo89, Huan91, Hari91]. The ED principle was first introduced by Liu
and Layland in [Liu73] and has been extensively analyzed and evaluated since then [Dert74, Mok78, Jens85, Panw88].
The results of these studies have shown that ED generates schedules that miss very few deadlines, if any, when the sys-
tem is operating in a region where it should theoretically be able to meet all or most of the time constraints. This paper

focuses on how the ED policy treats different transaction classes when the time constraints cannot all be satisfied.

When assigning priorities to transactions, ED considers only their deadlines; the closer the deadline, the higher
the priority. In this way, ED attempts to maximize the number of transactions that finish on time, ignoring the issue of
which particular transactions meet their deadlines and which fail to do so. However, such an approach may lead to
problems in systems with multiclass workloads. In particular, one class of transactions may miss a significant fraction
of their deadlines while another transaction class misses none. As in any timesharing system, differences in the perfor-
mance provided to different transaction classes cannot simply be ignored, as fairness is also an important performance

consideration.

In the context of general-purpose timesharing systems, the processor-sharing (PS) scheduling policy is generally
viewed as treating jobs in a fair manner. In particular, the PS policy ensures that the expected waiting time per unit of
service requested will be the same for all job classes [Klei76]. Based on similar reasoning, it can be argued that the
probability of a transaction meeting its deadline should be a function only of the tightness of its time constraint, and not
of other class attributes. Thus, it is reasonable to expect that two classes of transactions with similarly tight time con-
straints will have comparable miss ratios. The results of our study, however, show that an RTDBS that uses an ED-
based scheduling policy is unlikely to meet this expectation. In fact, as we will see in the next section, such a policy

discriminates against longer transactions in attempting to minimize the number of late transactions.

To overcome the bias of existing ED-based scheduling approaches, this paper introduces a dynamic priority
assignment policy, called Adaptive Earliest Virtual Deadline (AEVD), that considers both the time constraints and the
arrival times of transactions. By means of a sequence of virtual deadlines, AEVD attempts to ensure that long transac-
tions are allocated a fair share of the system resources. The AEVD policy is designed for use in a firm RTDBS

environment, where transactions that miss their deadlines are aborted and discarded. The general architecture of a firm
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RTDBS is depicted in Figure 1. Each incoming transaction is assigned a priority by the priority mapper, the component
responsible for implementing the priority assignment policy of the system. The assigned priority is then used by the
different priority-conscious schedulers of the system. A feedback loop enables the priority mapper to continuously

monitor the performance of the system and to dynamically adjust its priority assignment policy when necessary.

The only other studies that we are aware of that have addressed the issue of faimess in the context of real-time
systems are presented in [Zhao87] and [Huan91]. Zhao and Ramamritham showed in {Zhao87] that, in the context of
hard real-time communication, ED achieves a small ratio of message loss by biasing towards short messages. They
used a workload in which messages of all sizes had the same average slack time. Thus long messages had relatively
tighter deadlines than short messages. This could conceivably have been responsible for the bias observed there. The
results of our study will show that even if messages of all sizes were given equally tight deadlines, a similar biased

behavior would still have been observed, hence confirming that ED is biased.

In [Huan91], Huang et al briefly examined fair real-time scheduling issues from a concurrency control perspec-
tive. A two-class workload was used to show that, as in conventional database systems, optimistic concurrency control
in an RTDBS discriminates against classes that contain longer transactions. By assigning an appropriate weighting fac-

tor to each class, it was shown that priorities can be used to overcome this concurrency control bias.

The remainder of this paper is organized as follows: Section 2 illustrates the biased behavior of the Earliest Dead-
line scheduling policy in multiclass RTDBSs. The AEVD algorithm is introduced in Section 3. A detailed simulator of
a firm RTDBS, intended for studying the performance of the AEVD algorithm, is described in Section 4. Section 5
details the results of a series of simulation experiments showing that, over a wide range of multiclass workloads, the

new policy allocates system resources in a fair way, and at the same time significantly reducing the fraction of the
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Figure 1: RTDBS Architecture



offered load that is not completed on time. Finally, our conclusions are presented in Section 6.

2. THE BIASED BEHAVIOR OF EARLIEST DEADLINE

The Earliest Deadline (ED) algorithm is based on a simple but effective principle: requests with closer deadlines
should be served before requests whose deadlines are further away. Unlike priority assignment algorithms that assume
a priori knowledge of the resource requirements of each request, the ED algorithm uses only information that is readily
available in any real-time system - it equates the priority of a request to its deadline. This property of the ED algo-
rithm makes it a very attractive candidate for real-time database systems where the resource requirements of transac-

tions are unlikely to be known in advance.

ED has been shown to produce, for a wide range of RTDBSs, high success rates under light load conditions
[Abbo88, Abbo89, Hari90a, Huan89, Huan91, Kim91]. However, the performance of ED deteriorates rapidly when the
system is overloaded and cannot meet the deadlines of a significant fraction of the transactions. An Adaptive Earliest
Deadline (AED) algorithm that stabilizes the overload performance of ED was introduced in [Hari91]. The AED algo-
rithm augments the Earliest Deadline principle with a process that randomly predicts the destiny of a transaction when
it arrives at the system. Depending on the current miss ratio of the system, the new transaction is assigned to one of two
groups: the "hit" group or the "miss" group. The larger the current miss ratio, the higher the chances that the new tran-
saction will be placed in the "miss" group. AED then uses the Earliest Deadline policy to order the execution of tran-
sactions in the "hit" group; transactions in the "miss” group get to use a system resource only when there are no transac-
tions from the "hit" group at the same resource. This guarantees that transactions from the "miss" group have almost no

impact on the progress of transactions from the "hit" group.

