On Transaction Boundaries in Active Databases:
A Performance Perspective

by
Michael J. Carey
Rajiv Jauhari
Miron Livny

Computer Sciences Technical Report #796
November 1988

On Transaction Boundaries in Active Databases:

A Performance Perspective

Michael J. Carey
Rajiv Jauhari
Miron Livny

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

ABSTRACT

The workload of an active DBMS consists of two types of activities: externally
generated tasks submitted by users, and rule management tasks caused by the trigger-
ing of rules stored in the knowledge component of the system. Most design proposals
for active DBMSs assume that an external task should be combined with all the result-
ing rule management tasks into a single transaction. There is no compelling reason for
this assumption, however; the semantics of rules can be used to divide the workload
into transactions in a number of different ways. In this paper, we describe a perfor-
mance model of an active database, and present the results of simulation experiments
that study system performance as a function of transaction boundary semantics for
varying levels of data contention, rule complexity, and data sharing between externally
submitted tasks and rule management tasks. Our results demonstrate that the way in
which transaction boundaries are imposed can have a major impact on the performance
of an active DBMS, and that this aspect of rule semantics must therefore be carefully
considered at the time that rules are specified.

This work was performed under subcontract to Xerox Advanced Information Technology, which was supported by the Defense
Advanced Research Projects Agency and by the Rome Air Development Center under Contract No. F30602-87-C-0029. Additional
support was provided by the National Science Foundation under grant IRI-8657323 and by the Digital Equipment Corporation through
its Initiatives for Excellence program. The views and conclusions contained in this report are those of the authors and do not neces-
sarily represent the official policies of the Defense Advanced Research Projects Agency, the Rome Air Development Center, or the
U.S. Govemment.

1. INTRODUCTION

It is generally recognized that in order to meet the growing demands placed on information process-
ing systems, rules and facts need to be integrated into a "knowledge base management" framework. A
computer-controlled factory, for example, can be expected to take advantage of knowledge base manage-
ment in a number of areas. The inventory of the factory will be controlled automatically by rules that
trigger "ordering" actions when the facts of the system indicate a low "quantity-on-hand" of some part.
The beginning of each step of the manufacturing process will be triggered by a rule that recognizes the end
of the preceding step. Facts regarding the structural properties of the products will be measured and
recorded as the products pass through the manufacturing line, and defective items will be identified with
the help of rules that trigger actions to discard such items. The "technical secrets” of the manufacturing
process may be kept in a secure file to which access is restricted via rules, with the additional safeguard

that the names of all those who access the file are automatically logged.

Rules and facts can be integrated in a number of ways. One way to structure a knowledge base
management system is to couple a rule manager and a DBMS loosely via a polling mechanism. The rule
manager, which appears as just another user to the DBMS, periodically runs queries to monitor the facts
stored in the DBMS. Depending on its rules, update transactions may also submitted by the rule manager.
It has been argued in [Ston88], however, that such a loosely-coupled system is likely to perform poorly (or
even incorrectly) unless the application has specific characteristics — for example, that the rules need to
access only a small part of the data, and that the data remains unchanged while it is being processed by the
rules. Most large-scale applications of knowledge-based data management (for example, factory control,
air traffic control, and stock trading) seem not to have these characteristics, and thus require a tighter cou-
pling between the rules and the facts. Such applications have motivated the development of a number of
active DBMSs (e.g., [Ston86c, Sell88, Kotz88, Rasc88, Daya88c]), in which rules and facts are tightly-
coupled. In these systems, data and rules are both managed by the DBMS using an integrated language and

data model.

The workload of an active DBMSs is a mix of External Tasks (ETs) and Rule Management Tasks
(RMTs). ETs are queries and updates that arrive at the active DBMS from a user or an application pro-

gram, whereas tasks that result from the presence of rules (both condition-checking tasks and responses to

-1-

satisfied conditions) constitute the RMTs of the active DBMS. The manner in which these tasks are com-
bined to form transactions may have an impact on the performance of the active DBMS. In most of the
proposals for active DBMSs that have appeared in the literature (e.g., [Ston86c, Rasc88]), the user has little
flexibility in determining transaction boundaries. For example, a rule in POSTGRES [Ston86c] might state
that the values of two data items d, and d, are required to be equal. In this case, an update to 4, will cause
d, to be automatically updated as well; the automatic d, update will take place either when d; is updated
("eager evaluation") or else when d, is subsequently accessed ("lazy evaluation™). Thus, in POSTGRES,
the RMT will be coupled either to the updating ET or to the accessing ET, depending on the evaluation
scheme used. As will be demonstrated by an upcoming example, the semantics of a rule do not always

require such strict coupling of the external task and the internally generated tasks.

In this paper, we explore the performance implications of exploiting rule semantics to determine
transaction boundaries in an active DBMS. In particular, we study the impact of rule semantics on the per-
formance of the system as the following characteristics of the workload are varied: the level of data con-
tention, the complexity of the ETs and the RMTs, and the degree of data sharing between an ET and the
RMTs caused by it. The execution and knowledge models developed as part the High-Performance Active
(HiPAC) Database project [Daya88a] were used to guide the design of our model of an active DBMS. The
goal of the HiPAC project, which is currently under way at Xerox Advanced Information Technology and
the University of Wisconsin-Madison, is to design an active, time-constrained, and object-oriented data-
base system. The execution model of HiPAC provides a number of different coupling modes that allow the
user to specify the way in which ETs and RMTs should be combined into transactions. The coupling mode

is considered part of a rule, and specified at the time the rule is created.

The remainder of the paper is organized in the following manner. Section 2 surveys related work in
the area of active database systems, including a brief overview of the HiPAC project. We discuss our
model of transaction processing in an active DBMS in Section 3. Our probabilistic model of an active
DBMS is described in Section 4. In Section 5, our experiments and their results are discussed. Section 6
contains our conclusions and a brief discussion of our continuing work in related areas. Finally, a detailed
example showing how ETs and RMTs can be combined to form transactions based on rule semantics is

presented in the Appendix.

2. RELATED WORK

Little work has been done in the area of evaluating the performance of knowledge-based data
management systems. However, the need for integrating rules and facts in a DBMS context has been
recognized for a long time, as the lack of a rule facility can place a significant burden on the DBMS appli-
cation programmer. For example, in order to support general integrity constraints the absence of such a
facility, every transaction that updates the database for a given application must be augmented with code to
check the constraints and to take an appropriate action if a constraint is violated. Thus, the condition
checking activity and the action become integral parts of users’ transactions. In recent years, various
approaches have been suggested for adding active capabilities to database systems in order to integrate
rules and facts and thus simplify the application programming task. We briefly review some of the major

approaches in the rest of this section.

The addition of active capabilities to database systems was first considered in order to support
specific DBMS functions such as view maintenance and integrity constraint enforcement. It was proposed
in [Eswa75, Eswa76] that "triggers” be added System R in order to enforce integrity constraints or "asser-
tions." Triggering mechanisms of different types have also been suggested to support the maintenance of
materialized views, snapshots, and derived attribute values [Bune79, Koen81, Rous82, Morg83, Blak86,
Huds86, Lind86, Hans87]. More recently, it has been proposed that generalized active data management
capabilities be added to database systems in order to provide a unified mechanism to support a variety of
applications, such as those requiring rule-based inferencing [Ston86a, Kotz88, Rasc88, Sell88, Tzvi88].
The POSTGRES project [Ston86b, Ston86¢] proposes a general mechanism to support alerters, triggers and

rules (among other features) while making as few changes to the relational model as possible.

The HiPAC project combines active, object-oriented databases with time constraints [Daya88a,
Daya88b]. In the HiPAC knowledge model [Daya88c], rules are treated as an object class, like all other
forms of data. Each rule in HiPAC is structured according the event-condition-action (ECA) paradigm.
The event associated with a rule is the cause of the rule being activated, such as an update to the "quantity-
on-hand" object set in the factory control example discussed earlier. The condition is a set of queries
which must be evaluated in order to check whether a pre-specified set of predicates has been satisfied. If

cars were assembled in the factory in our example, a condition could be a query representing the question

-3-

"is the number of radios in stock low enough that we need to order more?" Finally, the action represents
the operations to be executed if the condition is met; for example, an order for a thousand radios could be
sent automatically to a radio supplier. ECA rules can be used as a convenient mechanism to implement
such active functions as alerters, rule-based inference, and constraint management. As mentioned earlier,
the way that the event, condition and action of a rule are to be combined into transactions is specified as
part of the definition of a rule in HiPAC. Also, each HiPAC rule can have an associated time constraint
(e.g., a deadline) that captures the importance of completing an action within a specified time after its caus-
ing event. Finally, a rule may specify a contingency plan in case its time constraint cannot be met; this is a

set of simpler alternative actions to be executed instead of the original condition and action.

