SIMULTANEOUS ANALYSIS OF FLOW AND ..
ERROR CONTROL STRATEGIES WITH '
CONGESTION-DEPENDENT ERRORS

by
Amarnath Mukherjee
Lawrence H. Landweber
John C. Strikwerda
Computer Sciences Technical Report #915

February 1990

Simultaneous Analysis of Flow and Error Control Strategies
With Congestion-Dependent Errors

Amarnath Mukherjee
Lawrence H. Landweber

John C. Strikwerda
September 1989
[Revised February 1990]

Department of Computer Sciences

University of Wisconsin
Madison, WI 53706

[to appear in the proceedings of the ACM SIGMETRICS, Boulder, 1990]

Abstract

We investigate the performance of flow control and error control protocols and their
role in controlling congestion. We address two kinds of packet errors: (a) independent
errors and (b) dependent errors. The latter kind are those which are caused by congestion
in the system. We consider the go-back-n and the selective repeat protocols for error
recovery. The flow control strategy that we study is the sliding-window protocol where we
vary the window size as the control parameter. Qur performance measure is the expected
time and the standard deviation of the time to transmit a large message, consisting of N
packets.

The analysis of independent packet errors, with go-back-n retransmission strategy
and sliding window flow control is an extension of our previous result [MLS 89] where
the window was assumed not to close. To compute the expected time to transmit an N-
packet message, we give sufficient conditions when we can treat the window flow control
problem and the retransmission analysis separately. Many researchers have tried to develop
detailed and accurate models of window flow control, and it is often very difficult to
understand the effect of packet retransmissions on the result. Our result indicates that
these studies are indeed valid because the two issues are quasi-independent — at least
when the retransmission strategy is go-back-n.

We next develop a framework to evaluate the two retransmission strategies in pres-
ence of windows when packet errors are congestion-dependent. We find that, irrespective
of retransmission strategy, the expected time as well as the standard deviation of the time
to transmit N packets increases sharply if the window size is large in the face of heavy con-
gestion. However, if the congestion level is low, the two retransmission strategies perform
similarly. We conclude that flow control, and not retransmission strategy, is the important
issue under congestion.

1. Introduction

We investigate the performance of flow control and error control protocols and their
role in controlling congestion. We address two kinds of packet errors: (a) independent
errors and (b) dependent errors. The latter kind are those which are caused by congestion
in the system. We consider the go-back-n and the selective repeat protocols for error
recovery. The flow control strategy that we study is the sliding-window protocol where we
vary the window size as the control parameter. Our performance measure is the expected
time and the standard deviation of the time to transmit a large message, consisting of N
packets.

Previous studies have focussed on either flow control or error control strategies, see for
example [Mor 88, MLS 89, TW 79 and Zwa 85]. The complexity of analyses has usually
precluded simultaneous study of both. One of the main results in this paper shows that
under some circumstances the two issues are quasi-independent. For example, to study
throughput versus window size for the sliding window flow control protocol using the go-
back-n error control strategy, we can study the flow control issue using window models of
varying complexity and then combine these results with the term representing the cost of
errors due to go-back-n.

We next develop a framework to evaluate the two retransmission strategies in presence
of windows when packet errors are congestion-dependent. Earlier work on retransmission
strategies, for example [MLS 89, TW 79, Zwa 85|, have assumed the independence of errors.
If the cause of packet errors is random noise in the communications channel, then this is
a reasonable assumption. However, in most networks, such random errors are extremely
infrequent as compared to packet failures due to lack of availability of buffers because of
congestion [Jac 88]. This introduces complications in that the premise of independent
packet failures is no longer valid. In fact, it is more likely for a failure to occur when
one has already occurred than when none has occurred. In our study, we assume an
error function p(a), where «a is some relevant ‘congestion information’. We then compare
the two retransmission strategies for different error functions in the presence of window
flow control. In particular, we show when an increase in window size can cause a sharp
degradation in performance, and how the two retransmission strategies perform in such a
case.

The rest of the paper is organized as follows. Section 2 presents the model we use in
this the paper. In Section 3, we demonstrate the orthogonality property of sliding window
with respect to go-back-n retransmission for exponentially distributed transmission times.
A similar study with deterministic transmission times is deferred to the Appendix. In
Section 4, we present the analysis of the go-back-n protocol with sliding windows and
congestion-dependent failure rates. The same study is conducted for selective repeat in
Section 5. Section 6 compares the two retransmission strategies with numerical examples
and finally, we present the conclusions we draw in Section 7.

2. The Model

Without loss of generality, we assume that the transmission of a packet at the sender
takes time 1/\;, when it has permission to transmit. We consider two different distribu-
tions for A\;: deterministic and exponential. At the lower levels of protocol stack that we

1

are interested in, we expect the coefficient of variation of A; to be in between that of these
two distributions. Our assumption of deterministic and exponential distributions for A,
should then give us optimistic and the pessimistic bounds on performance.

The performance measures of interest are the statistics of the time to transmit a large
multi-packet message consisting of N packets. The sender has a window of size w. This
is the upper limit on the number of packets that it is allowed to transmit without waiting
for an acknowledgment. The sliding window protocol, in conjunction with the go-back-n
and selective-repeat retransmission strategies works as follows. When a packet successfully
reaches a receiver, it is always ACKed if it is ‘in-sequence’. An error is detected at the
sender by either a timer interrupt or by a NACK from the receiver. At this point, if the
sender backs up to the first packet in error and restarts the transmission, the strategy
is referred to as go-back-n [Tan 81]. If, on the other hand, the sender retransmits only
that packet which is in error, the strategy is called selective-repeat. The state machine of
go-back-n is simpler than selective repeat. So, it is of interest to engineers and researchers
to see if one can get away with this simple strategy.