Both ED and AED do not take into account transaction arrival times in their priority assignment decisions. Thus,
they give transactions no credit for arriving early and waiting for resources. This leads to a situation where short tran-
sactions that arrive just before their deadlines have an advantage over long transactions that arrive way before their
deadlines. Table 1 is a quantitative display of the advantage that short transactions have over long transactions under
these two policies. It presents the performance of three transaction classes, I, II, and III, in a simulated RTDBS which
is described in Section 4. The transaction sizes, expressed in terms of the number of pages accessed, of these classes
are uniformly distributed in the range 1 to 10, 11 to 20, and 21 to 30, respectively. The time constraint of a given tran-

saction, which is the difference between the transaction’s deadline and its arrival time, varies uniformly between 2 and



Miss Ratio Relative Priority
Class ED AED NP ED AED NP

I 0% 4% 26% | 0.80 0.78 0.50
n 6% 7% 25% 0.45 0.45 0.50
i/ 36% 22% 25% 0.25 0.27 0.50

System 14% 11% 25%
Table 1: Class Performance

6 times the size of the transaction. The first column of Table 1 shows a very significant difference between the miss
ratios of the three classes under ED. While ED misses none of the class I transactions, it misses more than a third of the
transactions of class III. Since on the average all transaction classes have equally tight time constraints, it can be
argued that ED discriminates unfairly against class III transactions, treating class I transactions more favorably. AED
exhibits a similar, though less skewed, behavior. It misses 4% of the class I transactions and "only” 22% of the class III

transactions.

Under the No Priority (NP) policy, also shown in Table 1, the distribution of miss ratios is very different. NP
assigns the same priority to all transactions and therefore each resource services requests in the order that they arrive
(First Come First Serve). As a result, the miss ratio distribution for NP reflects the relative tightness of the time con-
straints of transactions, which is the same in this case, rather than their relative sizes. As expected, the system miss
ratio of NP is much larger than the system miss ratios of the other two policies. These results show that while NP treats

the three classes fairly but not efficiently, ED and AED are efficient but unfair.

In order to understand why ED and AED discriminate against longer transactions while NP treats the three tran-
saction classes fairly, we have to examine the relative priority of the three classes under the different policies. The rela-
tive priority of a class captures the average rank of its transactions relative to transactions of other classes over their
lifetime in the system; the rank of a transaction that has the highest priority in the system is one, while the rank of a
transaction that has the lowest priority is zero. When the average rank of two transactions differ, the one with the
higher average rank has precedence to system resources. Thus it will progress more steadily and so have a better
chance to meet its deadline. It is therefore expected that when a policy discriminates against a class of transactions, the
relative priority of this class will be smaller than the relative priority of a class that receives favorable treatment. The
relative priority of the three classes for the different algorithms, also shown in Table 1, confirm this expectation.
Whereas all three classes have the same relative priority under NP, shorter transaction classes have higher relative

priorities for ED and AED.



The cause of the skew in the relative priority of the three classes under ED can be illustrated by the following
example: Consider a long and a short transaction that have the same deadline and whose time constraints are equally
tight. The long transaction arrives before the short transaction and will receive a low rank at the beginning because its
deadline is far away. The rank of the long transaction will then increase gradually as its deadline approaches. Once the
short transaction joins the system the two transactions will have the same rank. Since the average rank of a transaction
is accumulated over its lifetime in the system, the short transaction has a higher average rank than the long one. There-

fore, overall, the short transaction will make more steady progress towards meeting its deadline.

A more detailed view of the biased behavior of ED and AED is provided by Figure 2, where transaction miss
ratios are presented as a function of transaction size for the simulations underlying Table 1. The figure clearly shows
that, while NP treats transactions of all sizes equally, ED and AED make longer transactions pay the price for improv-
ing the performance of shorter transactions. Under the two ED-based algorithms, miss ratio is unmistakably an increas-
ing function of transaction size; In other words, the longer a transaction is, the less likely it will make its deadline.
Moreover, there is a distinctive miss ratio discrepancy between transactions of size 1 and size 30. In fact, under ED
more than half of the transactions of size 30 miss their deadlines, while none of the transactions of size 1 are late. The
corresponding miss ratios under AED are 34% and 3%, respectively. A detailed analysis of the behavior of ED and
AED can be found in Section 5. Here it suffices for us to note that while the ED principle is simple and produces high

success rates, it can be extremely biased. It is therefore not likely to be suitable for use in multiclass RTDBSs.
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i . Transaction Size
Figure 2: Miss Ratio vs. Transaction Size



3. ADAPTIVE EARLIEST VIRTUAL DEADLINE (AEVD)

The goal of the Adaptive Earliest Virtual Deadline (AEVD) algorithm is to preserve the high-success-rate virtue
of the Earliest Deadline principle while avoiding its biased behavior. This algorithm is designed for multiclass work-
loads where classes are distinguished by their mean sizes and the time constraints of transactions are, on the average,
proportional to transaction size. In addition to deadlines, AEVD uses transaction arrival times in its priority assignment

decisions so that transactions get credit for arriving early and waiting for resources.

Throughout the remainder of this paper we use Dy, Ay, and Py to denote the deadline, arrival time, and priority of
transaction T, respectively. Priority assignments are such that smaller Pr values reflect higher priorities. In addition,
Cr =Dy - Ay is used to denote the time constraint of 7. These notations are summarized in Table 2, together with some

notations which we will introduce later.