HiPAC’s transaction execution model, described in [Hsu88], is based on a nested transaction model.
An external query or update, which may cause one or more events, always forms the root of a transaction
tree. Queries and updates representing the corresponding conditions and actions may either be nested sub-
transactions (i.e., descendant nodes in the same tree) or they may form parts of other transaction trees. Dif-
ferent methods are proposed for mapping events, conditions, and actions onto transactions and subtransac-
tions. A subset of these methods is included in the execution model used in this paper, as described in the

next Section.

3. ATRANSACTION MODEL FOR ACTIVE DATABASES

As discussed earlier, an active database system contains a set of rules in addition to the data or facts
found in all database systems. These rules can create Rule Management Tasks (RMTs) in response to
External Tasks (ETs) that represent external stimuli. The semantics of the rules determine the way in
which RMTSs are combined with ETs to form transactions. In this section, we describe our model of tran-
saction execution in an active DBMS. We begin by introducing the notion of a job as a unit of database
activity. We then address the issue of coupling the various tasks of a job into one or more transactions,

after which we discuss transaction restart semantics in active databases.

3.1. JOBS VS. TRANSACTIONS

A job is defined as the sum total of all the database activity generated by an incoming External Task.

Of course, the minimum amount of work represented by a job consists of the initial External Task itself. In

terms of the ECA paradigm, External Tasks can cause Events. However, an Event in the ECA model is
defined as part of a rule; there may be user queries and updates whose activity does not correspond to the
Event of any rule defined in the system. When an External Task causes an Event, the job will also include
a Checker task. Checkers are system-generated queries that check whether the conditions of a rule are
satisfied. The Checker will generate an Action task to perform the operation dictated by the rule if the con-
ditions are met. Since an Action may query or update the database, it may cause Events that in turn lead to

further Actions.

A single External Task could cause an arbitrarily long chain of tasks, all of which would be part of
the same job. The relationship between jobs and transactions is that, while a job may consist of one or
more transactions, a transaction can be part of at most one job. The simplest mapping of jobs onto transac-
tions is one-to-one, with one transaction per job. All the tasks of a job would then be part of the same
atomic unit of database activity. If there are significant fixed costs associated with transaction startup and
transaction commit, limiting the number of transactions in this manner could lead to improved perfor-
mance. However, as mentioned in Section 1, it is not always necessary (or desirable) for all the activity

which comprises a job to be coupled together in the form of a single transaction.

3.2. COUPLING TASKS TO FORM TRANSACTIONS

The way in which the RMTs of a job are coupled with the ET and with each other into transactions
depends on the semantics of the triggered rule. The imposition of a transaction structure on a job suggests
the need for a nested transaction model, such as the model proposed in [Hsu88). In this model, there are
two types of choices to be made when scheduling an RMT. The first choice involves transaction boun-
daries: whether the semantics of the rule require the RMT to be part of the same transaction as the task
which generated it, or instead allow it to be executed in a separate transaction. The second choice, also
based on the rule’s semantics, determines the time at which the RMT should begin execution: for example,
should a Checker begin execution as soon as the triggering event takes place, or should it begin execution
only when the transaction containing the causing task completes? In the work presented here, we study
the performance implications of the transaction boundary decision. Our execution model thus can be
viewed as a subset of the model described in [Hsu88]. In particular, in our model, any internally generated

activity caused by task T of a job J is started only after the causing task is "completed”. A task T is said to

.5.

have completed at the time when, had T been a transaction by itself, it would have been in a position to

commit.

With this assumption in mind, our model currently supports four different ways in which the tasks of

a job can be coupled to form transactions:

(1) Strict Coupling (S-Coupling): The ET of the job and the RMTs of each rule activated are coupled

together in a single transactionﬁ in effect, all the tasks of a job are part of a single transaction.

(2) External Task-Checker Coupling (EC-Coupling): The External Task of the job is coupled with the
Checkers generated by it into a single transaction, but each Action generated by a Checker begins a
new transaction; recursively generated Checkers are coupled with the corresponding causing
Action.

(3) Checker-Action Coupling (CA-Coupling): The External Task of the job is a stand-alone transac-
tion, but every Checker is coupled with the corresponding Action into a single transaction. Each

Checker begins a new transaction.
(4) No Coupling (N-Coupling): Each task of the job exists as a stand-alone transaction.

The following example illustrates the differences between these four coupling modes. Job J begins
when External Task E arrives at the system. E triggers a rule, R ;, which results in Checker C, being exe-
cuted. The condition checked by C, is found to be satisfied, and an Action A | results. In turn, A, activates
rule R, and causes another Checker, C, to be run. C, leads to yet another Action, A,. Finally, A, does
not trigger any further rules, so job J consists of a total of five tasks: one ET and four RMTs. Table 1
shows how the four coupling modes would combine the tasks of job J into transactions; to keep the exam-
ple simple, we have assumed that R and R, have the same transaction coupling semantics. If S-coupling
were employed, Job J would consist of exactly one transaction. If either EC-coupling or CA-coupling
were used, there would be three transactions, although the transaction boundaries would differ as shown in
Table 1. If N-coupling were used, each of job J’s tasks would be its own transaction. In the Appendix we
present an example that illustrates the use of these coupling modes and discusses some of the associated

tradeoffs.

Coupling Mode | Transaction Boundaries | Number of Transactions
("[...] is a transaction)

S-coupling [E_C, A Cp Al 1

EC-coupling [E_CjlA CollA) 3

CA-coupling [E] [C; A1[C; Al 3

N-coupling [E] [C}] [A)] [Co] [A5] 5

Table 1: Transaction Boundaries for Job J.

The coupling of tasks into transactions requires a modification of conventional transaction restart
semantics. In our model, Checkers and Actions occur only in response to changes in the state of the data.
If a transaction begins with an External Task, then the External Task must clearly be reexecuted when the
transaction is restarted. If a transaction begins with a Rule Management Task, this means that the DBMS
has recognized a change of state that requires the execution of a Checker or an Action. Thus, the system
must guarantee that the initial RMT is repeated if the transaction is restarted. In our execution model, then,
whenever a transaction aborts, it is restarted at the first task (External Task, Checker or Action) that formed
part of the aborted transaction. The subsequent tasks may or may not be repeated, as the state of the data-

base may have been changed by updates of other transactions that ran since the aborted transaction began.

4. MODELING AN ACTIVE DBMS

Our performance model of an active DBMS is an extension of the model of a database site used in
the distributed database study described in [Care88]. It has been implemented using the DeNet simulation
language (Livn88], so it can easily be extended later to include multiple sites in order to study a distributed

active DBMS.

In our model, an active DBMS has five components: a Source, which generates the External Tasks;
a Transaction Manager, which models the execution behavior of transactions; a Concurrency Control
Manager, which implements the details of a particular concurrency control algorithm; a Resource
Manager, which models the CPU, I/O, and the main memory resources of the system; and finally, a Rule
Manager, which models the active component of the database. Figure 1 presents a detailed view of these
components and their key interactions. The model described in [Care88] already contained the first four of
these components. However, these components have been modified in our medel to capture the active

nature of the workload. Also, certain additional features (such as a buffer manager) have been included in

-7

Source Rule Manager

© Check Whether Checkersi/Actions Required

eCreate o Create CheckersiActions
External Tasks o Determine Coupling Types
® Restart Aborted Transactions
Peseseme e S U 1
i Rule Request | : RuleReply
Execute i IsTransDone? ! : ’Rranslsm{algs !
ExternalTask { AbortTrans i NewTrans :
bemmmemoeseseooee- 2 L..RestartTrans ___
. 2
. i CC Request |
Transaction Manager | i, - " i CC Manager
; pareCommit |
, i nggglt i @ Access Request
e Start Transaction L e R
o Commit
o Read/Write Page
o Commit Transaction < —
o Abort Transaction i CCReply | S Blocked Quene
: Granted i
i Rejected ‘
| Abort ;
b R bttt ki bbb L L 1

1]
Service Done '
]

% Resource Manager (OS) % %

CPU Buffer Pool Disks

§ [Service Done

Figure 1: Components of the Active DBMS Model.

our model. Of course, the major extension to the original model is the inclusion of the Rule Manager com-
ponent. In this section, we first describe the passive database model. The Rule Manager module is then

described in detail. Finaily, the remaining modules and their parameters are briefly described.