As mentioned in the previous section, we address two kinds of packet errors: (a)
independent errors and (b) dependent errors. The latter are assumed to be caused by
congestion in the communication channel. We assume that if the current ‘congestion
state’ of the system is a, then p(a) is the probability that a packet transmitted now will
fail. In the absence of much knowledge of the background traffic in the network, we encode
only the information pertaining to the current transmission activity in «, much like in
[BPU 88]. Thus, for selective repeat, we assume p(a) = p(j, k), where j is the number
of outstanding ACKs and k is the number of failures that have already taken place but
not yet recovered from. For go-back-n on the other hand, all failures after the first one
and before its detection are irrelevant. We therefore ignore the k-component and assume
p(a) = p(j), where j is the number of packets with outstanding ACKs.

Let wmqez > w, where w is any window size that we consider. Since p(j, k) increases
monotonically with both j and k, we may approximate it with an n-degree polynomial as
follows: The j outstanding ACKs and k undetected failures could take away a maximum
of j + k buffers. In addition, k itself indicates the level of ‘badness’ of the congestion. Thus

we may write . .
. n . 4+ k 1 k 1
P(J,k)=Po+Zai(J) +bi()

i=1

wmaz 'wma:c

where pg is the intrinsic failure rate of the network and the other terms are due to con-
gestion. The higher the degree n, the sharper is the increase in p(j, k) with j and k. The
constants a; and b; are positive and are such that 0 < p(j,k) <1, i.e.

Po “’r‘Z(ai +b;) <1

i=1

3. Independent packet errors

In this section, we assume that packets fail independently of each other. Our goal
is to show that sliding window flow control and go-back-n retransmission are orthogonal

2

issues in the sense that they can be studied independently and the results can be put back
together in a simple way. Previously [MLS 89], we had seen that this result was true when
the window did not close. We extend that result here, for the more realistic case when the
window may close, even with high probability.

First, let us assume that the transmission times are exponentially distributed. Figure
3.1 shows a Generalized Stochastic Petri Net (GSPN) model [MBC 84] of a simple sliding
window flow control protocol ignoring all errors and retransmissions. If the place RdytoSend
has a token, the sender can send a packet provided the place CreditsAvail has a token too.
The mean time to send a packet is 1/);. At that time one token from each of the above
two places are removed; one is added to the place WaitAck where the sender waits for
an acknowledgment. Another is added to the place CreditsUsed which is subsequently
used by the receiver of the data. The transition RecvData can fire when the receiver has
a token in RdytoRecv and a token is available in CreditsUsed. Upon receipt of the data,
the receiver sends an acknowledgment packet which takes a mean time of 1/A4. Note that
there are no errors in this model. For future reference, we shall call this Model I.

In Figure 3.2 we have the GSPN model of the same sliding window protocol but this
time it includes the go-back-n retransmission strategy. In case of an error, all the packets
from the first packet in error are retransmitted. In a real implementation of the protocol,
all packets following the erroneous packet will be discarded at the receiver. In the petri-
net model, we suppress their transmission altogether by providing the inhibit arc from the
failedWait place into the transmit transition. Although a packet could have failed at
different places in transit, we take the total probability of its failing (and its ACK failing)
and lump that probability of failing as p as shown in Figure 3.2. In our numerical examples
later, we assume that both data and ACK packets have the same probability of failure, py,
sothat p=1—(1—po)2. A successful packet follows the same path as in Model L. In case
of a failure, a token is deposited in the place failed Wait. This inhibits further transmission
at the sender. After a timeout interval of 7, the token in restored to the RdytoSend place
and normal transmission can begin. All the packets that would have been transmitted
after the erroneous packet and before its retransmission would be retransmitted anyway
under the go-back-n strategy. This justifies the inhibit arc at the transmit transition. Of
course, in so doing, we are ignoring the loading effects of these packets at the receiver. The
infrequency of these events should make this approximation reasonable.

Analysis of Model 1

To study the effect of window size on throughput and round trip time of packets, we
make N > W in Figure 3.1. This ensures that the sender always has a packet to send,
and its transmission is delayed only if the window closes. Let N be the average number of
tokens in the place WaitAck. Let p = Pr[CreditsAvail is not empty]. Then the throughput
into the box is

A] =)\1[) (31)

Let E{_ be the average time spent by a token in the box. Then by Little’s law, we have
R; = N/Aip, which implies that the expected number of packets initiated by the sender
per round-trip time = R;A;p. The expected time to transmit N packets and receive the

3

ACK for the last one, E[TN noErrors)I, is given by

— N —
)+ Ry =+——+ Ry (3.2)

E[TN,noErrors]I = TZ[(Alp

Rihp

Let p be the probability of failure of a packet or its acknowledgment, and let ¢ = 1 — p.
Then in [MLS 89], it was shown that if the windows never closed then

E[TN,gbn] = E[TN,noError.s]I + Ng'r (33)

where Np/q is the expected number of errors in go-back-n and 7 is the expected cost per
error. This result holds even for generally distributed processing and transmitted times.
Our first goal in this paper is to investigate the validity of this result when the window
does close. We shall show that Equation 3.3 holds approximately even in this case. We
also present conditions under which this relation will be exact. Note that E[TN noErrors|I
is computed from an error free model. The significance of this result is that we can actually
analyze sliding window flow control and go-back-n error control as two simplified separate
models and put the results back together in a simple way.