AEVD is based on the Adaptive Earliest Deadline (AED) algorithm [Hari91]. Before AEVD is introduced, we
review the main features of AED. In AED, all of the transactions that are currently active are divided into a "hit" group
and a "miss" group. Upon arrival, each transaction is randomly assigned a unique key, Iy. The transaction is then
inserted into a key-ordered list of transactions, and its position in the list, POSr, is noted. If POSy is less than HITcapa-
city (the capacity of the "hit" group), the new transaction is assigned to the "hit" group; otherwise it gets assigned to the
"miss” group. HITcapacity is dynamically adjusted so that the miss ratio of the "hit" group is less than 5%. The adjust-
ment is done after every HITbatch transactions leave the "hit" group, where HITbatch is an algorithm parameter. The

following scheme is used to assign priorities to transactions:

O, Dr, IT) if Group = hit
T=Y 1,0,Iy) if Group = miss
This scheme defines a lexicographical priority order, giving all transactions in the "hit" group higher priorities than tran-
sactions in the "miss" group. Priority ordering among transactions in the "hit" group is by Earliest Deadline, while Ran-

dom Priority (RP) is used for the "miss" group. Under RP, the priority of an incoming transaction is randomly selected

Notation | Meaning Notation | Meaning
Ar Arrival time SDy Service Demand
Cy Time Constraint SRy Slack Ratio
Dy Deadline Py Priority
Sizep Transaction Size PFy Pace factor

Table 2: Notations



from a pre-defined range of values and remains fixed throughout its lifetime.

The AEVD algorithm differs from AED in that it uses an Earliest Virtual Deadline (EVD) policy, instead of Ear-

liest Deadline, to manage the "hit" group. The remainder of this section is devoted to a description of EVD.

3.1. Earliest Virtual Deadline

The EVD policy uses a sequence of virtual deadlines to control the pace at which a transaction progresses
towards meeting its deadline. The relative distances between these virtual deadlines reflect what the EVD policy con-
siders as a desired pace for the given transaction. Under this policy, the virtual deadline, V., replaces the actual dead-

line of the transaction, D7, as the tie breaker in the "hit" group:

O, Vr,It)  if Group = hit
Pr= 1,0,1I7)  if Group = miss
Every time a transaction requests one of the system resources, its current virtual deadline is tested and, if it has expired,

a new virtual deadline is assigned:

Vr = (Dr — Clock) X PF¢ + Clock
where 0.0 < PFy < 1.0 is the pace factor of the transaction. Examples of several transactions and their virtual deadlines

are presented in Figure 3. We will come back to these examples later.

EVD assigns a pace factor to every transaction when it arrives at the system, and this factor remains fixed
throughout its lifetime. The pace at which a transaction advances towards its deadline is determined by its pace factor.
When a transaction first arrives, EVD assigns it a virtual deadline of Cy X PFy + Ay. The intention in selecting this
point in time as the first virtual deadline is for the transaction to complete PFy of its work by the time PFr of its time
constraint has passed. Once the current virtual deadline of the transaction expires, this rule is applied recursively on its
residual time constraint to place the next virtual deadline. Therefore, the smaller PFr is, the more regular the

transaction’s progress will be. By controlling the pace factors assigned to transactions, EVD can maintain their

(@ oa=03 (b) o= 0.6
Ci=10: r—————Y—I—Y—?i C;=10: Vi
A; D; A; D;
Cj=30: Vi Vo VaVy C;=30: V1 ‘_/2 _

Figure 3: Virtual Deadline Assignment



progress rates at a desired level.

To overcome ED’s discriminatory behavior, EVD needs to monitor the progress of longer transactions more
closely to ensure that they are advancing steadily towards meeting their deadlines. In other words, longer transactions
require smaller pace factors. Since an RTDBS does not usually have a priori knowledge of the processing requirements
of incoming transactions, the size of transactions has to be estimated. Assuming that the time constraint for a transac-
tion is at least as large as its total service demands, it is not unreasonable to expect that a transaction’s time constraint
will provide some indication of its size. Moreover, a look at a wide range of synthetic workloads that have been used in
prior RTDBS performance studies reveals that time constraints and transaction sizes are indeed positively correlated,
i.e., longer transactions tend to have longer time constraints. (Since we do not have any actual real-time database work-
load as yet, these synthetic workloads provide the best indication of the kind of workloads that we can expect in prac-

tice.) EVD therefore determines the pace factor of a transaction from its time constraint in the following way:

Cmax - CT

PFT=(X+(1“G.)X(‘&-‘“T-C';—'-

)Z

where o is a control variable of the algorithm and C 3, and C ., are, respectively, the minimum and maximum time

constraints of the last 2 X HITbatch transactions'. The shape of PFy as a function of Cy is shown in Figure 4.
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Figure 4: Pace Factors Figure 5: Regression Lines
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The dynamic variable o determines the range for the pace factor. Transactions whose time constraints are equal
to C i, always have a pace factor of one, which implies that each of these transactions has only one virtual deadline
(which is equal to its actual deadline). The pace factor of a transaction with a time constraint of C,,, is 1 - o A
smaller o will therefore result in transactions with long time constraints (and indirectly long transactions) receiving
smaller pace factors as compared to transactions with short time constraints. This is illustrated by the examples in Fig-
ure 3, which presents the virtual deadlines assigned to two transactions, one of size 10 and the other of size 30, using o
values of 0.3 and 0.6. By assigning a "suitable” value to o, then, EVD can control the progress rate and hence the rela-

tive success rate of long and short transactions.