4.1. MODELING THE PASSIVE DATABASE

The passive portion of the database is modeled simply as a collection of files. In tum, each file is
modeled as a collection of pages. The parameters of the database model include NumFiles , which is the
number of files in the database, and FileSize;, the number of pages in each file (1 <i < NumfFiles). Each
file can be viewed as representing a set of database objects; we model files at the page level because we

assume page-oriented concurrency control for simplicity.

4.2. THE RULE MANAGER MODULE

The Rule Manager models the active portion of the database and the active functions of the DBMS.
In terms of the execution model, the Rule Manager must capture the rules in the active portion of the data-
base, and it has to interact with the Transaction Manager in order to coordinate the execution of External
Tasks, Checkers, and Actions. Table 2 lists the input parameters for the Rule Manager. A detailed

description of the Rule Manager module follows.

4.2.1. Modeling the Active Database

Rather than storing rules explicitly, we model Events, Conditions and Actions probabilistically.
External Tasks and Actions can cause events, while Checkers represent condition evaluations. The proba-
bility that an External Task represents an Event (i.e., that it leads t0 a Checker) is ExtCheckProb. Simi-
larly, the probability that the condition of a rule is satisfied (i.e., that an Action needs to be scheduled) is

ActionProb . Finally, the probability of an Action leading to another Checker is ActCheckProb .

In the current implementation, a job can have only a single sequential thread of tasks (i.e., a job can
activate only one rule at a time), and the tasks occur in the following order:
ExternaiTask — Checker — Action — Checker, — Action, — elc.
Jobs may differ from one another in the actual number of constituent tasks, depending on the probabilities
ExtCheckProb , ActionProb , and ActCheckProb. Once a decision to schedule a Checker or an Action is
made, the Rule Manager must determine what type of coupling is to be invoked for the newly generated
task. This is also done probabilistically in our model; the relevant input parameter is an array called

CouplingTypeProb. This array has four entries, each representing the probability of using one of the four

Parameter

| Meaning

RMT Probability Parameters

ExtCheckProb
ActionProb
ActCheckProb

Probability of a Checker following an External Task
Probability of an Action following a Checker
Probability of a Checker following an Action

Coupling Parameter

CouplingTypeProb; (1 <i<4) | Probabilities of using each of the four coupling types

Active Workload Parameters

RNumClasses Number of task classes

RClassProb Probability of a class

RFileCount Number of files accessed

RFileProb; Access probability for file i

RNumbPages; Average number of file i pages read

RWriteProb; Write probability for file i pages

RPageCPU CPU time for processing a page of data

RWriteCPUFraction Fraction of read CPU time required to process a write
Data Sharing Parameters

ShareMode Data sharing mode

ShareProb Probability that a page is accessed by adjacent tasks of a job

Restart Parameter
RepeatOnRestart Probability that all tasks of an aborted transaction are

repeated on restart

Table 2: Input Parameters for the Rule Manager.

types of coupling for combining the adjacent tasks of a job into one or more transactions.

4.2.2. Modeling the Active Workload

One of the functions of the Rule Manager is to generate the reads and writes that make up the RMTs.
The active workload parameters of the Rule Manager are prefixed with "R" to distinguish them from simi-
lar parameters at the Source. RMTs are characterized into classes in terms of the files that they access and
the number of pages that they read and update in each file. Since the only potential cause of an RMT is a
change in the state of the database, Checkers are restricted to read-only operations. Actions are modeled as
collections of reads and writes (as are External Tasks at the Source). Checkers and Actions may belong to
different classes; RNumClasses is a two-element array representing the number of classes for both Check-
ers and Actions. RClassProb specifies the probability that an RMT will be of a given class. The remain-
ing per-class parameters characterize each class of RMTs. RFileCount is the number of files accessed, and
RFileProb gives the probability distribution (or relative file weights) for choosing the actual files that the

RMT will access. RNumPages and RWriteProb respectively specify the number of pages accessed by an

-10-

RMT and the probability that an accessed page will be updated. The next parameter, RPageCPU , specifies
the average amount of CPU time required for RMTs of the class to process (e.g., search) a page of data.
The final parameter, RWriteCPUFraction , represents the CPU time required for writing a page as a frac-
tion of the CPU time required to read the page. The actual number of pages accessed by an RMT ranges

uniformly between half and twice the class average, and the page CPU time is exponentially distributed.

From the nature of ECA rules, it is likely that the data accessed by different tasks of a job will over-
lap to some extent. The data read by a Checker will probably include part of the data updated by the
preceding External Task or Action, and the data processed by an Action may well overlap with the
Checker’s read set as well. The input parameters ShareMode and ShareProb are provided in order to
model such data sharing between the successive tasks of a job. ShareMode is used to determine the type of
data (data read, or data updated) that is shared between two successive job tasks. Four sharing modes are
possible: Read—Read , Read—-Write , Write—Read, and Write—Write. In Read-Read sharing, each page
read by task T; of job J has a probability ShareProb of being read by its successor task T;,; the other
modes are defined similarly. Of course, the amount of data shared between any two successive tasks is

limited by the number of pages accessed by the smaller of the two tasks.

4.2.3. Modeling Open-Ended Transaction Execution

The Rule Manager is informed by the Transaction Manager of the data accessed by each External
Task. It uses this information, plus its knowledge of the internally generated workload, to coordinate

active transaction execution with the Transaction Manager.

Let us consider the case of a nearly-completed External Task as an example. When an External Task
E has completed its reads and updates successfully, and has reached the point where it can commit, the
Rule Manager is invoked to check whether E’s transaction can be committed. Depending on the input

parameters, the Rule Manager responds in one of the following ways:

(1) If the Rule Manager determines that an additional task is to be coupled with E 's transaction, it ini-
tializes a new task which is appended to E s transaction. In our example, the new task would be a

Checker triggered by E .

<11 -

(2) If the Rule Manager determines that an additional task must be scheduled as part of a different tran-
saction, it initializes a new task and directs the Transaction Manager to execute the new task as an
independent transaction. In this case, E 's transaction is allowed to commit, while £°’s job remains

active. Again, the new task would be a Checker in our example.

(3) If the Rule Manager decides that E’s job has completed its execution, it informs the Transaction
Manager that E’s transaction may be committed, as no new work has been generated due to rules

being activated.

The Rule Manager and the Transaction Manager interact in a similar fashion when either a Checker

or an Action reaches the point where it can commit.

4.2.4, Modeling Restarts

When a transaction is aborted, the Transaction Manager is responsible for informing the Rule
Manager of the abort. When it receives the information about an abort, the Rule Manager directs the Tran-
saction Manager to restart the first task which was part of the aborted transaction. In our performance
model, since decisions are made probabilistically, this restart mechanism can unfortunately lead to a bias
against long jobs. Consider a system where there is high contention for data and all jobs are strictly cou-
pled. Suppose a jobJ begins with a External Task task E, goes through a Checker task C, and is in Action
task A when it is aborted. It will then be restarted beginning at task E. Let us assume that it completes
task E again and is then aborted in task C. It will then once again begin with task E. If the decisions to
schedule C and A are made entirely on the basis of probabilities, it is more likely that Job J will ultimately
complete execution if it consists of a single task rather than two or three S-coupled tasks. Thus, there will
be a tendency to favor shorter jobs over longer ones, i.e., restarts will keep occurring until the job eventu-
ally happens to become a short job. In order to avoid this bias, a parameter RepeatOnRestart is included
for the Rule Manager (see Table 2). If RepeatOnRestart is set to 1.0, then the entire sequence of tasks of
an aborted transaction will be repeated on restart. RepeatOnRestart settings are allowed to range from 0 to
1, thus representing varying likelihoods that a restarted transaction will go through the exact same sequence

of tasks that the aborted transaction did.

