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Managing a complex software system requires a description of how its components are related to
one another. We propose a new approach to this problem based on logic programming. All ob-
jects in the system are defined by ferms that describe their format, functionality, components, and
origin. Each of these properties is itself a pattern that can be matched against other object
descriptions by the unification algorithm. Thus, for example, the format of a Pascal compiler
written in C is “C”; its functionality it is to translate an object whose format is “Pascal” into an
object with format “object code” while preserving functionality. The inference algorithm is
sufficiently powerful to describe cross-compiling and bootstrapping (that a compiler can compile
itself). Our approach is sufficiently flexible that all aspects of the software configuration can
specified in a single language. It allows a complex specification to be split into manageable
pieces. For example, the input/output behavior of a compiler can be specified separately from the
fact that this behavior is implemented by combining the functionalities of parsing and code gen-
eration.

We present the approach in detail by working through an extended example. We discuss its ad-
vantages and limitations, and outline our plans for further research on its applicability to a variety
of problems in system specification and building.

1. Introduction

The Software Configuration Management Problem

Software configuration management (SCM) systems provide automatic assistance in managing large
systems of software objects having complex interrelationships. The software management task is difficult
because large systems are continually revised, repaired and reorganized.

Some SCM systems attempt to model a continuously evolving software system by focusing on some
aspect of the system that is assumed invariant or at least changing slowly. For example, a system model
might describe the system’s structure, based on the assumption that overall structure is revised infre-
quently. Unfortunately, software systems seem to have the property that nothing is invariant; all aspects of
a system are open to rapid change, especially during early development. Other SCM systems deal with this
inherent unruliness by creating rule-based or law-based models [Kaiser1986, Minsky1988] which attempt
to impose one or more desired invariants on a software system, such as “interfaces must always match,” or
“a release can never include an untested component.” A good system model documents the architecture of
a software system, guides the process of building derived objects from their antecedents, and specifies con-
sistency constraints among its components. Maintenance of the model should be automated as much as
possible.

*This work supported in part by the Defense Advanced Research Projects Agency, monitored by the Office of Naval Research
under contract N00O014-88-K-0590.
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To build a large software product correctly, the proper software components must be selected’, the
proper derivation tools must be applied to those components, and derivations must be done in the proper
order. Our approach is to design a logic-based expert system which is capable of automatically satisfying
build-request goals. Such an expert build tool requires access to the following items:

o A build-request goal for one or more desired derived objects.

e The objectbase of source modules (and a cache of derived objects, for efficiency).

e Relationships which hold among software objects (e.g., module B is used by module A).

e Descriptions of the capabilities of the derivation tools available.

e A definition of system consistency for the software system under development (e.g., timestamp ordering
between source and derived objects, source interfaces match, etc.).

For a given software system under development, these items constitute the system; to the extent that they
are not self-describing, they constitute the system model. That is, we consider a system model to be the
portions of a given software system which are not self-describing and thus require an external specification.
To minimize the system model, we attach extensive descriptive information to each component of the
software system and its development environment.

A Logic-Based Approach

In the following examples we show how each of the items above may be defined using a single
logic-based language, a variant of Prolog? called LOGIN [Ait-Kacil986]. A database of persistent
software objects is treated as though it were a Prolog-style clausal database so that a build tool written in
LOGIN can manage persistent objects directly. LOGIN's inheritance-based unification is used to achieve
flexible associative access to objects and to infer the derivation tools needed to process source objects dur-
ing a build.

The remainder of this paper is organized as follows: In section 2, we describe the LOGIN language
and present a small example that illustrates how we can handle simple build tasks like those automated by
the popular Unix™ build tool, make [Feldman1979]. Section 3 fleshes out the example, showing in more
detail how we use terms to represent tools and other software objects. Section 4 describes how queries can
be written which invoke a logic-based build and how those queries can be processed to derive atomic or
aggregate objects. In section 5 we discuss some of the advantages of our approach. Finally, sections 6 and
7 describe the current status of our work and suggest avenues of further research.

