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Abstract. A single linear programming formulation is proposed which generates a
plane that minimizes an average sum of misclassified points belonging to two disjoint
points sets in n-dimensional real space. When the convex hulls of the two sets are also
disjoint, the plane completely separates the two sets. When the convex hulls intersect,
our linear program, unlike all previously proposed linear programs, is guaranteed to
generate some error-minimizing plane, without the imposition of extraneous normal-
ization constraints that inevitably fail to handle certain cases. The effectiveness of the
proposed linear program has been demonstrated by successfully testing it on a num-
ber of databases. In addition, it has been used in conjunction with the multisurface
method of piecewise-linear separation to train a feed-forward neural network with a

single hidden layer.
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1. Introduction

We consider the two point-sets A and B in the n-dimensional real space R™
represented by the m x n matrix A and the k x n matrix B respectively. Our principal

objective here is to formulate a single linear program with the following properties:
(i) If the convex hulls of A and B are disjoint, a strictly separating plane is obtained.

(ii) If the convex hulls of A and B intersect, a plane is obtained that minimizes some

measure of misclassification points, for all possible cases.

(iii) No extraneous constraints are imposed on the linear program that rule out any

specific case from consideration.

Most linear programming formulation [6, 5, 12, 4] have property (i), however, none
to our knowledge have properties (ii) and (iii). For example, the linear program of [6]
fails to satisfy property (ii) for all linearly inseparable cases, while Smith’s linear pro-
gram [12] fails in satisfying (ii) when uniform weights are used in its objective function
as originally proposed. The linear programs of [5, 4] fail in satisfying both (ii) and (iii).
Our linear programming formulation on the other hand has all three properties (i), (ii)
and (iii). It is interesting to note that our proposed linear program (2.11) will always
generate some error-minimizing plane even in the usually troublesome case when the
means of the two sets are identical. For this case, among possible solutions to our linear
program is the null solution. However, this null solution is never unique for our linear
program and thus a useful alternative solution is always available. For example, such
an alternative, the 45° line, is obtained computationally by our linear program for the
classical counterexample of linear inseparability: the Exclusive-Or example [11]. (See

Example 2.7 below.)

We outline our results now. In Section 2 we state our linear program (2.11) and
establish that it possesses properties (i)-(iii) above in Theorems 2.5 and 2.6. On the
other hand in Example 2.8 we show that (o = 0, ¥ = 1) uniquely solves Smith’s
linear program ((2.10b) with §; = §;) and hence property (ii) is violated. Similarly in
Remark 2.9 we give an example which violates property (ii) for Grinold’s linear program
(2.20) [5] and give conditions under which this is always true. In Section 3 we report
on some computational results using our proposed linear program on the Wisconsin

Breast Cancer Database and the Cleveland Heart Disease Database. See also [1] for
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other computational results using linear programming on these databases.
A word about our notation now. For a vector z in the n-dimensional real space R",
x4 will denote the vector in R™ with components (z4); := max{z;, 0}, 1 =1,...,n.

The notation A € R™*™ will signify a real m x n matrix. For such a matrix, A’ will

n
denote the transpose while A; will denote the ith row. The 1-norm of z, Z |z:|, will

1=1
be denoted by ”x”l, while the oo-norm of z, max |zi], will be denoted by ”m”oo A

vector of ones in a real space of arbitrary dimension will be denoted by e.




2. A Robust Linear Programming Separation

Our linear program is based on the following error-minimizing optimization problem
.1 1
(2.1) min —||(—Aw +ey +e) [, + £ [[(Bw—ev+e) |,

where A € R™*™ represents the m points of the set A4, B € R¥*™ represents the k
points of the set B, w is the n-dimensional “weight” vector representing the normal
to the optimal “separating” plane, and the real number « is a threshold that gives the
location of the separating plane: wz = . The choice of the weights % and % in (2.1)
is critical (as we shall demonstrate below in Theorems 2.5 and 2.6) in that it sets it
apart from Smith’s linear program [12] where equal weights were proposed, and from
other linear programming formulations [6, 5, 4]. Our choice we believe is a “natural”
one in that the useless null solution w = 0 is not encountered computationally for
linearly inseparable sets. This is theoretically justified (Theorem 2.5 below) because
w = 0 cannot be a solution unless the following equality between the arithmetic means

of A and B holds

(2.2) ff. - e_]‘?
However in this case, it is guaranteed that a nonzero optimal w exists in addition to
w = 0 (Theorem 2.6 below).