Analysis of Model I1
In this sub-section, we present the analysis of E[T ¢5s) using the more detailed model
in Figure 3.2. Let
Atrans= effective throughput through transition transmai,
Afeit = throughput through transition faslure,
Ague = throughput through transition success, and
r = Pr| token in failed Wait |.
Then, applying Little’s Law to failed Wait, we get Agqait = /7, since 7 is the expected time
spent in the failed Wait place. Now, noting that A it = pAirans, we have

Asuc = thrans = (Q/p)Afaih

which simplifies to

Asuc == (_;E‘/“‘q")' (34:)

The average cycle time of a token in the successful path is obtained by applying Little’s
Law to the box around the place SuccessWait :

= N(Success Wait)
Rir= N

The expected time to transmit N packets is then given by

E[TN gbnl11 = + Rir (3.5)

AS‘U.C
4

In Tables 3.1 through 3.6, we present the time to transmit 64 packets as calculated
by the two models. We vary the parameters p, 7 and W. We assigned measured values of
A1, Az, A3 and A4 as reported in [Zwa 85]. Thus,

A ~! = time to copy a data packet from the sending host’s memory onto the wire = 2.17
msec

X2~ ! = time to copy an acknowledgment packet from the wire into the sending host’s
memory = 0.17 msec

A37! = time to copy the data packet from the wire into the receiving host’s memory =
1.35 msec and

A7l = time to copy an acknowledgment packet from the receiving host onto the wire =
0.22 msec

The time to complete an N-packet transmission is obtained by first solving the two
GSPN models and then using their outputs as inputs to Equations 3.2, 3.3, 3.4 and 3.5.
It can be readily seen that the time predicted by extrapolating Model I (in accordance
with Equation 3.3) is remarkably close to that obtained by solving Model II (cf. columns
4 and 6 in Tables 3.1 - 3.6). This is in spite of the fact that the probability of the window
closing or the probability of being in the failed Wait state are not insignificant (see columns
2 and 5). We also vary pg from 1072 to 10~°, and 7 from 10 to 1000 to show that this
assumption is valid for a wide range of parameter values.

Let us now consider conditions under which the two models would be equal. Com-
paring Model I and Model II, we see from Equations 3.1, 3.2, 3.3 and 3.5, that the two
models yield (asymptotically) identical results if

1 Tp

X;+—Q_=Asuc

fory

For convenience, let us denote h = 7p/q. Then for the previous condition to hold, we
require that

1 h
m"{"h—;)
or
1
r = -—

1
1 + Alph

(3.6)

Now, if the expected useful time spent per packet is tgo04 and the wasted time is
tped, then from Model I and our orthogonality hypothesis we have 4504 = ﬁ—‘; and fpaq =

7p/q = h. Equation 3.6 says that the expected times derived from the two models will be
equivalent if

r= tgood
1+ thad
i.e. :
Pr(failedWait = 1] = —bad

tgood + thad

This would, by itself, make perfect sense if 40,4 Was somehow obtained from Model IL We
are, however, calculating tgo0q4 = ;‘-11-;; from Model I and r from Model 2. The two models

)

will be close if the probability that the window is open given that we are not in the midst
of handling an error in the second model, is close to p, the probability that the window is
open in the first model. The results from the petri-net analysis suggest that this is so.

If all times are deterministic, we can strengthen these results somewhat. If the window
does not close then the orthogonality property (see Equation 3.3) is exact [MLS 89]. If the
window does close, the error in the orthogonality approximation can be bounded by (see

Appendix B)
E[TN,noErrors] + (Np/q) (T - 1) < E[TN,gbn]
S E[TN,noErrors] + (NP/Q)T (37)

4. go-back-n with sliding-window when errors are non-independent

We now investigate the more interesting case when packet errors are correlated. It
has been argued persuasively by many researchers that packet losses in networks are not
independent of each other. The reason for this is that in today’s networks, the dominant
loss of packets is due to buffer overflow at either the receiver or at some intermediate point.
Characterizing the nature of this dependence remains an open research problem. In this
section, we assume that the probability of a packet loss at any time is proportional to the
congestion in the system. For lack of anything better, we represent ‘congestion’ by the
number of outstanding acknowledgments. We assume no knowledge of other factors like
congestion created by background network traffic, the number of receive buffers or other
hardware characteristics. However, given a particular system configuration and background
traffic, the congestion level should be an increasing function of the number of packets which
are still in the pipeline.

We next derive the expected time to transmit N packets with sliding window using
a Continuous Time Markov Process. The state of the system consists of a pair of tuples
(¢,7) where i is the number of packets that will not require retransmission and j is the
number of these ¢ packets whose acknowledgments are still outstanding. Clearly j < w, if
the window size is w. In addition, we have the states f; corresponding to the states where
an error occurs after ¢ packets have been successfully transmitted (see Figure 4.1).

The sender transmits with a mean rate A, and the acknowledgments return with a
mean rate u. Our hypothesis is that a packet fails with probability p(j) in state (¢,7),
where j represents the level of congestion.

Figure 4.1 shows the state transition diagram of the ensuing Markov Process. The
initial state is (0,0). When a packet is transmitted there can be two possible next states.
If the transmission is going to be successful (ultimately), we designate the next state as
(1,1). Else, the packet will fail and the next state is fo. The rate into (1,1) is Ag(0) and
that into fo is Ap(0). Once a packet fails, we assume that it is detected after a mean time
1/~. Therefore, in Figure 4.1, we denote the rate from fo to (0,0) by 4. The rest of the arcs
in the figure follow a similar argument. Note that for all j, a failure transition from (7,7) is
into f; and the recovery arc from f; is only into (z,0). This is a property of the go-back-n
protocol: all the packets which are transmitted before a failure are represented by :. By
the time the sender detects the failure of packet ¢ + 1 and acts upon it, the outstanding
acknowledgments of all packets up to packet ¢ must have returned to the sender for it to
consider packet ¢ 4 1 as the first failure and the point of beginning a retransmission.