2. A Simple Example

To show how a system model guides the tool inferencing process during a build, we present a simple
example comparing our logic-based approach to the procedural approach used by the Unix build program
make. Make uses a procedural system model called a makefile to guide a build. Since Unix files are

The important issue of version management is beyond the scope of this paper.

*We assume throughout this paper that the reader is familiar with Prolog.
Unix is a trademark of AT&T Bell Laboratories.
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normally updated in place, make compares timestamps to determine whether a requested file is obsolete
with respect to its sources and so must be rebuilt. Make uses a limited form of pattern matching to sum-
marize the action of tools®,

.y.C:; vacc $*.y ; mv y.tab.c $*.c

.c.0:; cc ~c $*.c

.0.x:; 1d -0 $*.x $*.0
The first rule tells how to translate a yacc source file [Johnson1975] into a program in the C program-
ming language [Kernighan1988], by applying the yacc tool and renaming its output (the notation “$*”
represents the prefix of the file name matching the input pattern). Similarly, the second rule describes the
action of the C compiler, and the third describes the Unix linkage editor 1d.

In our approach, the tools cc, yacc, and 1d are self-describing; that is, the tool-specific informa-
tion expressed in make’s type-mapping rules is stored in the representation of each particular tool rather
than in the builder program. An important part of every tool’s representation describes its behavior or
functionality. A tool’s functionality describes both its static interface and its semantics. An interface con-
sists of the tool’s input and output constraints expressed as a pair of partially specified objects. The input-
object pattern acts as a precondition or input filter; only an object which unifies with that input pattern will
be accepted as an argument to the tool. The output pattern acts as a weak postcondition, describing the out-
put object that the tool can produce. A tool’s semantics are partly described by coreference constraints,

which express relationships which will hold between the tool’s input and output objects after successful
execution of the tool.

Our characterization of tools in terms of patterns acting as pre- and postconditions is somewhat simi-
lar to the approach used by Marvel [Kaiser1986]. An important difference is that we use unification to
maich objects against declarative tool input-output descriptions rather than by procedurally evaluating
Boolean predicates. We borrow the concept of viewing tools as type-conversion operators from Odin
[Clemm1990].

The representation of the C compiler (with some details suppressed) might look like the following.

object (
name => CC,
syntax => x,
semantics => function/(
input => object (
name => N: ANY,
syntax => ¢, semantics => InputSemantics: ANY),
output => object(
name => N,
syntax => 0o, semantics => InputSemantics)))

Descriptions similar to that of cc above can be written for yacc and 1d; only the value of the input and
output atribute syntax would differ in each.

3For simplicity, we use the nonstandard suffix . x in this paper to indicate executable programs.
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The C compiler is described as having syntax x—that is, it is an executable program. Its semantics is
described by the function term which has two attributes: input, which is an object obeying the
syntax of the C language, and output, which is a relocatable object module. A coreference constraint is
defined by the tag InputSemantics. Although the value of this attribute is unconstrained (ANY), it
appears in both the input and output terms, which states that although the compiler makes no
assumptions about the semantics of its input, that semantics is preserved in the compiled program.

The notation above resembles that of feature structures used in natural language processing; in fact,
it is an adaptation of the language LOGIN, which was originally developed for expressing constraints in
natural language. LOGIN, a variant of Prolog, has two extensions that significantly clarify our notation:
Arguments are matched by keyword labels rather than by position, and coreference consiraints are indi-
cated by tags, which prefix subterms.

Terms can be used not only to describe tools and other existing objects, but also to express requests
to build new objects having particular properties. An existing C source program might be described by the
term

object (name => prog, syntax => c, semantics => numbercrunch) .
A request for an executable version of this program can be expressed by the term
object (name => prog, syntax => x),

which asks for an executable program having the name prog. Notice that we said nothing about the
desired semantics of the result; if a prankster had replaced our number-crunching program prog with a
semantically different one having the same name, the build request would still succeed. If we are primarily
concerned with obtaining the correct semantics in the result, we could guard against such mischief by
instead specifying

object (syntax => x, semantics => numbercrunch}.

in which case we obtain an executable program having the desired semantics (but not necessarily produced
from or resulting in an object named prog).