We begin our analysis by justifying the use of the optimization problem (2.1) which
minimizes the average of the misclassified points of A and B by the separating plane

zw = 7. We define now linear separability for concreteness.

2.1 Linear Separability (Definition) The point sets A and B, represented by the

matrices A € R™*" and B € R**™ respectively, are linearly separable if and only if

(2.3) min A;v > max B;v for some ve& R"
1<i<m 1<i<k

or equivalently
(2.4) Aw > ey+e, ey—e>Bw forsome weR", yER

To see this equivalence just note the relations

. . A Biv
(2.5) w=2v/v, v= min A;jv— max Bjv >0, y= min — + max —
1<i<m 1<i<k 1<i<m v 1<i<k v
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Note also when the sets A and B are linearly separable as defined by (2.4), the plane
(2.6) {olws = )

is a strict separating plane with

(2.7) Aw > ey and ey > Bw

With the above definitions the following lemma becomes evident.

2.2 Lemma The sets A and B represented by A € R™*" and B € R¥*™ respectively
are linearly separable if and only if the minimum value of (2.1) is zero, in which case

w =0, cannot be optimal.
7

Proof Note that the minimum of (2.1) is zero if and only if
—Aw+ey+e<0 and Bw—ey+e<0

which is equivalent to the linear separability definition (2.4). To see that (w = 0, v)
cannot be optimal for (2.1), note that if we set w = 0 in (2.1) we get

(2.8) mﬁ%n(1+7)++(1—7)+=2>0
which contradicts the requirement that the minimum of (2.1) be zero for linearly sepa-

rable A and B. 1

The import of Lemma 2.2 is that the optimization problem (2.1), which is equivalent
to the linear program (2.11) below, will always generate a separating plane wz =« for

linearly separable sets A and B. For linearly inseparable set .4 and B the optimization
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Figure 1: An Optimal Separator wz = v for Linearly Inseparable Sets:
A (o) and B (+)

problem (2.1) will generate an optimal separating plane wz = v which minimizes the

average violations

m k
1
(2.1a) E (—Aiw+ v+ 1) + 7 ié 1 (Biw — v+ 1)4,

1
m =1
of points of 4 which lie on the wrong side of the plane wz =+ + 1, that is in { m|w:z: <
v+ 1}, and of points of B which lie on the wrong side of the plane wz = v — 1, that is
in {mlwx > v —1}. See Figure 1.

Note that once the average violations of (2.1a) has been minimized the planes
we = v+ 1 and wz = v~ 1 are discarded and the plane wz = v is taken as the optimal

separator. This is so because the same plane wz = ¥ is also the optimal separator

obtained by minimizing
1 & 1<
(2.10) -1';;Z(—Aiw+'y+C)++-];Z(Biw—’H‘C)+
i=1 k=1

for any ¢ > 0 (just normalize by dividing by ().
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Note also that the location of the plane wz = 7 obtained by minimizing the average
violations (2.1a) can be further optimized by holding w fixed at the optimal value and

solving the one-dimensional optimization problem in ~

m k
) 1 1
(2.1¢) ming Aiw D s Biw ; (—Aiw + )+ + z ; (Biw — 7)+

This ”secondary” optimization is not necessary in general, but for some problems it
does improve the location of the optimal separator for a fixed orientation of the planes.
The objective of the one-dimensional problem (2.1c) is a piecewise-linear convex func-
tion which can be easily minimized by evaluating the function at the breakpoints
v =A1w,..., Apw, Biw, ..., Byw.

In order to set up the equivalent linear programming formulation to (2.1) we state
first a simple lemma that relates a norm minimization problem such as (2.1) to a con-

strained optimization problem devoid of norms of plus-functions.

2.3 Lemma Let g: R® — R™, h: R® — RF and let S be a subset of R™. The problems

(2.9a) min [l9(@)+[|; + [[A(=)+ ),
(2.99) min {ey +ez|y > g(2), y 2 0, = 2 h(a), = 2 0)

have identical solution sets.