-12-

4.3. THE SOURCE MODULE

The applications of active DBMSs suggest that an open queueing model be used: e.g., in a large-
scale control application, ETs may arrive at the DBMS in the form of data gathered by a large number of
sensors. The Source module is the component responsible for modeling the external workload for the
DBMS (i.e., it generates the External Task of each job). Each External Task is sent to the Transaction

Manager in the form of an initial transaction.

Table 3 summarizes the key parameters of the external workload model. Jobs arrive at the system in
the form of a Poisson process with arrival rate ArrRate . The workload model used by the Source chargc-
terizes External Tasks into ciasses, just as RMTs are classified at the Rule Manager. NumClasses specifies
the number of different classes of External Tasks. The remaining parameters are similar to those used to

model the RMT workload, as described in Section 4.2.2.

4.4. THE TRANSACTION MANAGER MODULE

The Transaction Manager is responsible for accepting transactions from the Source as well as the
Rule Manager and modeling their execution. A read access by a transaction begins with a concurrency
control request to get access permission. Once the access is granted, a read request for the page is sent

the Resource Manager. If the data page is found in the main memory buffers, no I/O is required;

Parameter | Meaning

Overall Arrival Pattern Parameters
ArrRate Mean exponential arrival rate of External Tasks
NumClasses Number of classes of External Tasks

Per-Class Parameters

ClassProb Probability of this class
FileCount Number of files accessed
FileProb; Access probability for file i
NumPages; Average number of file i pages read
WriteProb; Write probability for file i pages
PageReadCPU CPU time for processing a page of data
WriteCPUFraction | Fraction of read CPU time required to process a write

Table 3: External Workload Model Parameters.

10ur model is actually somewhat more general than indicated here; it supports multiple arrival processes, and these can each be
either exponential or deterministic.

-13-

otherwise, a disk I/O to read the page (possibly accompanied by the flushing of a dirty buffer page) is
scheduled. Once the data page is available in the buffer pool, a period of CPU usage follows for process-

ing the page. Write requests are handled similarly.

The input parameters of the Transaction Manager module are listed in Table 4. In addition to model-
ing the execution of transactions, the Transaction Manager controls the load of the system by limiting the
number of concurrently active jobs via the parameter MaxActiveJobs . If a new job is received by the Tran-
saction Manager when there are already MaxActiveJobs jobs in the system, the new job is blocked until
one of the active jobs completes execution. Load control at the job level rather than at transaction level is
appropriate for an active system, as the amount of "load" represented by a transaction depends upon the
coupling modes employed to couple the job’s tasks. A delay modeled by LoggingDelay represents the
time required to flush log records at the end of each transaction. Finally, the Transaction Manager also

handles transaction commits and aborts.

4.5, THE RESOURCE MANAGER MODULE

The Resource Manager controls the physical resources of the DBMS, including the CPU, the disks
and the buffer pool in main memory. It provides services to both the Transaction Manager and the Con-
currency Control Manager. The parameters of the Resource Manager are summarized in Table 4. The
DBMS has NumDisks disks plus one CPU. The CPU service discipline is processor sharing. Each of the
disks has its own queue, which it serves in a FIFO manner; the Resource Manager assigns a disk to serve a
new request randomly, with all disks being equally probable, so the I[/O model assumes that the files stored
in the DBMS are evenly balanced across the disks. Disk access times for the disks are uniform over the

range [MinDiskTime , MaxDiskTime].

The buffer pool model consists of a set of BufferPooiSize page frames. Each page frame has a
"dirty" flag associated with it to indicate whether its data has been updated since it was read into main
memory. If a request to read page P is received from the transaction manager, the buffer manager checks
whether page P is in the buffer pool. If page P is present, no disk access is required. If page P is not
found, the buffer manager searches for the least-recently-used, non-dirty page which can be replaced by P.

If such a clean page C is available, a disk I/O is scheduled to read page P into the buffer frame occupied

-14-

Parameter | Meaning
Transaction Manager Parameters

MaxActiveJobs | Maximum number of concurrently running jobs
LoggingDelay Per-transaction delay caused by flushing a commit record
Resource Manager Parameters
NumbDisks Number of disks
MinDiskTime Minimum disk access time
MaxDiskTime Maximum disk access time
BufferPoolSize | Number of page frames in the buffer pool

Concurrency Control Manager Parameters
CCReqCPU | CPU time required to process a concurrency control request

Table 4: Remaining Parameters of the Model.

by C. If no clean page is found, a disk write is scheduled to write back the least-recently-used, dirty page
in addition to the read that is scheduled for page P. In either case, after P is read into the buffer pool, the

read request is processed by the CPU.

4.6. THE CONCURRENCY CONTROL MANAGER MODULE

The Concurrency Control Manager captures the semantics of the concurrency control algorithm of
choice. As was illustrated in Figure 1, the Concurrency Control Manager is responsible for handling con-
currency control requests made by the Transaction Manager. These include read and write access requests,
requests to get permission to commit a transaction, and several types of concurrency control management
requests to initialize and terminate transactions. The Concurrency Control Manager has a variable number
of parameters. One parameter, CCReqCPU , specifies the amount of CPU time required to process a read
or write access request; this parameter is present for all algorithms. Additional parameters can be intro-

duced on a per-algorithm basis as needed.

For the experiments described in this paper, a variation of the Wound-Wait (WW) algorithm
described in [Rose78] is used for concurrency control. We chose this algorithm because it is relatively
easy to model, and its timestamp-based conflict resolution strategy makes it possible to introduce an
interesting modification to the algorithm, as discussed below. Also, the WW algorithm can be modified
later to allow priorities to be associated with transactions in order to model time constraints, as proposed in

[Abbo88, Daya88a, Stan88].

-15.

In the WW algorithm, locks are acquired and released in a two-phase fashion [Gray79]. Deadlock is
prevented via the use of timestamps rather than by maintaining waits-for information and then checking for
deadlocks. In the original algorithm, each transaction is numbered according to its initial startup time, and
younger transactions are prevented from making older ones wait. If an older transaction requests a lock
held by a younger transaction, which would lead to the older transaction waiting, the younger transaction is
"wounded", i.e., it is restarted. Younger transactions are permitted to wait for older transactions, however.
Deadlocks are impossible because any cycle of waiting transactions would have to include at least one
instance where an older transaction is waiting for a younger one that is blocked as well, and this is not

allowed.

In order to model the relationship between the transactions that make up a job, the following varia-
tion was introduced in the WW timestamp allocation scheme. Let Job; consist of transactions T;y, ..., Tin,
and let Job; consist of transactions T}y, ..., T},. If Job; starts before Job;, then all of Job;'s transactions
Ty, k = 1,..,m, will have earlier timestamps than any of the transactions of Job; . Intuitively, the purpose of
this modification is to favor tasks of jobs that arrive early over those of later arrivals, thus introducing an
element of job-based priority to the concurrency control algorithm. As a result of this modification, tasks
of older jobs are more likely to obtain locks and less likely to be aborted than tasks of younger jobs. (Note
that this timestamp allocation scheme is independent of both the type of the coupling between the tasks and

the time ordering of the individual tasks of different jobs.)

5. EXPERIMENTS AND RESULTS

In this section, we present performance results for the four types of RMT coupling semantics
described in Section 3 under various assumptions about the database size, the number of data pages
accessed by each task of a job, the number of tasks per job, and the extent of data sharing between the tasks
of a job. Our performance results are preceded by a discussion of the performance metrics of interest and

the parameter settings used to obtain the results presented here.