The LOGIN interpreter works backward from the query to the existing object, noting the sequence of
tools which must be applied (much as make does). The request is used to search the objectbase for an
existing object matching the request. If none is found, the request is unified with the output attribute of
tool (executable) objects. The output of the tool 1d unifies with the request; as a side-effect, the input
attribute of 1d becomes further instantiated and becomes a new goal to be satisfied. Similarly, this goal
unifies with the output pattern of the cc term, generating a request for a source object, which unifies with
the existing C program prog.

3. Object Descriptions

A critical aspect of our design is the description of objects within the objectbase. If a backwards-
chaining build tool is to produce a complete and correct build plan for a complex software object, it must
have a very precise description of the form and functionality required in the desired result. Thus an object’s
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representation must include a description of its semantic functionality as well as its external physical attri-
butes. For‘ example, several tools may have identical input-output signatures but perform very different
transformations, so a means of expressing the nature of the particular transformations is required. In this
section we present object descriptions in detail and show how descriptions of various kinds of objects are
combined to describe a complex software system.

An object description is a structure with (at least) six attributes:

Name. A human-readable character-string name for the object, corresponding roughly to the prefix por-
tion of a Unix file name.

OID. An object identifier that uniquely specifies a particular instance. The OID is useful for describing
permanent bindings among objects, especially in an object’s provenance (see below).

Form. A more detailed version of the syntax attribute in the simple example above. The form of an
object may be atomic, a homogeneous list (i.e., the subobjects all have the same form), or a record (not all
subobjects have the same form).

Functionality. A more detailed version of the semantics attribute in the simple example above. The
functionality of an object might simply be a character-string name (actually, a term with no attributes) if
further description of its functionality is not relevant to the build process. The functionality of a tool
includes a signature describing its input-output behavior. The tool signature takes the form of two partially
specified formal objects describing the essential characteristics of the tool’s (possibly composite) input and
output. A tool is matched with actual inputs and outputs by unifying these partial specifications with exist-
ing objects or signatures of other tools in the objectbase.

Composition. The composition of an atomic object simply consists of its internal contents. For list or
record objects the composition consists of (possibly associative) references to its components.

Provenance. A provenance® is a record of how a derived object was created, including references to the
tool that created it, the input to that tool, and a creation timestamp. The provenance is useful for historical
information and for consistency checking; for example, we may be interested in a version of a derived
object that was built from a particular source or using a particular compiler. Provenances can also help
maintain a derived-object cache. Before invoking a tool, we can compute the provenance of its output. If
an object having that provenance already exists, the tool need not be invoked, thus saving a potentially
expensive derivation step. This approach is used in Apollo’s DSEE system [Leblang1984, Apollo1984],

and is more reliable and more flexible than make’s technique of using timestamps and post hoc reasoning>.

*This term was suggested to us by an article by Jon Bentley: “The provenance of a museumn piece lists the origin or source of the
object. Antiques are worth more when they have a provenance (this chair was build in such-and-such, then purchased by so-and-so,
etc.). You might think of a provenance as a pedigree for a nonliving object.” [Bentley 1987}

*post hoc, n. \'post-"hak\ [NL post hoc, ergo propter hoc after this, therefore because of this) : the fallacy of arguing from tem-
poral sequence to a causal relation.



Rich and Solomon Logic-Based System Modelling Page 6

The latter four attributes (form, functionality, composition, and provenance) have previously been sug-
gested as descriptive attributes for objects in a more-general context under the names “formal cause,” “final
cause,” “material cause,” and “efficient cause,” respectively [Aristotle357 B.C.].

An object reference is simply a pattern which matches the object’s representation. An object refer-
ence can be used as a key for either a direct or associative search by matching it against the objectbase
using unification. Specifying an object’s OID produces a direct reference to a specific object; leaving the
OID value unbound and specifying an object’s functionality and form results in an associative search for an
object having the specified characteristics.