Proof The equivalence follows by noting that for the minimization problem (2.9b), the
optimal y, z and z must be related through the equalities y = g(z)4, z = h(z)4+. B

By using this lemma we can state an equivalent linear programming formulation

to (2.1) as follows.

2.4 Proposition For §; > 0, 62 > 0, the error-minimizing problem

(2.10a)) min 6 |(—Aw + ey +e) [, + 6| (Bw —ev+¢) |,

is equivalent to the linear program

(2.100) min {61ey + 6gez!Aw —ey+y>e —Bw+teyt+z>e, y>0, z>0}
WY, Y,%
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The linear program (2.10b) originally proposed by Smith [12] with equal weight

01 = 6y = 7 does not possess all the properties found in our linear program with
m
61 = E and 62 = -]; .
. ey ez
(2.11) min {—— + ——',Aw —ey+y>e, —Bwtey+z>e, y>0, 22> O}
wyyz lm  k

The principal property that (2.11) has over other linear programs, including Smith’s,
is that for the linearly inseparable case it will always generate a nontrivial w without an
extraneous constraint. To our knowledge no other linear programming formulation has
this property for linearly inseparable sets. We establish this property by first consid-
ering the linear program (2.10b) for arbitrary positive weights ¢; and é; and showing

under what conditions w = 0 constitutes a solution of the problem.

2.5 Theorem Let 6,k > é;m. The linear program (2.10b) has a solution (w =
0, v,y,2) if and only if

A 6
(2‘12) _e__sz, UZO) 6’0:1, US'—ZG_3
m bm

that is if the arithmetic mean of the points in 4 equals a convex combination of some

points of B. When 8k = §;m, (2.12) degenerates to

eA eB
2.12a = ==

( ) k ?

that is the arithmetic mean of the points in 4 equals the arithmetic mean of the points

n B.

Proof We note first that 6,k > §;m does not result in any loss of generality because
the roles of the sets A and B can be switched to obtain this inequality. Consider now

the dual to the linear program (2.10b)
(2.13) max {eu + ele'u ~Bv=0, —eut+ev=0, 0<u<ébe, 0<v<bre}

The point (w =0,46,y,2) is optimal for the primal problem (2.10b) if and only if

26ym = mvin s1m (1 + ’y)+ + 62k (1 — ’Y)_,.

(2.14q) .
= min {6ey + 6262, —ey+y>e ey+z2>e(y,z) >0}
Y Y¥,2
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(2.14b) = max {eu + evIA'u —Bv=0, —eut+ev=0,0<u<ée 0<v< 526}
u,v

Since eu = ev and eu + ev = 28;m, it follows that eu = ev = §;m. Since 0 < u < e,
and so if any u; < §; then eu < §;m contradicting eu = §;m. Hence u = §;e and
ev = eu = 6ym. By normalizing v and v by dividing by §;m we obtain (2.12). When
02k = 6ym, then from (2.12) we have that 0 < v < % Since ev = 1, it follows that

Vo=

and (2.12a) follows (2.12). §

o

This theorem gives a theoretical explanation to some observed computational ex-
perience, namely that Smith’s linear program (2.10b) with é; = §;, ended sometimes
with the useless null w for real world linearly inseparable problems, whereas our linear
program (2.11) never did. The reason for that is the rarity of the satisfaction of (2.12a)
by real problems in contrast to the possibly frequent satisfaction of (2.12).

We now proceed to our next results which show that when the null vector w = 0

. . . 1
constitutes a solution to the linear program (2.10b), except for our case of §; = — 0y =

!
k)

below.) However, for our linear program (2.11), even when the null w occurs in the

such w = 0 can be unique and nothing can be done to alter it. (See Example 2.8

rare case of (2.12a), e.g. in the contrived but classical Exclusive-Or example [11], there
always exists an alternate non-null optimal w. (See Example 2.7 below.) These results

are contained in the following theorem, examples and remarks.

2.6 Theorem (Nonuniqueness of the null w solution to the linear program (2.11))

The solution (w = 0,v,y,2) to (2.11) is not unique in w.