The EVD algorithm uses a feedback mechanism to monitor the performance of the system, and then adjusts the
value of o accordingly®. The feedback is in the form of a bias factor, denoted by BF, that measures the linear correla-
tion [Triv82] between miss ratio and transaction size. BF is equal to the slope of the regression line that best fits the
miss ratios expressed as a function of transaction size. Thus BF captures the bias of the underlying priority assignment
algorithm. A positive BF is an indication that longer transactions have higher miss ratios, which suggests that there is a
bias against longer transactions. Conversely, a negative BF signifies that the underlying algorithm is favoring longer
transactions. As an illustration, the regression lines resulting from the miss ratio curves in Figure 2 are shown in Figure
5. The figure shows that for this experiment ED, with a BF of 1.77, is the most biased. AED is second with a BF of

0.91. NP treats all transactions fairly and produces a BF of -0.05.

In order to dynamically determine an appropriate value for o, the BF value is updated each time the capacity of

the "hit" group is recomputed. After that, o is either reduced or increased by 5%, subject to a lower limit of 0.01 and an

upper limit of one®. If miss ratio and transaction size are positively correlated, i.e. BF > 0, o is reduced; if BF < 0, is

increased. Note that if o = 1.00, every transaction receives only one virtual deadline, and EVD degenerates to ED.

4. REAL-TIME DATABASE SYSTEM MODEL

The RTDBS performance model used in this study is essentially the same as that in [Hari90a]. We summarize

the model here for completeness and to aid the reader in interpreting the results.

% ouis initialized 10 0.5 at system startup Lime.

3 By definition, o has to be greater than 0.00 and is at most equal to 1.00. To prevent ¢ from becoming fixed at zero, we require o 2 0.01.



The RTDBS consists of a shared-memory multiprocessor that operates on disk-resident data. The database is
modeled as a collection of pages. A transaction consists of a sequence of read and write page accesses. A read access
involves a concurrency control request to get access permission, a disk [/O to read the page, followed by a period of
CPU usage for processing the page. Write requests are handled similarly, except that their I/O activities are deferred
until the transaction has committed. A transaction that gets restarted due to a data conflict follows the same access pat-

tern as the original transaction. Transactions that are not completed by their deadlines are aborted and discarded.

The structure of the RTDBS performance model is shown in Figure 6. There are five major components: a
Source that generates transactions in a Poisson stream and assigns a deadline to each transaction; a Transaction
Manager that models the execution of transactions, and implements the priority assignment algorithm; a Concurrency
Control Manager that implements the concurrency control algorithm used; a Resource Manager that models the CPU

and disk resources; and a Sink that gathers statistics on completed transactions.

4.1. Resource Model

The physical resources in our model consist of multiple CPUs and disks. There is a single queue for the CPUs
and the service discipline is preemptive-resume based on transaction priorities. Each of the disks has its own queue and
uses a non-preemptive priority scheduling policy. The top half of Table 3 summarizes the key parameters of the
resource model. The NumCPUs and NumDisks parameters specify the system’s resource composition, and the
PageCPU and PageDisk parameters are constants that capture the CPU and disk processing times per data page. The

service time per page is defined as the sum of PageCPU and PageDisk. The data is assumed to be uniformly distri-

SOURCE TRANSACTION MANAGER SINK

Q Start Transaction End Trmsacl.mLO

Service Done CC Reply

Resource Request CC Request
Resource Request
Service Done
RESOURCE MANAGER CC MANAGER

Figure 6: RTDBS Model Structure
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buted across all of the disks.

4.2. Workload Model

The workload model characterizes transactions in terms of the number of pages that they access and their dead-
lines. Let the size of a transaction T, Sizey, denote the number of pages accessed by 7. The service demand of T, SD,
is defined as the product of Sizer and the total service time per page. The Source module assigns a deadline to each

new transaction in the following manner:

Dy =8Dr X SRt + At
where D7, SRy and Ay are the deadline, slack ratio and arrival time of T, respectively. Recall that the time constraint of

T, Cy, equals Dy - Ay, or equivalently, SDr X SRy. SRy determines the tightness/looseness of the deadline of T.

The bottom half of Table 3 summarizes the key parameters of the workload model. The ArrivalRate parameter
specifies the mean transaction arrival rate. DatabaseSize gives the number of pages in the database. Each page that is
read will be updated with probability WriteProb. The number of pages accessed by a transaction varies uniformly in
the range specified by Sizelnterval; page requests are generated from a uniform distribution (without replacement) span-

ning the entire database. The slack ratio of a transaction, SRy, varies uniformly in the range specified by SRInterval.