Example

c_compiler is a term which describes the general functionality of a C compiler. A particular C
compiler might be represented by the term cc.

c_compiler := translator(
input => object (
form => atom(c),
functionality => InFunc: ANY),
output => object (
form => atom(vax_reloc),
functionality => InFunc)).

cc := object(
oid => 51742,
name => cc_vax,
form => atom(vax_exe),
functionality => c_compiler,
provenance => prov(
tool => object (oid => 43417),
arg => object(oid => 40998),
time => 1989.11.06.10.47.56),
composition => [ -- compiler’s object code is stored here -- ]).

The definition of cc can be read as follows.
form: The C compiler is a single VAX™ executable module.

functionality: The objectis a translator that accepts a C source module as input and produces a relo-
catable module as output. Although the input and output have distinct forms, they have the same

functionality. A cross compiler would be described by changing the form sub-attribute of the
output attribute.

VAX is a registered trademark of Digital Equipment Corporation.
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provenance: The C compiler was produced on November 6 1989 at 10:47:56 by applying tool 43417
(probably a version of the linker) to argument 40998 (probably a composite object comprised of a list
of relocatable object modules).

composition: The composition of the C compiler is its executable object code, which is stored as the
value of this attribute.

4. Rules

Rules are used to represent, request, plan, and build the objects within a software system. LOGIN
distinguishes between type constructors used to build terms and predicate symbols used “at the top level”
to build assertions among terms. (Prolog makes no such distinction; Prolog “functors” are used for both
purposes). We use the predicate symbol build to denote a request to find or build an object matching a
given term, and built to denote that a given object exists. For example, the existence of the C compiler
described previously would be stated as the “fact” (rule with empty body)

built {cc).
A request to build such a C compiler might be expressed as
?- build(object (functionality => c_compiler)).

A more specific request can be framed simply by specifying more attributes. For example, a C compiler
that runs on a VAX is requested by the query

?- build(object (functionality => c_compiler, form => vax exe)).
A build request is satisfied immediately if the requested object exists:

build(Target: object) :- built(Target: object).

More complex build rules describe how one object may be derived from others. For example, the rule

build(Target: object (form => atom)) :-
build(Tool: object( (2)
form => atom(vax_exe),
functionality => translator(
input => Source, output => Target))),
build(Source: object),
apply (Tool, Source, Target).

states that a target object can be built by applying a tool to a source object, provided the source and tool are
built first, the tool is an executable translator, and the source and target match the input and output patterns
of the tool’s functionality. The predicate apply has the side effect of executing the object bound to
Tool using Source as input and binds the 0ID and provenance attributes of Target.
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Derivation tools (such as link editors) that take lists of inputs require a more elaborate specification.

linkedit := translator(
input => object({
form => list (atom(vax_reloc)),
functionality => InFunc: ANY),
output => object (
form => atom(vax_exe),
functionality => InFunc)).

composite_ func(PCompiler, [pascal_parser, pascal_codegen]). (3)

build (object (form => list (Form), functionality => Func)) :-
composite func (Func,Funcs), (4)
distribute (Form, Funcs, Components),
build_list (Components).

distribute (Form, [1,[]).
distribute (Form, [Func | Funcs],
[object (form=>Form, functionality => Func) | Objects]) :-
distribute (Form, Funcs, Objects).

build list([]).
build list ([Head | Tail]) :- build(Head), build list(Tail).

The functionality of the link editor looks superficially like that of the C compiler except that it takes an
input of form list (vax_reloc) and produces an output of form vax_exe while preserving func-
tionality. However, the fact that compiler functionality is obtained by combining a module that parses with
one that generates code is a design decision that must be specified manually (rule (3)). Using rule (4), the
inference engine can determine how to build an executable compiler if source modules with functionality
pascal parserand pascal_codegen exist.

5. Advantages of a Logic-based Approach

The examples above illustrate what we believe to be many important advantages to our approach to
system modelling. A logic-based approach allows us to employ a single language for representing objects,
describing tool signatures, expressing relationships and consistency constraints, defining inference rules,
matching objects, and building derived objects. The language is declarative. Programmers specify the pro-
perties of tools and other objects; strategies for satisfying requests are inferred. Since the language is
declarative, it can be statically typechecked using inheritance-based unification.