5.1. SYSTEM PERFORMANCE METRICS

In order to focus on the impact of using different semantics for transaction coupling on system per-

-16 -

formance, we examine the expected job response time as a function of the job arrival rate 2 for each of the
four types of coupling modes. Job response time is computed by subtracting the startup time of the ET of
the job from the time at which its last RMT finally completes successfully. In order to obtain a large sam-
ple of job executions, each experiment was run until a total of approximately 4500 jobs completed. Other
statistical information was also gathered in the course of each simulation, including the maximum arrival
rates at which the system remained stable, the number of aborts and the particular tasks in which they
occur, the utilization of the CPUs and disks, the number of buffer pool hits and misses, and the number of

jobs running concurrently.

5.2. PARAMETER SETTINGS

Each experiment consists of a "base” simulation and a set of simulations in which certain parameters

are varied. Table 5 gives the values of the key simulation parameters in the base experiments. The

Parameter Base Setting

NumFiles 1

FileSize 500 pages

ArrRate varied from 0.2 jobs/sec to 8 jobs/sec
NumClasses 1

NumPages 5

WriteProb 1/3

PageCPU 8 ms (for reads); 2 ms (for writes)
MaxActiveJobs 15

LoggingDelay 10 ms

NumbDisks 2

MinDiskTime 10 ms

MaxDiskTime 30 ms

BufferPoolSize 50 page frames

CCReqCPU 0 ms

ExtCheckProb 2/3

ActionProb 172

ActCheckProb 2/3

RNumPages 5

RWriteProb 0 (for Checkers); 1/3 (for Actions)
RPageCPU 8 ms (for reads); 2 ms (for writes)
ShareMode No Sharing

ShareProb 0.0

RepeatOnRestart | 1.0

Table 5: Base Parameter Settings.

3Since an open queueing model is used to represent the system, throughput alone is not a sufficient performance metric.

.17-

database is modeled simply as a single file, consisting of 500 data pages. Jobs arrive at the system in a sin-
gle exponential stream; the job arrival rate is varied in each experiment. Each task accesses S pages of
data on the average. External Tasks and Actions update each page that they access with a probability of
1/3, while Checkers are read-only tasks. It takes an average of 8 milliseconds of CPU time to process each
data page read, and an average of 2 additional milliseconds to process an update. The maximum number of
jobs that may run concurrently is set to 15. There are two disks available for I/O, and each disk has an
average access time of 20 milliseconds. The buffer pool can hold up to 50 pages in memory at a time. The
concurrency control CPU overhead is assumed to be negligible compared to the CPU time required for
page processing. Since the overhead associated with transaction startup (which corresponds to the startup
time for a lightweight process) is typically on the order of a fraction of a millisecond [Lisk87], this cost is
not included in the model. However, a commit record logging delay of 10 milliseconds i; added to each
transaction at commit time. The probability that an External Task (or an Action) is followed by a Checker
is set at 2/3, and the probability that a Checker is followed by an Action is set at 1/2. Thus, approximately
one third of all jobs consist of just one task, another third of two tasks, and the remainder of more than two
tasks; the mean number of tasks per job is 2.33. Data is not sharedv between the adjacent tasks of a job.
Finally, the restart parameter is set so that an aborted transaction always repeats its original sequence of

tasks.

In order to isolate the effects of using each of the four coupling options, each simulation had only
one type of coupling between the tasks of a job. For each arrival rate, four simulations were run: one in
which all jobs consisted of S-coupled tasks, one in which only EC-coupling was allowed, one in which
only CA-coupling was allowed, and one in which only N-coupling was allowed. In addition to these four
simulations, we ran one simulation for each arrival rate to obtain the expected job response time in the
absence of concurrency control in order to provide a performance bound against which to compare the

various coupling modes. In each of our graphs, a curve labeled No-CC shows the results of this simulation.

In Experiment 1, we studied the effect of varying data contention by changing the database size. The
effect of varying task complexity (i.e., the number of pages accessed by a task) was studied in Experiment
2. In Experiment 3, the impact of varying the number of tasks in a job on system performance was investi-

gated; finally, in Experiment 4, we varied the amount of data sharing between the tasks of a job. In the

-18-

remainder of this section, we first discuss the results of our base experiment, and we then describe Experi-

ments 1-4.

5.3. THE BASE EXPERIMENT

Figure 2 shows the expected job response times for the parameter settings shown in Table 5. At low
arrival rates, the response time of jobs does not vary significantly with the type of coupling. As the arrival
rate is increased, all of the curves begin to move upwards. The S-coupling curve separates from the others
first, while the EC-coupling, CA-coupling, N-coupling, and No-CC curves remain fairly close to one
another for most arrival rates. Note that, for each type of coupling, job response time grows dramatically
when the job arrival rate is increased beyond a certain threshold value. The system becomes very sensitive
to changes in arrival rate when this threshold is approached; a small increase in job arrival rate in this
region of operation causes the system to enter a state of saturation in which it becomes unstable. The rise
in job response time is so dramatic in this region that some of the higher response time values do not fit into
the graph and are represented (in all experiments) by extrapolated lines at the right end of each curve. Fig-
ure 2 shows that the threshold at which this phenomenon occurs is reached earliest by the S-coupled jobs.
EC-coupled jobs reach the point of saturation next, and CA-coupled jobs reach their threshold just before

N-coupled jobs.

The elements contributing to the expected response time of a job are the costs of reading and updat-
ing pages and the costs of resolving concurrency control conflicts. The workload parameter settings for the
base experiment guaranteed that, on the average, the number of pages read and written by a job does not
vary with the type of coupling used in the system (in the absence of restarts). As explained in Section 5.2,
CPU costs for transaction startup are assumed to be negligible, and transaction commit costs (in the form of
the 10 milliseconds logging delay) are small relative to the overall response times observed. Thus, the
differences in job response times for the four types of coupling are almost entirely due to concurrency con-
trol costs. In order to understand how concurrency control affects performance, we must examine two fac-
tors: blocking delays and restart rates. A quantitative display of these factors is given in the next two
figures. The expected total amount of time a job has to spend waiting for locks is presented in Figure 3,
whereas the expected number of times that a transaction is restarted is presented in Figure 4. Both figures

indicate that the manner in which tasks are coupled to form transactions has a dramatic impact on the

-19-

5000 - in|
0O S-coupled
¢ EC-coupled
40004 & CA-coupled
R t+
e @ N-coupled /
é + No-CC
130001
e
T
i
m
e 2000
i
n
m
$ 1000
0 r T T \ T T '
30 35 40 45 50 55 60 65
Arrival Rate (jobs/sec)
Figure 2: Database Size = 500.
(TaskSizes = {5, 5, 51, No Sharing)
0.3 +
O S-coupled
© EC-coupled
R 4 CA-coupled
e 9 N-coupled
s
t o2
a
r
t
5
P
e
r
C
2 0.1
m
m
i
t
0.0 r r r ' r T S
30 35 40 45 50 55 60 6.5
Arrival Rate (jobs/sec)

Figure 4: Restarts/Commit, DBSize = 500.

(TaskSizes =[5, 5, 51, No Sharing)

-20-

500 +

g

6] mOmX0O~—I oo
) w
8 =

= -
8

0

]

S-coupled
¢ EC-coupled
CA-coupled
© N-coupled

A

3.0

Figure 3:

5000 -

oHrm OupoOVwoX i
) w e
oS o o
s = =

wiE P
S
=

Y 1

6.0 6.5

T

35 410 4t5 5i0 5j5
Arrival Rate (jobs/sec)
Lock Blocking Time per Job, DBSize = 500.

(TaskSizes = (5, 5, 5], No Sharing)

Q

8 S-coupled
¢ EC-coupled
4 CA-coupled

O N-coupled

0
3

t

40 45 50 55 60 65
Arrival Rate (jobs/sec)

0 35

Figure 5: ET Response Time, DBSize = 500.

(TaskSizes = [5, 5, 5], No Sharing)

amount of a time that jobs spend redoing work (due to restarts) or waiting for locks to be granted.