5. EXPERIMENTS AND RESULTS

5.1. Performance Metrics

Two primary performance metrics are used in this paper: Normalized Miss Ratio and the bias factor BF. Normal-

ized Miss Ratio captures the fraction of the offered load that is not completed on time. It is computed as;

Parameter Meaning
NumCPUs Number of CPUs
NumbDisks Number of disks
PageCPU CPU time for processing a data page
PageDisk Disk service time for each data page
ArrivalRate Transaction arrival rate
DatabaseSize Number of pages in the database
WriteProb Write probability per accessed page
Sizelnterval Range of the number of pages accessed per transaction
SRInterval Range of slack ratio

Table 3: Input Parameters
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Y, s X MissRatio,

s € Sizelnterval

Normalized Miss Ratio = p

s € Sizelnterval

where MissRatio, denotes the miss ratio of transactions of size s, and Sizelnterval is the range of transaction sizes in the
workload. We chose this metric because unlike average miss ratio, which can be made artificially low by servicing
only shorter transactions (which require less resources), Normalized Miss Ratio is an unbiased performance measure for
multiclass systems. To illustrate this point, consider the experiment discussed in Section 2 again. The average miss
ratios for ED, AED and NP were, respectively, 14%, 11% and 25%. This gives a misleading impression that ED and
AED perform significantly better than NP. The corresponding Normalized Miss Ratios are 23%, 15% and 25%, which
indicates that ED actually misses almost as much of the offered load as NP! In terms of Normalized Miss Ratios, AED
is still better than NP, but the difference in performance is much less than what is indicated by the average miss ratios.
Note that the choice of Normalized Miss Ratio over average miss ratio in multiclass RTDBSs is similar to the prefer-

ence for page throughput over transaction throughput in conventional multiclass database systems [Care90].

The second performance metric is the bias factor, denoted by BF, which captures the linear correlation between

miss ratio and transaction size. The BF metric was introduced in Section 3.

5.2. Overview of Experiments

A simulator based on the RTDBS model described in Section 4 is used to evaluate the performance of the priority
assignment algorithms. The simulator is written in DeNet [Livn90], a simulation language based on Modula-2. In the
simulator, the mean CPU time to process a page is set to 10 milliseconds, while the mean disk access time is set to 20
milliseconds. The number of CPUs and disks are set to 8 and 16, respectively. HITbatch, a parameter of both AED and
AEVD, is set to 60. Recall that the capacity of the "hit" group is re-evaluated after every HIThatch transactions leave
the "hit" group. We begin with a baseline model, and then further experiments are carried out by varying a few param-

eters each time.

5.3. Baseline Model

The focus of this model is on the effect of resource contention on the performance of the various algorithms,
therefore the parameter WriteProb is set to zero. As a result, there is no data contention. We will introduce data con-

tention in a later experiment to study the combined effect of both forms of contention.
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Table 4 summarizes the workload and resource parameter settings for the baseline model. In the model, transac-
tion size varies uniformly between 1 and 30, and slack ratio distribution is independent of transaction size. The system
does not have any a priori knowledge of transaction resource requirements, so late transactions can only be discarded
after they have missed their deadlines. A system with Normalized Miss Ratios in the range 0%-25% is considered to be

moderately loaded, while Normalized Miss Ratios greater than 25% indicate heavy load conditions.

We first examine the performance of the algorithms under moderate load conditions by setting the transaction
arrival rate to 47.5 transactions/second. (This system condition was used to generate the results in Section 2.) Figure 7
plots miss ratio versus transaction size for the baseline model. The solid lines in the figure show the miss ratios pro-
duced by the various algorithms, and the dotted lines are the corresponding regression lines. The figure indicates a
marked difference between the behavior of AEVD and that of ED and AED: AEVD’s BF of 0.00 implies that it does
not manifest any biased behavior. In contrast, ED and AED obviously discriminate against longer transactions — ED
has a BF of 1.78, and AED has a BF of 0.91. AEVD’s Normalized Miss Ratio is computed to be 16%, which is com-

parable to the 15% produced by AED and much lower than ED’s 23%. This indicates that AEVD is able to produce

Workload Resource

Parameter Value Parameter Value
DatabaseSize 1000 pages NumCPUs 8
WriteProb 0.0 NumbDisks 16
Sizelnterval [1,301 PageCPU 10 ms
SRInterval [2.0,6.0] PageDisk 20 ms

Table 4: Parameter Settings for the Baseline Model

R1.00

e e O e M
o
)
s

0 10 20 30 000 10 20 30
Transaction Size Transaction Size
Figure 7: Baseline (A = 47.5) Figure 8: Relative Priorities
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low miss ratios and at the same time remain unbiased.

To understand why ED and AED discriminate against longer transactions whereas AEVD is unbiased, we exam-
ine the relative priority of transactions of different sizes. The relative priority of a group of transactions is the average
of the relative priority of all of its transactions, which is derived in the following way: at any instant, all the transactions
in the system are ranked by their priority values such that the transaction with the lowest and the highest priority is at
the head and the tail of the list, respectively. The instantaneous relative priority of a transaction is computed by divid-
ing the position of the transaction in the list by the total number of active transactions. Note that the instantaneous rela-
tive priority of the transaction with the highest and lowest priorities are 1.0 and 0.0 respectively. By averaging the

instantaneous priority of a transaction over its lifetime, we obtain its relative priority.

Figure 8 presents the relative priorities as a function of transaction size. The figure indicates that relative priority
decreases with increasing transaction size. Moreover, ED and AED produce significant discrepancies between the rela-
tive priorities of the longest and the shortest transactions — a factor of 5.1 in the case of ED and 4.6 in the case of
AED. This is the reason why miss ratio is an increasing function of transaction size under these two algorithms. Under
AEVD, the use of virtual deadlines reduces the discrepancy in relative priorities to a factor of 2.4; in other words, the
relative priority of transactions of size 1 is only 2.4 times higher than the relative priority of transactions of size 30.
Compared to ED and AED, then, longer transactions advance much more steadily and complete earlier under AEVD,