6

Analysis

We next consider the transient analysis of this Markov Process. We set (0,0) as the
initial state and (N,0) as the final state. We are interested in E[Tx], the time to complete an
N-packet transmission. However, E[Tn] is just expected time to absorption into (N,0) for
this Markov Process. To compute the expected time to absorption, we use the algorithm in
[BRT 88]. Let 1 represent the vector of times spent in each of the states before absorption.
Let Q be the transition rate matrix obtained from the original transition rate matrix by
deleting the rows and columns involving the absorbing states. Finally, let P(0) be the
initial probability distribution of the non-absorbing states. Then the mean time spent in
each state before absorption can be computed by solving for n [see BRT 88] in

nQ = —-P(0) (4.1)

The expected time to absorption is then given by
E[Tn] =) mi;
i,J

where 7; ; are the individual components of 7.
The solution of Equation 4.1 for the Markov Process in Figure 4.1 is especially simple.
For the states (0,0) and fy, we have

_ 1 _ p(0)/¢(0)
10=%g0) T Ty

For other states (z,7), we get

M, [M <wicny + Blgs0}] =A(F — Dni-1,j-11(i>0,5>0)

+ i j+11<i j<w)
+ 115 1{i=0} (4.2)
05 = Ap(0)ni01 i<y (4.3)

where

0, otherwise.

{ 1, if C = true;
licy =

Equations 4.2 and 4.3 are like ‘flow equations’, where we equate all the ‘flows’ into state
(i,7) with all the ‘flows’ out of (, 7).

It turns out that for all states (¢,5),j > 0 in level i, we have all the values needed to
compute 7, j, if we index through j from its highest possible value in state : downwards.
Once these values are available, 7; o and 7y, are given in terms of each other and the
other known values. This is a considerable simplification over using a general Gaussian
elimination algorithm to solve Equation 4.1.

In Appendix A, we present a method for determining the variance of the time to
absorption. The expected time to absorption falls out of that analysis as a ‘byproduct’.
This helped us cross-check the numbers we obtained by solving Equation 4.1.

7

The solution to Equations 4.2 and 4.3 corroborates our previous results. For p(j) =
p Vj, we get ny, = —L Vi (the analysis which shows that is a little cumbersome and is not
the main focus of thls paper). And if w > i, i.e. if the window does not close at the itk

level, '
- 1
D M=
i=0 A

So the expected time to transmit N packets is

E[In]=N (:\% + 114.‘?.)
o (Fron(i+2)

which is also a known result [MLS 89]. We can also use the Markov process to corroborate
and somewhat strengthen our previous results for independent packet error for go-back-n
with windows (Section 3). In fact, it can be shown that

E[Tn,gbn] = E[Tn,noErrors] + O(p)
Again, we have omitted the detailed analysis here.

5. Selective Repeat with non-independent errors and sliding-window

In the Selective Repeat Protocol, the sender retransmits only those packets which are
in error. We represent the state of a given transmission by the triplet (¢, j, k) where 7 is
the number of packets which have been successfully ACKed, j is the number of (ultimately
successful) packets whose acknowledgments are outstanding and k is the number of packets
which have been transmitted but will fail and their fzilure is not yet detected by the
sender. We assume that packet losses are more predominant than bit errors. Thus in
state (7,7,k), we assume that the probability of a packet failing depends on j and k
and we denote this probability by p(j, k). Also, let ¢(j,k) = 1 — p(j,k). An N-packet
transmission starts off in state (0,0,0) and ends in state (N,0,0). Assuming the evolution
of this process as a Continuous Time Markov Process, we get the state transition diagram
of Figure 5.1. To model a window of size w, we have the constraint j + k < w for all
states (7,4,k). If a new packet is transmitted from (3,7, k) (allowed only if j + k < w),
the new state could be either (i,j + 1,k) or (¢,4,k + 1) depending on whether or not
this transmission will ultimately be successful. The corresponding rates are Ag(j, k) and
Ap(j, k) respectively. If an acknowledgment comes back (with rate pqcx) in state (z,J, k),
the new state is (¢ + 1,5 — 1,k). If a failure is detected and the packet is successfully
transmitted, the new state is (i,j + 1,k — 1). We assume that the mean rate at which a
packet error is detected in state (z,j, k) is given by pret(k). This completes all the states
to which a transition may occur from state (3, 7, k). The states from which one may enter
state (4, j, k) are shown in Figure 5.1 as a mirror image of the exit arcs. In the subsequent
discussion, we drop the subscript ack from pack.

8

One interesting property of the Markov process in Figure 5.1 is that no state may
be visited more than once. To prove this formally, let us consider each of the possible
exit states out of (7,7,k) separately. (z + 1,5 — 1,k) represents a state in which ¢ + 1
acknowledgments have already returned. We cannot ever get back from here to a state
where there are only ¢ successful acknowledgments. (z,7 + 1, k) and (¢, j, k + 1) represent a
new transmission from state (¢, j, k). A reduction from j+1 to j in (4,7 +1, k) will increase
i. A reduction in k + 1 in (3,7, k + 1) will increase j to j + 1 which will in turn increase
i. Finally in case of a transition to (¢,j + 1,k — 1), a new failure will increase k — 1 to
k giving (i,7 4+ 1,k), but then we have seen that (7,5 + 1,k) can never return to (¢, , k).
This finally proves that state (7,7, k) can be visited at most once, i.e. the Markov process
of Figure 5.1 is a directed graph with no cycles. This will help simplify the computation
of the mean time to absorption, as we shall see shortly.