In order to understand how the locking behavior of jobs depends on their coupling mode, consider a
job that consist of three tasks: an ET, a Checker, and an Action. When the job is S-coupled, it holds all of
its locks until the Action task is completed. With EC-coupling, the job holds its locks until the end of the
Checker task, releasing them before the Action task begins. A CA-coupled job releases its locks immedi-
ately after the completion of the External Task. Such a job holds the Checker locks (which are all read
locks) and the Action locks until it commits. When the job is N-coupled, it releases locks when each task
is completed. Two issues related to locking affect the expected blocking time of the four coupling alterna-
tives. The first is the average duration for which locks are held by a transaction. The longer a transaction
holds on to its locks, the longer other transactions will have to wait to lock a data item. The second issue is
the type of lock held. Since External Tasks consist of updates as well as reads, both S-coupled and EC-
coupled jobs hold write locks for long durations, while CA-coupled jobs hold only read locks for long
durations. Since read locks can be shared, while write locks cannot, holding read locks for longer dura-
tions does not have as much of a negative impact on job response time as holding write locks. This
explains the differences in the expected blocking time of EC-coupled and CA-coupled jobs in Figure 3.
Although both modes lead to the same expected transaction size here, EC-coupled jobs hold write locks
longer and thus cause longer blocking delays. When write locks are held for long durations, as in EC-
coupling or S-coupling, increased data contention results in a significant increase in job response time. S-
coupling has the longest blocking time because all of the locks acquired by a job are held until the very last

task of the job completes execution.

Another factor related to the performance impact of concurrency control is transaction restarts. Res-
tarts increase resource utilization and lengthen the execution path of transactions. Figure 4 shows that the
average number of restarts per commit is low in this experiment. In most cases, there is less than one res-
tart per ten commits. Recall that our Wound-Wait based concurrency control algorithm tends to restart
younger tasks more often than it restarts older tasks. These two facts lead us to expect that the increase in
resource utilization due to restarts will not be significant — and our measurements show that this increase
is indeed small (less than 3% in most cases). However, the increase in the expected number of locks

acquired by a transaction had a major impact on job response time. A significant proportion of the time

.21

"wasted" due to restarts was spent waiting again for locks rather than utilizing the physical resources of the
system. It is also important to note that restarted transactions represent a different amount of "wasted" time
for each type of coupling. In the case of S-coupling, restarting a transaction is equivalent to restarting an
entire job, since each job consists of only one transaction. In contrast, in the case of N-coupling, the

amount of time wasted by a restart is bounded by the time taken by a single task of a job.

So far we have focused on how job response time is affected by the different coupling modes.
Another interesting performance measure is the expected time that users must wait for their tasks to com-
plete. This metric (called the ET response time of the system) is presented in Figure 5 for the four coupling
modes. This measure represents the user’s point of view of the performance of the active DBMS, whereas
the job response time represents the system administrator’s point of view. For the entire range of arrival
rates, coupling RMTs with ETs causes a significant increase in the response time observed by a user. Even
for an arrival rate of 4 jobs per second, where there is almost no difference in the expected overall response
time of a job, the expected response time of an S-coupled ET is more than twice that of an ET that has not

been coupled with its RMTs (i.e., where CA-coupling or N-coupling has been used).

To summarize, then, the results of the base experiment reveal that the way in which transaction
boundaries are set in an active DBMS may have a significant impact on both the quality of service experi-
enced by its users and the location of the saturation point of the system. The results also indicate that the
key factor that influences job response time in the base experiment is data contention rather than resource
contention. For most job arrival rates considered, jobs that were S-coupled performed significantly worse
than jobs that did not couple all of their rule management activity to the External Task. Note that, from a
performance point of view, augmenting user transactions with code to check conditions (e.g., violations of
integrity constraints) and to invoke actions in response to satisfied conditions, is basically the same as S-
coupling. We can thus conclude from the results of the base experiment that not only can active DBMSs

simplify the task of application programming, but they can also lead to performance gains.

5.4. EXPERIMENT 1: THE EFFECT OF DATA CONTENTION

In this experiment, we examine job response times for the four coupling types as the size of the data-

«22-

base is changed.® Three database sizes (750, 500, and 250 pages) are studied, and the buffer pool size is
kept at 10% of the database size in each case. Each task of a job accesses 5 pages on the average, as in the

base experiment.

Figure 6 shows the expected job response times for a database consisting of 750 pages, where the
buffer pool can accommodate 75 such pages. Figure 7 presents the response time results obtained when
the database size is decreased to 500 pages and the buffer pool size is 50 pages. (Figure 7 is the same as

_Figure 2, but is repeated here for comparison.) In Figure 8, the job response times for a database size of
250 pages and a buffer pool size of 25 pages are shown. In Figure 9, we compare the job response times
for an arrival rate of 5 jobs/second for the three different database sizes. Since in the 250-page case, the
system becomes unstable for S-coupled jobs at an arrival rate close to 4 jobs/sec, we ran further experi-
ments with database sizes of between 500 and 250 pages specifically in order to obtain the third point for

the S-coupled case.

In Figure 6, where the database size is 750 pages, the response time curves for the four types of cou-
pling remain close to each other for most arrival rates, and the system remains stable for arrival rates as
high as 6.2 jobs/sec. As the size of the database is decreased to 500 pages in Figure 7 and then to 250
pages in Figure 8, the curves for S-coupled and EC-coupled jobs move away from the other curves at lower
arrivz;I rates than before. The separation between these curves and the curves for CA-coupling and N-
coupling also grows, and increased data contention causes the system to become unstable more rapidly
with increasing arrival rates. In particular, S-coupled jobs make the system unstable at arrival rates of
about 4 jobs/sec when the database contains 250 pages, but when the database size is 750 pages, 50%
higher arrival rates can be sustained by the system without losing its stability for S-coupled jobs. The
reduction in the size of the buffer pool from Figure 6 to Figure 7 and again from Figure 7 to Figure 8 may
at first seem likely to contribute to the positioning of the response time curves in the three cases. However,
a closer examination reveals that the No-CC curves in the three figures coincide almost exactly for all but
the highest arrival rates shown. Even at arrival rates (between 6 and 6.5 jobs/second) that cause the system

to enter a state of saturation when concurrency control is in use, the spread between the No-CC curves in

3Varying the database size in this manner can be thought of as a way to vary the extent to which "hot spots” exist in a larger da-
1abase, as shown in [Tay85].

-23-

5000 -
O S-coupled
© EC-coupled
40004 & CA-coupled
© N-coupled

*+ No-CC

OHre] OuDOVwR
g

2000 4
i
n
m
$ 1000
0 v v r r T r r
30 35 40 45 350 55 60 65
Arrival Rate (jobs/sec)
Figure 6: Database Size = 750.
(TaskSizes = [5, 5, 51, No Sharing)
5000 -
4000 4
R
e
s
p
o F
23000 J
e /’I
T
1 K
m ;
e 2000 4)
i /
n .
m @ S.coupled
S 1000 4 ® EC-coupled
________ 4 CA-coupled
S N-coupled
+ No-CC
0 T v T T T : !
30 35 40 45 50 55 60 65
Arrival Rate (jobs/sec)

Figure 8: Database Size = 250.
(TaskSizes = [3, 5, 5], No Sharing)

.24 -

Figure 9: Arrival Rate = 5 Jobs/sec.
(TaskSizes = {8, 5, 5], No Sharing)

250

5000 - B
0 S-coupled
¢ EC-coupled
40004 & CA-coupled
R +
e © N-coupled !
8 /
P + No-CC :
o !
n i :
s 3000 /
e
T
i
m
e 2000 -
i
n
m
$ 1000 1
30 35 40 45 50 55 60 65
Arrival Rate (jobs/sec)
Figure 7: Database Size = 500.
(TaskSizes = [5, 5, 5], No Sharing)
3000 4
R
e
s
P 2000
o
n
$
e
T
1
m
e
i 10004
n O S-coupled
by © EC-coupled
& CA-coupled
9 N-coupled
+ No-CC
0
750 500
Database Size (pages)

the three figures is less than 10% of the minimum response time. Thus, changing the buffer pool size does
not bias the results shown in Figures 6-8 significantly, and buffer hits may be ignored as a factor while

comparing the three sets of curves.

Figure 9 illustrates the increasingly important impact of task coupling semantics on system perfor-
mance as data contention increases. S-coupling results in the worst performance, and rapidly leads the sys-
tem into instability. For low levels of data contention, the differences in performance between the other
three types of coupling are negligible. As data contention increases, however, N-coupling leads to better
performance than CA-coupling, while CA-coupling performs better than EC-coupling. Since a temporary
period of high data contention can easily occur even in a passive DBMS (e.g., when there is a "hot spot” in
the data), it should be clear that it is important for performance that the weakest type of coupling permitted

by each rule’s semantics be selected and used in the rule’s definition.