while at the same time, shorter transactions are slowed down. This is demonstrated by Figure 9, which traces the aver-
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Figure 9: Rate of Progress Figure 10: Baseline (A = 60.0)
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age progress of transactions of sizes 2 and 30 under ED and AEVD. (The corresponding AED curves, not shown in the
figure, are similar to those of ED.) In the figure, % Service Received is defined as the ratio of service received to ser-
vice demand, and % Time Elapsed is the ratio of the elapsed time to the time constraint. Under ED, transactions of size
30 require almost 95% of their time constraints to complete, while AEVD reduces this to 85%. The impact of AEVD
on shorter transactions is also evident in Figure 9, which shows an increase in their completion times from 35% of their
time constraints in the case of ED to 50% in the case of AEVD. The earlier completion of longer transactions is what
lowers their miss ratios. At the same time, the later completion of shorter transactions causes their miss ratios to go up.
Although long transactions still have a lower relative priority and take a higher percentage of their time constraints to
complete than short transactions, the longer absolute time constraints associated with the long transactions make them
less susceptible to the effect of transient overload conditions caused by bursty arrival patterns. This is the reason why

AEVD is able to produce balanced miss ratios across transactions of all sizes.

Next, we increase the arrival rate from 47.5 to 60.0 transactions/second. This brings the operating conditions of
the system to a heavy load. Figure 10 shows miss ratio as a function of transaction size. Comparing Figure 10 with
Figure 7, we note that the discriminatory behavior of ED worsens considerably under heavy load. The almost 100%
misses for transactions of size 30 and no misses for transactions of size 1 and 2 increase ED’s BF from 1.78 t0 4.19.
The performance of AED does not deteriorate as much because the capacity of the "hit" group limits the effect of ED’s
biased behavior. However, we still witness an increase in its BF from 0.91 to 1.31. In contrast, AEVD performs as
well under heavy loads as it does under moderate load conditions: its curve remains almost flat, and it has a BF of 0.00.

Moreover, its Normalized Miss Ratio of 36% is slightly lower than AED’s 38% and much lower than ED’s 64%.

Having seen the BF values of ED, AED, and AEVD for arrival rates of 47.5 and 60.0, we present in Figure 11 the
BF values for the various algorithms as a function of the arrival rate. The corresponding Normalized Miss Ratios are

given in Figure 12. We shall analyze the behavior of each algorithm in turn.

Figure 11 shows that the bias of ED worsens considerably with increasing arrival rate until an arrival rate of 60.0
transactions/second. At this point, the miss ratio of the longest transactions approaches 100%, as we have seen previ-
ously. After that, the system starts to miss more of the shorter transactions. This accounts for the slight drop in ED’s

BF values. The high Normalized Miss Ratios of ED are caused by the poor performance of longer transactions.

Next, we examine AED. At low arrival rates, most of the transactions get assigned to the "hit" group, where

there is a bias against longer transactions due to the Earliest Deadline policy. This causes the initial rise in the BF
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curve. At high arrival rates, however, a majority of the transactions get assigned to the "miss" group where Random
Priority is used. Random Priority treats transactions of all sizes fairly, and produces low miss ratios under heavy loads
[Hari91]. This is why AED’s BF curve levels off. By combining the low-load characteristics of ED and the high-load

behavior of RP, AED produces consistently low Normalized Miss Ratios.

We now tumn our attention to AEVD. By using feedback on the performance of the system, AEVD is able to
dynamically find appropriate o values for all of the load conditions, thus producing BF values that are close to zero. At
the same time, AEVD has lower Normalized Miss Ratios than ED and AED. This is a consequence of its having a bal-

anced mix of transaction sizes among the transactions that finish on time.

Since AEVD achieves balanced miss ratios by assigning priorities according to transaction sizes, it is interesting
to compare AEVD with other algorithms that also consider transaction sizes. One such algorithm is Least Slack (LS).
This algorithm computes the laxity of each transaction by subtracting its outstanding service demand from its remaining
time constraint, and then gives the highest priority to the transaction that has the smallest laxity. The performance
results of LS are included in Figures 11 and 12. These results show that, while the normalized miss % of LS is only
slightly worse than those of AEVD, LS is biased against long transactions. This behavior can be explained as follows:
The time that each request spends at a resource comprises both a waiting period and a service time. Long transactions,
which are made up of many resource requests, are therefore more likely to have a longer total waiting period than short
transactions. However, all transactions, regardless of size, gain enough priority to resources at the same average laxity

under LS. Consequently, the total waiting period of longer transactions are more likely to exceed this average laxity,
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which causes these transactions to have higher miss ratios. Since LS is biased and requires knowledge of exact transac-
tion sizes, it is not a promising candidate for use in database systems. We will therefore not consider LS further in this
paper.

In summary, we can draw the following conclusions from our results for the baseline experiment. First, ED and
AED discriminate significantly against longer transactions. Second, AEVD does not produce a noticeable biased
behavior and has the lowest Normalized Miss Ratio among the algorithms that we considered. Hence, AEVD appears

to be an attractive candidate for scheduling multiclass RTDBS workloads.

5.4. Transaction Size Distribution

In the baseline model, transactions of all sizes had the same arrival rate because transaction size varied uniformly
between 1 and 30. The objective of this experiment is to examine how workloads with different transaction size distri-
butions might affect the performance of the algorithms. We achieve that by modifying the transaction arrival process
so that the probability that an incoming transaction has a size of i pages is inversely proportional to Z; for example, an

incoming transaction is 30 times as likely to have a size of 1 than a size of 30.