The rate of recovery from an error, f..:(k), satisfies the relation pret(1) < prres(k) <
kitret(1). The analogy here is to a ‘First Come First Serve’ scheduling of recoveries (the
first inequality) and an ‘Infinite Server’ scheduling (the second inequality). To find the
expected time to transmit N packets, we solve for 7 in the equation [BRT 88]:

where 7 is the vector of expected times in each of the non-absorbing states, Q is the gen-
erator matrix obtained by deleting the absorbing states and P(0) is the initial probability
distribution of the non-absorbing states. The expected time to absorption then is

E[TN] =) _ Gk
i,k
Let us now proceed with the solution of Equation 5.1 for the Markov process of Figure
5.1. The equation for state (i, 7, k) is given by:

06,50 (M G k<w) + BLG>0) + pret(R)a(F,)1 (k>0}]
+ 1, -1,6) A — 1,k)15>0}
+ M(i-1,j+1,k) K1 {i>0)
+ 77(i,j-1,k+1)#ret(k + 1)Q(j -Lk+ 1)1{j>0} (5-2)
“N0,0,0) = 1/A
{1, if C = true;
Ly =

0, otherwise.

where

Equation 5.2 is like a ‘flow equation’, where we equate all the ‘lows’ into state (z, j, k)
with all the ‘flows’ out of (3,], k). Since each state is visited at most once, there are no
cycles. Therefore if we begin with the ‘root’ of the directed graph and work outward, all
the n’s on the right hand side of Equation 5.2 will be available when required. The solution
to Equation 5.1 can thus be obtained in a single pass.

In the Appendix, we present a method for determining the variance of the time to
absorption. The fact that the state transition diagram is a directed graph with no cycles
helps reduce the complexity of that solution too, significantly.

9

6. Numerical Results

In this section, we compare the relative performance of the go-back-n and the selective
repeat protocols when errors are dependent on congestion. The performance measure of
interest is the expected time to transmit N packets. We also investigate the standard
deviation of this measure to see how much confidence we can have on the expected value.
If we set p(a) to be degree zero (cf. Section 2) we have p(a) = po, which is independent
of the congestion level and is hence the intrinsic packet error rate. In most networks,
po ~ 107%. In this case, we do not expect the relative performance of go-back-n and
selective repeat to be very different [MLS 89].

To get the performance figures, we need the values of A, p, v and piret(k). Let A, the
transmission rate of packets, be the same as that in the petri-net of Figure 3.1. Since p
will, in general, depend on w, we have approximated it by the inverse of the average round-
trip delay of packets in Figure 3.1. This is only an approximation, because the round-trip
delay we obtained from Figure 3.1 was a steady state value, whereas now we are dealing
with the transient case. However, it should give a relative performance estimate for the
two retransmission strategies, as the window size changes. Also, we set ¥ = pre:(1), and
piret(k) = kpre(1). This latter approximation may favor Selective repeat somewhat. In
our experiments, we set v = A/100.

The interesting case with respect to errors is when they depend on the congestion
level of the system. Therefore, we next consider p(a) to be of degree one, i.e., we let

p(]’ k) = Po + a; (j’“l"k/wmaz)‘*“blk/wmax (61)

Here a; represents the effect of depletion of resources as the number of outstanding packets
and their acknowledgments increase. A higher value of a; will correspond to a lower
availability of buffers due to congestion. by, on the other hand, represents the decrease in
service quality given that an error has occurred. Clearly, we expect b; to be much higher
than a;. This is because once an error has occurred, we are more likely to be in an acute
shortage of buffers, than otherwise.

Table 6.1 tabulates the expected time to transmit N=64 packets with go-back-n and
selective repeat when a; = 10™* and b; takes values from 0 to 0.8. The effect of b; is seen
to be negligible in this case, even for high values of b;. This is because a; is so low that it
is unlikely that the j + k packets will have much effect on p(j, k) when k£ = 0. Since p(j,0)
remains low (see Equation 6.1), the likelihood of hitting a state with k£ > 0 is very low,
and so the effect of b is negligible for this case.

Increasing a; does inflate the expected time, as we can see from Table 6.2, where
we have put a; = 107!. The effect is more pronounced for larger window sizes as one
would expect: the larger the window size, the larger the potential for congestion, and
larger the potential for error. What is interesting, and not necessarily obvious, is the
sharp degradation in performance as seen in Table 6.2. This is the network equivalent of
thrashing. From Table 6.1, we note that the expected time decreases at first with respect
to window size but then starts increasing again, implying that there is an optimum point
for the window size. In Table 6.2, that optimum is for w = 1. Thus the optimum point of
operating the window will change for different values of a;. We are far from being the first

10

to discover the potential for congestion as window size increases: Jacobson, Ramakrishnan
and Jain, [Jac88, RJ88], have proposed dynamic window algorithms for the same purpose.
Our contribution, however, is to quantify the effect of window size on the congestion level,
and to corroborate the fact that larger windows do have a detrimental effect on performance
when the network is congested (i.e., a1 is high).

In Tables 6.3 and 6.4, we tabulate the standard deviation of the time to transmit N=64
packets for the same two values of a; as before. Notice that the standard deviation also
gets worse with higher a;, and this effect is again more pronounced for larger windows. A
comparison of go-back-n and selective repeat shows that go-back-n performs roughly equal
to selective repeat when b; = 0.5. One would normally expect selective repeat to perform
better if b; is low, because that implies that an error does not significantly affect the
‘state’ of congestion. If, however, b; is high, transmitting more packets when an error has
occurred can only worsen the congestion in the network. Clearly, we can expect go-back-n
to perform better under this circumstance.