5.5. EXPERIMENT 2: THE EFFECT OF TASK COMPLEXITY

Tasks associated with jobs in active database systems will have application-dependent data access
characteristics. External Tasks, Checkers and Actions may vary in the relative amounts of data that they
need to access. Also, their data access characteristics will be influenced by the degree to which the physi-
cal design of the passive database supports the queries involved in the rules. In order to study the perfor-
mance impact of variations in task size, simulations with three combinations of task sizes were run. All of

these experiments were conducted on a 500-page database.

In the first set of simulations, all of the tasks of each job access 5 pages each, on the average, as in
the base experiment. This set of parameters is abbreviated SSS (for Short External Tasks, Short Checkers,
and Short Actions). All other simulation parameters are kept exactly as in the base experiment. Figure 10
(which is the same as Figure 2) shows the expected response time of jobs with the SSS task pattern. The
second pattern of tasks studied was SLS (Short External Tasks, Long Checkers, and Short Actions). Exter-
nal Tasks and Actions again access 5 pages each, while Checkers now access 20 pages each on the aver-
age. Figure 11 shows the response times of jobs with SLS task patterns. Figure 12 presents job response
times for jobs having an SLL task pattern — where External Tasks are short (5 pages each) while both

Checkers and Actions are long (20 pages each). Figure 13 shows the maximum sustainable arrival rates at

.25.-

which the system remains stable for the SSS, SLS and SLL task pattems.

Figures 10-12 show that significant performance changes occur when the task access patterns are
changed. In Figure 10, all of the curves except for the S-coupled one are quite close to one another. When
the size of Checkers increases, in Figure 11, the differences between the performance of the four coupling
types become much more pronounced. The slope of the curves increases more rapidly, and the maximum
sustainable arrival rates become smaller. The difference between the No-CC curve and the N-coupled
curve is stll relatively minor here, though. When both Checkers and Actions are large, as in Figure 12, the
response times curves become very steep even at low arrival rétes. An interesting phenomenon in the SLL
case is that, for the first time, CA-coupling performs worse than EC-coupling. The reason for this is that, in
this case, External Tasks are short whereas Actions are long. Thus, if we consider jobs having three tasks
or less (which constitute most of the jobs in the simulation), EC-coupling involves holding locks for a con-
siderably shorter time than CA-coupling. Another feature of the SLL case is that even the N-coupled curve
is quite far from the No-CC curve, indicating that the increased sizes of Checkers and Actions cause
significant concurrency control conflicts even when job tasks are uncoupled. Figure 13 reveals that, as
RMTs become more complex, the relative impact of the coupling mode on performance increases. For
example, the ratio of the maximum sustainable arrival rate for N-coupled jobs to the maximum sustainable
rate for S-coupled jobs goes up from 1.25 in the SSS case to 1.75 in the SLL case. These results indicate
that system performance can be affected significantly by both the design of the RMTs of a rule (i.e., the
relative complexity of Checkers and Actions) and the degree to which their data access needs are supported

by the physical organization of the passive database.

5.6. EXPERIMENT 3: THE EFFECT OF TRIGGERING PROBABILITIES

In Experiment 3, the probabilities of executing both Checkers and Actions were increased to study
the effect of increased job size (in terms of the number of tasks per job) on system performance. By
increasing CheckProb from 2/3 to 4/5 and ActionProb from 1/2 to 4/5, the mean number of tasks per job
was increased from 2.33 to 5. (Note that the transaction boundaries imposed by the different coupling
semantics on a job consisting of exactly five tasks are shown in Table 1 in Section 3.) The database size
was kept fixed at 500 pages. For comparison purposes, Figure 14 again shows the response times of jobs

having an SSS task pattern when the average number of tasks per job is 2.33. Figure 15 shows the job

-26 -

5000 - Q 10000 -
0 S-coupled 9000 4
¢ EC-coupled
R 400041 & CA-coupled + R 8000 -
e 9 N-coupled '/ e 7000
1:3’ + No-CC ,Il (;;
! n -
n 3000 ; D 6000
e e
T T 5000 4
i 1
m m
e 2000 e 4000 1
i i .
n n 3000+
m m ,~ B S-coupled
$ 1000 4 - $ 2000 4 © EC-coupled
......... & CA-coupled
1000 1 9 N-coupled
+ No-CC
0 " T v r ; y) 0 1 T T ,
30 35 40 45 50 55 60 65 1.5 20 25 30 35
Arrival Rate (jobs/sec) Arrival Rate (jobs/sec)
Figure 10: S-S-S Task Pattern Figure 11: S-L-S Task Pattern
(TaskSizes = [5, 5, 5], DBSize = 500) (TaskSizes = [5, 20, 51, DBSize = 500)
80001 4 T M 7
f a
! x
7000 - ! A 6 8 S-coupled
’,' r ¢ EC-coupled
}é 6000 4 ,," { & CA-coupled
; / : 5 © N-coupled
! 1
g 5000 4 ;
s / R
e ; ? 4
T 4000 4 ’Il e
1 : .
m [} 1 3
© 30004 o n
i ;
O §-
m 20001 S-coupled 1; 5
s ¢ EC-coupled
————— 4 CA-coupled 1%
1000 4 e
O N-coupled r 14
+ No-CC 3
0 r v S e
0.4 09 1.4 19 2.4 29 ¢ 0 : ,
Arrival Rate (jobs/sec) $.5.S S.L-S SLL
Task Pattern

Figure 12: S-L-L Task Pattern
(TaskSizes = [5, 20, 20], DBSize = 500)

.27-

Figure 13: Maximum Sustainable Arrival Rates
(DBSize = 500)

response times of SSS pattern jobs when jobs have 5 tasks on the average. Figure 16 shows the response
times of jobs having an SLS pattern, with an average of 2.33 tasks per job. In Figure 17, jobs again have 5
tasks, and the task pattern is now SLS.

Clearly, when job size is increased, the performance of S-coupling deteriorates very rapidly relative
to all other coupling modes. Consider a job with six tasks: In the S-coupling case, no locks are given up
until all six tasks have completed; in the EC-coupled and CA-coupled cases, locks are given up after each
pair of tasks finishes. (Note that a six-task, S-coupled job will access approximately 75 data pages in the
SL.S case, thus locking up 15% of the entire database.) A second feature of longer jobs is that the perfor-
mance of EC-coupled jobs and CA-coupled jobs is quite similar, especially in Figure 15 where all job tasks
are short. The reason for this is that both of these coupling modes involve releasing locks after alternate
tasks of a job, as mentioned above, When the tasks are short and there are many tasks per job, the effect of

the type of lock (read versus write) that is held longer is diluted to some extent.
5.7. EXPERIMENT 4: THE EFFECT OF DATA SHARING BETWEEN TASKS

As discussed earlier, it is likely that there will be some degree of data sharing between successive
pairs of tasks of a "real" job. In Experiment 4, the extent of data sharing between successive tasks is
varied. For comparison purposes, the results of the base experiments in which there is no enforced data
sharing between tasks are shown again in Figure 18. (Since data pages are chosen randomly from the data-
base, there may be some inherent sharing of data between tasks even in this case, but it is rare enough to be
ignored.) Figures 19 and 20 show the results of experiments with Read-Read sharing, where the read-set of
each task of a job overlaps with the read-set of the next task of the same job. Three levels of data sharing
are studied: no sharing (in the base experiment), 50% sharing, and 100% sharing. Recall that the level of
sharing represents the probability that any given page will be accessed by two consecutive job tasks, sub-
ject to the constraints of the relative size of the tasks. (While the average size of the tasks is 5 pages each,
the actual size of different tasks may vary between 3 and 7 pages. Thus, if task T; of a job accesses 3
pages and its successor task T;,, accesses 7 pages, a maximum of 3 pages can be shared between the two
tasks.) Figure 21 shows the maximum arrival rates that the system can support for an expected job
response time of 2 seconds for the four different types of coupling as the level of sharing is changed. (The

points on Figure 21 were interpolated from the data in Figures 18-20.)