Figures 13 and 14 show the BF and Normalized Miss Ratio results, respectively, as a function of arrival rate.
Since this workload has a larger proportion of shorter transactions, the load on the system is much lighter than in the

case of the baseline experiment. Initially, ED and AED are able to meet almost all of the deadlines, and their BF values
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are therefore close to zero. At higher arrival rates where the system stands to miss deadlines, however, we again
observe their biased behavior. There, the poor performance of longer transactions leads to high Normalized Miss
Ratios. In contrast, AEVD produces balanced miss ratios, and its Normalized Miss Ratios are significantly lower than

those of ED and AED under heavy loads.

We also experimented with different ranges of transaction sizes. The qualitative results of those experiments
were the same as what we have seen here, which leads us to conclude that AEVD is robust under changes in the tran-

saction size distribution.

5.5. Skewed Slack Ratio

AEVD was designed to operate with multiclass workloads where the time constraints of all transactions are, on
the average, proportional to transaction size (i.e. where slack ratio distribution is independent of transaction size). In
this experiment, we investigate the performance of AEVD for a workload where slack ratio and transaction size are

correlated, making it more difficult to meet the deadlines of some classes of transactions than others.

For the first part of the experiment, we make the slack ratio proportional to size. Here, transactions with a size of
1 have a slack ratio of 2.0, and transactions with a size of 30 have a slack ratio of 6.0. Figures 15 and 16 show the
resulting BF and Normalized Miss Ratio values. The looser time constraints of longer transactions give them an advan-

tage over shorter transactions. At low loads, this advantage is sufficient to offset the effect of ED’s biased behavior.
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Nonetheless, at high loads longer transactions still perform badly under ED. In contrast, AED has low BF values
because the selection criteria for the "hit” group is independent of transaction size. Transactions in the "hit" group
experience light-load conditions, where the discriminatory behavior of ED is compensated for by the advantage that
longer transactions get from their looser deadlines. Therefore, the AED "hit" group has balanced miss ratios. We now
examine AEVD. This policy adjusts for the advantage that longer transactions have by assigning fewer virtual dead-
lines to them, thereby causing transactions of all sizes to have balanced miss ratios and achieving BF = (. For this
workload, the use of virtual deadlines does not benefit longer transactions because their looser deadlines are already
sufficient to help them overcome ED’s discrimination. In fact, at high loads, competition from transactions that are not
close to their deadlines causes the RTDBS to miss some urgent transactions which could have been met otherwise. This

is the reason why Figure 16 indicates that AEVD has a slightly higher Normalized Miss Ratio than AED at high loads.

For the second part of the experiment, the correlation between slack ratio and size is reversed so that slack ratio is
inversely proportional to size. Thus shorter transactions are given the looser deadlines, and longer transactions have
tighter deadlines. Figures 17 and 18 show the BF and Normalized Miss Ratio results as a function of arrival rate. At
low loads, ED and AED produce low BF values because most of the deadlines can be met. At high loads, however, the
bias of ED again causes longer transactions to perform much worse than shorter transactions. In contrast, the high miss
ratios of longer transactions in the "hit" group cause AED to limit the capacity of this group; as a result, most of the

transactions end up being assigned to the "miss” group. This is why its BF curve levels off. We now examine AEVD.
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By reducing the pace factors of longer transactions in the "hit" group to enable them to progress more steadily, AEVD
helps them to overcome the handicap of their tighter deadlines. The miss ratios in the AEVD "hit" group are thus bal-
anced. However, AEVD also attempts to maintain low Normalized Miss Ratios for the "hit" group, and this results in
the group having a small capacity. Consequently, a substantial portion of transactions are assigned to the "miss" group
where RP is used. Since longer transactions have deadlines that are harder to make, RP produces a positive BF in the
"miss” group. This results in positive overall BF values, though the BF values are smaller than those produced by ED
and AED. Another observation is that AEVD has higher Normalized Miss Ratios than AED at low loads, indicating
that there is a performance penalty in making the system service the longer, tighter transactions when it could have
completed more of the shorter, looser transactions with the same resources. At high loads, however, the performance
gains from the longer transactions offset the loss in performance of the shorter transactions, so that the Normalized Miss

Ratios for both AEVD and AED are about the same.

The results of this experiment show that if the slack ratio distribution makes the deadlines of some classes of tran-
sactions more difficult to meet than others, there can be a performance penalty in attempting to overcome the bias.
Moreover, if we take into account the performance penalty involved, AEVD has the best overall performance among
the algorithms that we have considered. To summarize, we can conclude that AEVD is fairly robust under variations in

slack ratio distribution.

5.6. Data Contention

Our next experiment explores situations where both resource contention and data contention cause the system to
miss deadlines. This is done by setting the write probability to 0.25, which means that one-fourth of the data items that
are read will also be updated. Due to space limitations, we will only present results obtained for one concurrency con-
trol algorithm. Since previous studies have shown that optimistic algorithms outperform locking algorithms in firm
RTDBSs under high data contention [Hari90b], we will use an optimistic concurrency control mechanism. The chosen

algorithm is briefly described below.

In classical optimistic concurrency control (OPT) [Kung81], transactions are allowed to execute unhindered until
they are ready to commit, at which time they are validated. A transaction is restarted if it fails its validation test, which
checks that there is no conflict between the validating transaction and transactions that committed after it began execu-

tion. In the Broadcast Commit variant (OPT-BC) [Mena82, Robi82], a committing transaction notifies other currently
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running transactions that conflict with it so that these conflicting transactions can restart immediately. This method
detects conflicts earlier than the OPT algorithm, and results in earlier restarts and less wasted resources. Performance
studies have shown that OPT-BC produces low miss ratios in firm RTDBS under heavy loads [Hari9%0b]. We therefore

choose this algorithm for our experiment.