We should emphasize however, that the jury is still out because we do not yet know
the exact nature of the error function.

7. Conclusions and Future Work

In this paper, we presented the analysis of the go-back-n and selective repeat re-
transmission strategies in conjunction with sliding-window flow control. The analysis was
carried out to specifically account for packet errors which may not be independent of each
other.

We discovered that when packet errors are independent, go-back-n retransmission
strategy and the sliding-window flow control strategy can be treated as orthogonal issues
in that the total expected time to transmit an N-packet message is approximately equal
to the sum of the two separate results obtained by modeling each of them independently
of the other.

We also developed a framework to evaluste the two retransmission strategies in pres-
ence of windows when errors were correlated in that back-to-back errors were more likely.
The performance measures we considered were the expected time to complete an N-packet,
transfer and its standard deviation. We modeled the congestion dependent errors with a
function p(a). The choice of retransmission strategy will depend on this function. We tried
some alternative functions for p(a) to show how the two protocols compared. In particu-
lar, we saw that, irrespective of retransmission strategy, the expected time as well as the
standard deviation of the time to transmit N packets increased sharply if the window size
were large in the face of heavy congestion. This was the network equivalent of thrashing.
We also showed the relative merits of the two retransmission strategies in this case. If the
congestion level was low, (cf. a; small in Section 6), the two retransmission strategies per-
formed similarly. Under heavy congestion, it all depended on the value of the probability
of back-to-back errors, which we accounted for by the parameter b;. If back-to-back error
probability was high, (i.e. b; large), go-back-n performed better than selective repeat. For
lower values of b;, however, selective repeat was found to be better. And in both cases,
the degradation due to large windows was much more pronounced, suggesting that flow
control, and not retransmission strategy, is really the important issue under congestion.

11

We have however, not addressed other possible error characteristics, like for instance,
systematic errors. Consider for example a faster sender overflowing a slower receiver’s
buffers in a ‘systematic way’, like making it drop every i** packet. Selective repeat will
certainly perform better in this case. However, if this is a regular occurrence, one should
probably look more closely at the flow control algorithm than the error control one.

Determining the congestion function p(«) is at the moment an open problem. It will
probably depend on details of the system architecture like the number of buffers at each
point in transit, the timing characteristics of incoming and outgoing links, the background
traffic, etc.

The performance of flow control strategies also needs to be investigated. We are
currently investigating the performance of dynamic window flow control strategies and
hope to report the results soon.

Acknowledgments

Mary Vernon made her Petri Net tools available to us, we are very grateful to her
for that. We also wish to thank Vikram Adve, George Bier and Scott Leutenegger for
numerous helpful discussions.

References.

[MBC 84]: Marsan, A., M.G. Balbo, and G. Conte, “A Class of Generalized Stochastic
Petri Nets,” ACM Trans. on Computer Systems, vol 2, May 1984, pp 93-122.

[BPU 88]: Bolot, J.C., B.D. Plateau and A. Udaya Shankar, “Performance analysis of
transport protocols over congestive channels,” Tech Report UMIACS-TR-88-22.1
CS-TR-2004.1, Department of Computer Science, University of Maryland, Revised
August 1988.

[BRT 88]: Blake, J.T., A.L. Reibman and K.S. Trivedi, “Sensitivity Analysis of Reliability
and Performab1hty Measures for Multiprocessor Systems,” Proceedzngs of the ACM
Sigmetrics 1988, pp 177-186.

[Jac 88]: Jacobson, V., “Congestion Avoidance and Control,” Proceedings of the ACM
Sigcomm 1988, pp 314-329.

[Mor 88]: Morgan, S., “Window Flow Control on a Trunked Byte-Stream Virtual Circuit,”
IEEE Trans. Comm., July 1988.

[MLS 89]: Mukherjee, A., L.H. Landweber and J.C. Strikwerda, “Evaluation of Retrans-
mission Strategies in a Local Area Network Environment,” Proceedings of the ACM
Sigmetrics 1989/Performance 1989, pp 98-107.

[RJ 88]: Ramakrishnan, K.K., and R. Jain, “A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks with a Connectionless Network Layer,” Proceedings
of the ACM Sigcomm 1988, pp 303-313.

[Tan 81]: Tanenbaum, A.S., Computer Networks, Prentice-Hall Inc., Englewood Cliffs,
NJ 07632, 1981.

12

[TW 79]: Towsley, D. and J.K. Wolf, “On the Statistical Analysis of Queue Lengths
and Waiting Times for Statistical Multiplexors with ARQ Retransmission Schemes,”
IEEE Trans. Commun, vol COM-27 April 1979, pp 693-702.

[Tri 82): Trivedi, K.S., Probability and Statistics with Reliability, Queuing, and Computer
Science Applications, Prentice-Hall Inc., Englewood Cliffs, NJ 07632, 1982.

[Zwa 85]: Zwaenepoel, W., “Protocols for Large Data Transfers on Local N etworks, Pro-
ceedings of the ACM Sigcomm 1985, pp 22-32.

Appendix A

We are interested in the variance of the time to absorption for a Continuous Time
Markov Process, which starts off in a designated state <. Let

R; = the time to absorption given we are in state ¢

t; = sojourn time in state 2

H;(s) = Laplace transform of ¢;

Fi(s) = Laplace transform of R;

B = set of non-absorbing states

pij = Probability of going from state i to j in one step in the corresponding discrete
chain.