Proof Note from the first equality of (2.14a) with §;m = 6k = 1 that when (w =
0,7,y,2) is a solution to (2.11), then 4 can be any point in [-1, 1]. In particular, take
4 = 0. Then for this choice of @ = 0, 7 = 0, the corresponding optimal y, z for (2.11)
are J = e, Z = e and the active constraints are the first two constraints of (2.11). Hence
(w,%,9,Z) is unique in w if and only if the following system of linear inequalities has

no solution (w,~,y, 2)

(2.15a)

I

—Bw+ey+z>—-Bio+eyt+z=c¢
w# O
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This is equivalent to the following system of linear inequalities having no solution

(w,v,y,2) for each h in R":

~—(y-9) -7z =220
Alw—0)—e(y=7) +(y -7 20
—B(w—®) +e(y-7)+(2-2) 20
—h(w —w) >0

(2.15b)

By Motzkin’s theorem of the alternative [8, Theorem 2.4.2] the following system of

linear inequalities must have a solution (¢, u,v) for each & in R":

A'u—-B'v=nh

—eu+ev=0

(2.16) --—nl;ec +u=0
——%e( +v=0

C,u,v >0

Obviously this is not the case, since each h in R™ cannot be written as:

] ]
oA _Bel g

(2.17) — =

Hence @ = 0 is not unique. §

We now apply this theorem to the classical Exclusive-Or example [11] for which
condition (2.12a) is satisfied and hence (& = 0,7,7, Z) is a solution to (2.11) which,

however, is not unique in @ = 0.

2.7 Example (Exclusive-Or)

Let A = 00 and B = 1 O.Thenfé—.:"e—gand(w=0,f7=0,g:
1 1 0 1 z z
e, Z = e) is a solution to the linear program (2.11) which can also be written in the

equivalent (2.1) formulation of

.1
(2.18) %335[(1+7)++(1+7—w1—wz)++(1-’7+w1)++(1-’)’+w2)+] =2
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1 . . _ .
1) ¥ =1 is also optimal, because it gives the same minimum

value of 2. The —45° direction in the w—space associated with this solution is useful

However, the point @ =

in the multisurface method of pattern separation [7, 1] since it can be used to generate
the first part of a piecewise-linear separator. In practice the linear program package

2
-2
that can also be used for piecewise-linear separation.

returned the optimal point @ = ( ) , ¥ = —1, which generates another 45° direction

We turn now to the case when é§;m # é2k. In particular consider Smith’s case of

1 .. . .
61 = 63 = —-——. A similar analysis to that of Theorem 2.6 does not give guaranteed

m+k

nonuniqueness of the solution (@ = 0,%,7,2) in @ = 0 for the linear program (2.10b)

) 1 . . _
with 61 = 6, = i In fact, to the contrary, the analysis shows that indeed @ = 0

is unique under certain conditions which are satisfied by the following counterexample

. 1
[9, (2.9)] to Smith’s claim [12] that his linear program (2.10b) with §; = §; = oA
always generates a nonzero . In reality @ = 0 is unique for this example.
T . .. 1
2.8 Example (Unique @ = 0 for Smith’s LP (2.10b), §; = 82 = 7—77,_—}——_1;:.)
~1
Let A = [:12] , B = 0| and hence m = 2, k = 3. For this problem the
4

equivalent norm-minimization problem (2.1) to the Smith’s LP (2.10b) with é; = é; =
1

m+k 182

1
m fw,a)=min =[(—w+y+1), +(=2w+vy+1)
(2.19) 7 w5 + +

SRS

+(_w—7+1)++’("7+1)++(4w_7+1)+]:_

is achieved at @ = 0, ¥ = 1. The uniqueness of this solution can be established by
considering the subdifferential [10, Section 5.1.4, p.127], [3, Equation 14.1.4, p.363] of
the function f(w,~) at (0,1) which is given by

1 -1-2—-4, 404 +4£ 11-3-1¢ 4¢
Bf(0,1)=—5- 1+ 2+ 3}____5_[ 1+ 3

14+1—41 — fo— 45 R T S
with 0 < £ < e. Since 0 € 9f(0,1) with

1>43>08, €y =>5(1—40), £ =405 —3,
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it follows that 0 € interior (9f(0,1)) and hence by [10, Lemma 3, p.137], (0,1) is a
unique solution of (2.19). (The uniqueness of (0,1) can also be shown by considering

the linear program (2.10b)).