Figures 19 and 20 present the performance results for this experiment as a function of the transaction arrival rate.
Figure 19 shows the BF values, and Figure 20 gives the Normalized Miss Ratios. Among the three algorithms, the miss
ratios produced by AEVD are the least sensitive to transaction size. Interestingly, at low arrival rates where data con-
tention dominates resource contention, longer transactions are discriminated against even in the case of AEVD. In this
situation, performance is primarily determined by the concurrency control algorithm, and OPT-BC is known to favor
shorter transactions [Huan91]. At high loads, AEVD reduces the effect of the bias caused by OPT-BC by giving longer
transactions higher priorities at the CPUs and disks. Both AEVD and AED have comparable Normalized Miss Ratios,

while ED performs badly at high loads as expected.

The most important conclusion from this experiment is that, when data contention dominates resource contention,
the use of priorities alone is not enough to overcome the bias caused by the concurrency control algorithm. We also ran
experiments with other concurrency control algorithms, including 2PL [Eswa76, Gray79], 2PL-High Priority [Abbo88],
OPT-WAIT [Hari90b], and WAITS0 [Hari90b]; these experiments revealed the same bias against longer transactions.

To treat transactions of all sizes fairly under both data and resource contention, an unbiased concurrency control algo-
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rithm that complements AEVD is required. Such an algorithm is now under study and will (hopefully) be the topic of a

forthcoming paper.

5.7. Discussion

An issue that concerns the use of BF to represent the dependency of miss ratio on transaction size is: how good a
representation BF really is? Recall that BF captures only the linear correlation between miss ratio and size. If there isa
non-linear (e.g., curvilinear) correlation between miss ratio and size, we may still get a BF of zero. Thus, BF = 0 by
itself does not allow us to conclude that miss ratio is independent of transaction size. As a safeguard, we also computed

the standard error, Cpgiseran, » defined as

e

OMissRatio = [ E (MiSSRatios - ys)z ]

s € Sizelnterval

where Sizelnterval is the range of transaction sizes in the workload, and y, is the miss ratio of transactions of size s
predicted by the regression line. Denoting the mean miss ratio by E(MissRatio), the coefficient of variation is defined
a8 CVpisshatio = OMissraiio / E(MissRatio). If we obtain small CVyy i, values after fitting a regression line to the miss
ratios produced by an algorithm, we know that the regression line models the miss ratios well. It then follows that the

BF value is a good indicator of the correlation between miss ratio and size produced by the algorithm.

In our experiments, we observed that 70% of the time the CVjygrai, values obtained with AEVD were smaller
than 0.15, and 90% of the time the CVysepai, values were below 0.30. This shows that the regression lines modeled the
behavior of AEVD fairly well. In the case of ED and AED, the CVy;rai, Values were larger. However, regression
lines still captured the general trends in the miss ratios that they produced. Regression lines therefore provide a simple

and reasonably good indicator of the dependency of miss ratio on transaction size.

6. CONCLUSIONS

In this paper, we addressed the issue of priority assignment in firm multiclass real-time database systems
(RTDBS) where classes are distinguished by their mean sizes. We showed that Earliest Deadline (ED) and Adaptive
Earliest Deadline (AED) make longer transactions pay the price for reducing the overall miss ratio. In other words,
there is a bias against longer transactions under these scheduling policies. This behavior may not be acceptable in many
real-time applications. We introduced a new algorithm, called Adaptive Earliest Virtual Deadline (AEVD), that

attempts to minimize the overall miss ratio without discriminating against longer transactions. AEVD divides the
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transactions in an RTDBS into a "hit" group and a "miss" group. Transactions in the "hit" group are given preferential
access to resources to enhance the chances that they will make their deadlines. Moreover, the time constraint of each
transaction in the "hit" group is divided into a series of virtual deadlines. At any time, the transaction with the earliest
virtual deadline has the highest priority; by adjusting the tightness of the virtual deadlines assigned to transactions, the

algorithm is able to control their progress and hence their miss ratios.

To quantify the behavior of the algorithms, we presented two performance metrics: Normalized Miss Ratio,
which measures the fraction of the workload that is not completed on time, and the bias factor BF, which quantifies the
linear correlation between miss ratio and transaction size. Using a detailed RTDBS simulation model, a series of exper-
iments was carried out to study the performance of the algorithms. QOur experiments revealed that, in attempting to
ensure fair treatment, the system can incur a penalty in terms of the fraction of the workload that finishes on time. Our
results also showed that AEVD outperformed ED and AED over a wide range of multiclass workloads. It achieved BF
values that were close to zero, indicating that transactions of all sizes had balanced miss ratios. One exception was
when shorter transactions had looser deadlines, making it difficult to lower the miss ratios of the longer, tighter transac-
tions to achieve balanced miss ratios. Another exception was when data contention dominated resource contention, in
which case the behavior of the concurrency control algorithm was the dominant performance factor. Even so, AEVD
had the smallest BF values among all the algorithms that we considered in both cases. Moreover, with only one excep-
tion, AEVD also had the lowest Normalized Miss Ratios. The exception occurred when AEVD incurred a performance
penalty for trying to improve the miss ratios of some classes of transactions that had tighter deadlines. In one particular
instance, where the looseness of deadlines was proportional to transaction size, AED was also able to produce balanced
miss ratios across transactions of all sizes, and at the same time produce lower Normalized Miss Ratios than AEVD at
high loads. Overall, our results indicated that AEVD is an attractive alternative to ED and AED.
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