Then, by the Markov property

Fi(s) = Hi(s) [> Piij(S)] (A.1)
j€B—i

Taking the natural logarithm of both sides, we have

In Fi(s) = In(Hi(s)) + In [> piij(s)} (A.2)

jEB—i
Differentiating equation A.2 and setting s = 0, we get,

E[Ri| = Et:]+ Y pi;E[R]] (A.3)
JEB—i

Differentiating equation A.2 a second time, setting s = 0, we get, after some algebra:

Var(Ri) = Var(T) + Y pijVar(y) (A.4)
jEB—1
+ > pii(ER))® - (B[R] - E[t:))"
jEB~—{

which is the desired solution for the variance.

We also note that if 9 is the initial state, then E[R;,] gives the expected time to
absorption for the Markov process of interest. This can be readily generalized if the initial
distribution of the initial states are available.

13

Appendix B
Window flow control and go-back-n when all times are deterministic

We show in this appendix that for deterministic transmission times and delays, sliding
window flow control and go-back-n retransmission strategies are quasi-independent. In
particular, we bound the possible error resulting from the use of an error free component
and an error-related-component.

Figure B.1 shows the timing diagram of a typical sequence of packet transmissions
when there are no errors. All times shown have been normalized to a packet transmission
time or a slot. We assume in the subsequent analysis that all times are integral multiples
of a slot. Here N, the total number of packets is 12, the window, w = 5, and roundtrip
time, r is equal to the timeout, 7 = 6. The total time to transmit the 12 packets is 20 slots.
When the roundtrip time, r < w, the window will never close. Its performance, studied
in [MLS 89], was shown to obey the orthogonality property (Equation 3.3 of the Section
3). Here, we consider the case r > w, i.e., the window does close. The time to transmit N
packets when there are no errors is now given by (see Figure B.1)

[N/w]|r + N mod w,
TnoE’rrors(N,w, 7') = if N mOd w ?é 0, (B.l)
(N/w)r + w, otherwise.

Figure B.2 shows the timing diagram of the same transmission when packet 2 fails the
first time it is transmitted. The retransmission strategy is go-back-n. Note that it takes
26 slots which is exactly TyoErrors + 7. This is in general true, except in special cases. For
example, if packet 3 were to fail instead, the timing diagram is as shown in Figure B.3.
Now the total time taken is 25 slots instead of 26! Wherein lies this anomaly?

The reason for this difference is the dichotomy in Equation B.1. When Packet 3 fails,
there are 10 more packets that need to be transmitted, and 10 mod w is zero (the window
size, w = 5). However, when Packet 2 fails, there are 11 packets remaining at the beginning
of the retransmission and 11 mod 5 is not zero. In general, if the remaining number of
packets are not exactly divisible by w, a cost of 7 is incurred as one would expect. However,
if a packet failure causes the remaining number of packets to be exactly divisible by w,
the additional cost of the failure is 7 — 1 instead of 7. Thus for any sequence of k errors,
Tgpn(N,w,r, 7, k), the total time to transmit the N packets is bounded by

TnoErrors(-N, w, 7') + k(T — 1) < Tgbn(Ny w,r,T, k)
< TnoErrors(N, w, 7‘) + kT (BQ)
Clearly, both limits can be reached. In [MLS 89], it was shown that errors in the go-back-n

protocol obeyed the negative binomial distribution:

Prlk errors|N packets] = (N +: B 1>pqu (B.3)

The expectation of this distribution is Np/q. Using this and Equations B.2 and B.3, we

have
E[TnoErrors(N,war)] + (NP/Q)(T - 1) <
E[Tgbn(N'; w,r, T)] S E[TnoErrors(N7 w, 7')] -+ (NP/Q)T

14

This bounds the error in the orthogonality hypothesis. For Np < 1 and 7 > 1, we see
that it is a reasonably safe approximation.

15

RdytoSend

0 CreditsAvail

RecvData(A,)
Transmit (A;)
CreditsUsed
Rl i RdytoRecv
(O
WaitAck E | DataRecvd . °
l
A
——4 GenAck (Ay)
RecvAck (A,)

AckAvail
Fig 3.1: Simple sliding window flow control: Model I

RdytoSend CreditsAvail

RecvData (A3)

DataRecde

L GenAck (A4
failedWait

AckAvail

RecvAck (A,)

Fig 3.2: Sliding window flow control with go-back-n
retransmission: Model 11

Model 1 Model 1T
W P [W=0), E(Tyls E[Ty] ,+—£-1A; P [failedWait=0) E[Tyly
1 0.4450 2519 2649 0.951 267.7
2 0.2337 183.5 196.5 0933 1936
Z 0.0863 155.3 163.3 0922 170.1
8 0.0172 1459 158.9 0917 160.9
16 0.0009 1442 1572 0916 159.5
Table 3.1: N=64, p,=10"2,1=10
Model I Model I
N, . , o
w PW=0]; E(Ty} E[TN],+—01’—1 P [failedWait=0] E[Tyly
1 0.4450 2519 381.9 0.6607 384.7
2 0.2337 1835 3135 0.5851 315.5
4 0.0363 1553 285.3 0.5420 287.0
8 0.0172 145.9 2758 0.5249 2718
16 0.0009 1442 2742 0.5217 2764

Table 3.2: N=64, p=102, 1=100

Model T Model IT

W P [W=0y, E[Ty); E[Ty] ﬁivf-‘c P [failedWait=0] E[Tyly
1 04450 7519 15514 0.163 15542
3 02337 1835 1483.0 0.123 14850
3 0.0863 1553 14548 0.105 14565
8 0.0172 1450 14453 0.099 14473
16 0.0009 144 14437 0.008 14459