2.9 Remark Grinold [5] proposed the following linear program

(2.20) min {—-p‘A‘w—e'y—ep >0, —Bw+ey—ep 20, (eA—eB)w+(k—m)y = k+m}
w,Y,p

1

2

In [9] the example A = [1] , B = [2} was given to show that the solution
4

(w =0, =25, p = —5) is unique in @. In fact, it can be shown that (@ = 0,7, ) is

always a solution of (2.20) whenever there exist u such that
eA —eB

—— =0, eu=1, u>0, k>m
k—m

(2.21) ud +
Furthermore, @ = 0 is unique if for each A in R"

(2.22) (A' + S};l————-e—B-ve)u =h, hasasolution u>0
-m
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3. Computational Comparisons

In this section we give computational comparisons on two real-world databases: the
Wisconsin Breast Cancer Database [14, 13] and the Cleveland Heart Disease Database
[2] using our proposed linear program (2.11), Smith’s linear program (2.10b) with
6 = b2 = E’}f—k and the following linear programming formulation proposed in [9]
for multisurface discrimination

(3.1) Iréliaéxnlrur’l%{a ﬂ'Aw_,eoz, Bw<eff, —e<w<ew :i:}

Note that (3.1) can be solved by solving 2n linear programs. The corresponding linear

separation obtained from (3.1) is

Qi
+
Wi

3.2 DT =
(3.2) W 5

where (W, &, ) is a solution of (3.1). Problem (3.1) is equivalent to [9]

(3.3) maz {a — ﬁ]Aw > ea, Bw < ef3, Hw”oo =1}

w,a,

which in turn is easily seen to be the following problem

(3.4) ngﬁ—-l (12%217” Aw — 1I2?5Xk Biw)

Figure 2 summarizes the results obtained for two linearly inseparable databases us-
ing the three linear programs mentioned above. The Wisconsin Breast Cancer Database
consists of 566 points of which 354 are benign and 212 are malignant, all in a 9-
dimensional real space. The Cleveland Heart Disease Database consists of 197 points in
a 13-dimensional real space, of which 137 are negative and 60 are positive. Our testing
methodology consisted of dividing each set randqmly into a training set consisting of
67% of the data and a testing set consisting of the remaining 33%. Each linear pro-
gramming formulation was run on the training set and the resulting separator tested on
the testing set. This was repeated ten times and the average results of the ten runs are
depicted in Figure 2. No ”secondary” optimization using (2.1c) was performed for any
method. For each database our linear program (2.11) referred to as MSM1 (multisurface

method 1 norm) outperformed both Smith’s linear program (2.10b) with 6; = 6, and
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the linear programming method of (3.1), referred to as MSM. The average run times for
MSM1 and Smith are very close: 3.84 and 3.89 seconds respectively on a DEC station
5000/125 for the Wisconsin Breast Cancer Database, while the corresponding time for
MSM was 53.54 seconds. For the Cleveland Heart Disease Database the corresponding
times are: 2.82, 2.89 and 53.82 seconds respectively. Note that the percent error of
MSM1 on the testing set was better than that of Smith and considerably better than
that of MSM on both databases.
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Figure 2: Comparison of Three Linear Programming Discriminators for

Linearly Inseparable Sets
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4. Conclusions

We have presented a robust linear program which always generates a linear surface
as an “optimal” separator for two linearly inseparable sets. The “optimality” of the
separator consists in minimizing a weighted average sum of the violations of the points
lying on the wrong side of the separator. By using a weighted sum we have overcome the
problem of the null solution that has plagued previous linear programming approaches
that either left this difficulty unresolved or imposed an extraneous linear constraint
which never resolved the problem completely. The fact that computational results on
real-world problems give an edge to our linear program over Smith’s and a substantial
edge over another linear programming approach makes it, in our opinion, the linear

program of choice for the linearly inseparable case.
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