A system description can be conveniently decomposed so that each piece of information may be sup-
plied by the person best able to provide it: The author of a primitive object (source module) declares its
intended functionality, the designer of a system describes how the functionalities of its components com-
bine, the developer of a tool specifies its capabilities, and the implementor of the SCM environment pro-
vides the strategies for deriving objects.

The use of a single language throughout an object management system reduces overall complexity,
but at the risk of compromising its expressiveness for a particular purpose. Fortunately, a logic-based
language with inheritance provides important capabilities which actually make it convenient for each par-
ticular use. For example, using inheritance-based unification as a means of associative access t objects
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provides a powerful yet declarative method of object retrieval; it adapts the concept of query-by-example
[Z100f1977] to the task of system modelling. Since object types can be expressed as partially specified
objects [Wiebe1988], types can be incrementally refined to more-specific subtypes in subsequent
definitions. This capability provides one of the often-touted advantages of object-oriented programming:
the ability to reuse and build on existing definitions. Finally, the use of a logic-based language makes it
easy to create what is essentially an expert system for the construction of complex software objects from a
collection of primitive components.

6. Current Status

Development of these ideas is underway as part of the the CAPITLS project [Solomon1990]. We
have implemented a dialect of LOGIN called Congress. (1.OGIN was first implemented in Prolog at MCC,
but it is not publicly available; we used C++ [Stroustrup1986] as our implementation language.) Congress
also incorporates some ideas from a more recent extension of LOGIN called LIFE [Ait-Kacil988, Ait-
Kacil988a]. The examples in this paper have been coded and tested. We have built and tested a prototype
that extends the techniques presented in this paper.

The example above uses a “build as you plan” strategy for creating complex objects. Tools are
applied as a side effect of searching for a derivation path from existing sources to the requested object. If
no such path exists, unnecessary work will be done. A better approach responds to a request for an object
by building a plan to create the object. If this planning step succeeds, the resulting plan can be executed to
create the object.

The plan is not simply a functional expression. The existence of a derivation path does not guarantee
the success of a build; individual tool applications may fail, as when a compiler is applied to a program
containing errors. However, alternate paths may exist which could succeed, so the plan itself must be
prepared to backtrack. Thus, rather than writing a builder as described in this paper, we have implemented
a planner that emits a logic program as its output. Plans can be quite complex. For example, in some
software systems, executable versions of derivation tools must be built and executed dynamically as part of
the build itself. A plan can be viewed as a version of the configuration description specialized to build a
particular target.

We are also implementing an object database using the Exodus extensible database toolkit
{Carey1988]. The runtime support for Congress will present existing database objects as terms.
7. Directions for Further Research

Our initial experiences with a logic-based language for SCM are very encouraging. However, more
research is needed to establish this approach as a practical tool for defining all aspects of a complex
software system,

SComputer Assisted Programming-In-The-Large
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More Examples. We need to apply the technique to a wide variety of existing software systems exhibit-
ing complex configurations with different combinations of languages, tools, and interactions. We believe
we can handle derivation steps other than compilation/linking, such as interpretation, document production,
program integration [Reps1988], file format conversion, and testing, but we will not know what additional
mechanisms are required to support these applications until we actually try to model them.

Version Management. Effective integration of version management with the build process requires
development of a representation for version families and version histories. Mechanisms are also required
to support selection among multiple functionally equivalent objects according to criteria such as “most
recent”, “marked stable”, or “tested against a standard test suite”. Research in this area is ongoing [Solo-
mon1990].

Multiple Provenances. Support for automatic integration [Reps1988] requires multiple provenances. For
example, the same object may be derived in different ways by integrating several objects in different ord-
ers; a derived object may therefore have several different but equivalent provenances. This situation also
arises whenever a reversible operation (e.g., data compressioﬁ) is applied to an object. In general, the dif-
ferent derivations which can produce a given object will have different processing costs. When a requested
derived object has been removed from the derived object cache and must be rederived, the provenance
selected to rebuild the object should be the one whose total rederivation cost is lowest.
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