Table 3.3: N=64, p=10"2, 1=1000

Model T Model 1T

W P [W=0], E[Ty); E [TN]ri-l—qut P [failedWait=0] E[Tyly
1 0.4450 251.9 380.1 0.661 380.3
2 0.2337 183.5 3117 0.585 311.8
3 0.0863 1553 283.5 0.542 283.6
8 0.0172 145.9 274.1 0.524 274.2
6 0.0009 1442 2724 0.520 272.6

Table 3.4: N=64, p,=107%, 1=1000

Model I Model I1
W P [W=0], E[Ty); E[Ty] ,+ﬁqﬁ‘t P [failedWait=0] E[Tyly
1 0.4450 2519 264.7 0.951 264.7
2 0.2337 183.5 196.3 0.934 196.3
4 0.0863 155.3 168.1 0.922 168.1
8 0.0172 145.9 158.7 0.916 158.7
6 0.0009 144.2 157.0 0915 157.0

Table 3.5: N=64, po=10~*, 1=1000

Model 1 Model 11
W P [W=0], E[Ty), E [TN],+-’1;9-1 P [failedWait=0) E[Tvly
1 04450 7519 2532 0.994 7532
2 02337 183.5 1848 0.992 184.8
3 0.0863 1553 156.6 0991 156.6
8 00172 1459 147.1 0.991 147.1
16 0.0009 1442 1455 0.990 145.5

Table 3.6: N=64, po=10"%, 1=1000

Fig 4.1: go-back-n with non-independent errors and windows

i,j+1, k-1

Hree(k)p (oK)

J >0 un((k+l)q(i—1tk+l)
Jj>0
Ap (j.k-1) Ap (. k)
q i, j, k+1
k=1 :
Wre(k)q (k)

Fig 5.1: Selective Repeat state transition diagram

w E [TN,gbn] E [TN,.sr] E [TN,:r] E {TN,.ST] E [TN,.vr]
b=0.0 b,=0.1 b=0.5 b,=0.8
1 200.8 200.8 200.8 200.8 200.8
2 191.5 1914 1914 191.5 191.5
4 187.1 186.9 187.0 187.0 187.1
8 293.5 293.2 293.3 293.4 293.5
16 3419 341.5 341.6 341.8 342.0
Table 6.1: Expected time to transmit N=64 packets. @, =107, w 3, =20.
A E [TN,gbn] E [TN..\'r] E [TN..tr] E [TN,.!T] E [TN,sr]
b=0.0 b;=0.1 b,=0.5 b,=0.8
1 200.8 200.8 200.8 200.8 200.8
2 2224 2135 2153 223.0 2293
4 293.2 2579 264.1 295.2 326.1
8 591.7 4579 4714 5443 629.4
16 722.7 589.3 608.6 716.2 878.6
Table 6.2: Expected time to transmit N=64 packets. a;=10"", w,,=20.
w cr[TN,glml c,[TN,.s'r] G[TN,S)‘] G[TN,ST] G[TN,JT]
b,=0.0 b,=0.1 b,=0.5 b,=0.8
1 20.5 20.5 20.5 20.6 20.7
2 20.0 19.3 19.5 203 21.0
4 21.1 20.1 20.3 216 23.2
8 384 372 374 38.5 40.1
16 45.5 439 44.1 454 474
Table 6.3: Standard deviation of the time to transmit N=64 packets. a1=107%, Wpa=20.
W 0-[TN.gbn] 0-[TN,.s'r] G[TN,sr] G[TN,sr] G(TN,Sr]
b,=0.0 b,=0.1 b,=0.5 b,=08
1 20.5 20.5 20.6 20.6 20.7
2 116.4 97.3 103.0 127.1 147.1
4 2124 166.7 176.2 224.0 2719
8 342.1 231.6 241.5 294.2 359.6
16 380.1 2594 267.8 3146 417.8

Table 6.4: Standard deviation of the time to transmit N=64 packets. a;=107", wn.,=20.

1 2 3 5 6 7 8 910 11 12
TR
| =

— — T

o —

W

Py

[4

o E—

~ ey

I

O —p A P
—

= ——

p—
o
—
oy

——— P
time
Fig B.1. Timing diagram of sliding window protocol with deterministic transmissicn times when there are no er-

rors. The window size, w = 5, the roundtrip time, r = 6 and per packet transmission time is 1. Solid arrows are data,
dashed arrows are ACKs. The total time to transmit N = 12 packets and receive all acknowledgments is 20.

2 retransmitted
I
6 /
//
7T g paawn
1 s Yy R
3 { ; | 20i !
trrrtr ottt Tt !
1 23 4 5 6 2 3 45 6 7 8 9 10 11 12
X
L _ _1=6 |

[—

time

Fig B.2. The timing diagram of the same transmission when Packet 2 fails. The time to detect the error 7=6. Note
that the total time to transmit 12 packets successfully now is 26 = 20 + 7.

3 retransmitted

= ///
//
R y 4567 somun
1 3 ‘:":’[1,0 H‘:'iiiiz!oiii;%i
[] 1 | | t
(0 O O A O O
1 23 4 5 6 7 3 45 6 17 8§ 9 10 11 12
=
o _ _1=6__ _ _|

e ——

time

Fig B.3. The timing diagram of the above transmission when Packet 3 fails. The time to detect the error is the same
as in Figure 4.2. Unlike Figure 4.2, the total time to transmit the 12 packets is now 25 and not 26. This is because
the remaining number of packets at the begining of the retransmission of Packet 3 is 10, and 10 mod w = 0. This
causes one slot to be ‘gained’ from 26.