.28 -

5000 -)
O S-coupled
¢ EC-coupled
40004 & CA-coupled
R t
e O N-coupled ‘,'
é + No-cC
73000
[/
T
i
m
e 2000 4
i
n
m
$ 1000
0 T T T T T T |
3.0 35 4.0 4.5 5.0 55 6.0 6.5
Arrival Rate (jobs/sec)

Figure 14: Mean Number of Tasks per Job = 2.33
(TaskSizes = 5, 5, 51, DBSize = 500)

10000 1
9000 -
8000 -
R
e
s 70004
p
o
n 60001
e
T 50004
i
T 40004
i P
n 3000+
m '8 S-coupled
$ 2000 4 ¢ EC-coupled
"""""""""" 4 CA-coupled
1000 1 © N-coupled
0 + No-CC
1.5 2.0 2.5 3.0 35
Arrival Rate (jobs/sec)

Figure 16: Mean Number of Tasks per Job = 2.33
(TaskSizes = [5, 20, 5], DBSize = 500)

@B mr] cwdoTuoR

wg B

-29.

8000 1

8 S-coupled
¢ EC-coupled
8 CA-coupled

7000 4

6000 1
© N-coupled

|+ Nocc

g
[=)

g
S

:

[
8
S

1.0

1.5 2.0
Arrival Rate (jobs/sec)

2.5

3.0

Figure 15: Mean Number of Tasks per Job = 5.0

(TaskSizes = (5, 5, 51, DBSize = 500)

25000
)

-

20000 -

*+ No-CC

15000 4

o3~ ownoTre A
2
=)
=]

wld e
3
3

O S-coupled

© EC-coupled
CA-coupled
© N-coupled

0
0.0

0.5 1.0
Arrival Rate (jobs/sec)

1.5

Figure 17: Mean Number of Tasks per Job = 5.0
(TaskSizes = [5, 20, 5], DBSize = 500)

When there is no data sharing between job tasks, the S-coupled curve diverges from the others at an
arrival rate of about 4.2 jobs/second, while the other three curves remain close to one another. As the level
of sharing is increased from O to 50%, the curves for EC-coupling and CA-coupling move still closer,
almost merging with each other. The S-coupling curve also moves somewhat closer to the other three, but
S-coupled jobs still perform significantly worse than the other types of coupling. Figure 20 shows that
when all of a job’s tasks access the same data, the performance of all four types of coupling becomes very
similar. All four curves remain close together for arrival rates of up to 6 jobs/second, and even S-coupling
does not saturate the system until the arrival rate reaches 6.75 jobs/second (which is a 35% improvement
over the no-sharing case). Figure 21 shows that at low levels of data sharing, the maximum job arrival rate
that the system can support in order to provide a given expected response time (2 seconds in this case)
varies significantly with task coupling semantics. At high levels of data sharing, however, this difference

becomes negligible.

Data sharing affects job response time in two ways. If data is shared between successive tasks, more
buffer pool hits are likely. Also, fewer locks need to be obtained in the S-coupling, EC-coupling and CA-
coupling cases, as the locks acquired in one task of a job within a transaction do not need to be re-acquired
in the succeeding phase. An examination of the results for buffer pool hit ratios, disk utilization, and
number of locks avoided by data sharing (not shown here) indicate that, while both buffering and locking
factors affect the results, the relative performance of the four types of coupling is affected most by the fact
that fewer locks are required (except for N-coupled jobs) as data sharing is increased. In N-coupling, locks
are released at the end of every task, so the amount of locking activity is unaffected by data sharing; this is
why N-coupling does not show as much improvement as the other types of coupling when the amount of
data sharing is increased. The main point illustrated by this experiment is that coupling semantics affect
performance significantly even when half the data of each task is shared with the subsequent task. It is
only when the ET and the RMTs of a job share data to a very large extent that the coupling semantics lose

their relevance to system performance.

-30-

5000]
0 S-coupled
¢ EC-coupled
40001 & CA-coupled
R P +
e © N-coupled '.’
é + No-CC ;
2 30001
e 'II
T '
i
m
e 2000 -
i
n
m
$ 1000+
30 35 40 45 50 55 60 65 70 75

agrr] CwnBOoUTVweA

wd B

Arrival Rate (jobs/sec)
Figure 18: No Data Sharing
(TaskSizes = [5, 5, 5], DBSize = 500)

5000 -

0 S-coupled

¢ EC-coupled
40004 & CA-coupled
© N-coupled
+ No-CC

3000 4

2000 4

30 35 40 45 50 55 60 65 70 75
Arrival Rate (jobs/sec)
Figure 20: 100% Data Sharing
(TaskSizes =[5, 5, 51, DBSize = 500)

S(X)O' T +
O S.coupled f
¢ EC-coupled !

R 40004 & CA-coupled H
:— © N-coupled ;'
p + No-CC
0 'I
n :

g 3000 4 ll
e 'l
T /

1

m

e 2000 4

i

n

m

$ 1000

04

-31-

Do @ & e D> ML

Arrival Rate (jobs/sec)
Figure 19: 50% Data Sharing
(TaskSizes = 5, 5, 5], DBSize = 500)

Y- - TN
o EN v o]
N 1 s ek)

- 0T

8
=3
c

30 35 40 45 50 55 60 65 70 75

0

0 50
Level of Data Sharing (%)

Figure 21: Job Response Time = 2 seconds
(TaskSizes = [3, 5, 5], DBSize = 500)

100

6. CONCLUSIONS AND FUTURE WORK

The workload of an active DBMS consists of two types of activities: External Tasks, which are the
tasks submitted by users or application programs, and Rule Management Tasks, which are caused by the
triggering of rules stored in the active database. An Extemal Task (ET) together with its resulting Rule
Management Tasks (RMTs) can be thought of as forming a job. An interesting question that arises in an
active DBMS is: How should ETs and RMTs be combined into transactions? Most proposals for integrat-
ing rules with database systems give the user little control, if any, over how tasks are combined into tran-
sactions. An alternative is to provide users with the capability to exploit rule semantics by specifying
where transaction boundaries should be placed, as in HiPAC [Hsu88, Daya88c]. In this paper, we have
studied the performance impact of using such a capability to determine task coupling in an active DBMS.
In particular, we have examined the effects of alternative coupling approaches while varying data conten-
tion, task complexity, the number of tasks generated recursively by rules, and the amount of data shared by

the tasks of a job.

The experiments described here indicate that the performance of an active DBMS can be very sensi-
tive to the coupling semantics of rules. We examined four of the coupling modes possible under the
Event-Condition-Action rule model [Daya88c]: S-coupling, where all the tasks of a job are strictly coupled
as a single transaction; EC-coupling, where an External Task is coupled with the RMTs (Checkers) that
test for rule satisfaction, but not with the RMTs (Actions) that perform the actions for satisfied rules; CA-
coupling, where Checkers and Actions are coupled together, but not with the External Tasks; and N-
coupling, where each task is a transaction by itself. We found that, under light loads, the type of coupling
did not effect job response time appreciably since there were relatively few concurrency control conflicts.
However, we did observe that the coupling mode had a significant impact on the mean response time of
External Tasks (i.e., the response time from a user’s perspective) under such loads. Throughout the study,
the response times of External Tasks that were coupled with Rule Management Tasks (i.e., using S-

coupling or EC-coupling) were found to be significantly higher than the response times of External Tasks

that were executed as stand-alone transactions (i.e., executed using CA-coupling or N-coupling).*

4 Note that user tasks are also decoupled from rule management activity in loosely-coupled knowledge base management sys-
tems (where a rule manager polls the DBMS periodically). However, such systems cannot efficiently provide the level of responsive-
ness possible with an active DBMS [Daya88a].

-32-

As data contention was increased in our experiments (by increasing the arrival rate or the size of
jobs, or by decreasing the database size), the impact of the various coupling modes on job response time
became apparent. Jobs with S-coupled tasks were the first to exhibit a marked increase in response time.
In general, N-coupled jobs had the best response times, followed closely by CA-coupled jobs, while EC-
coupled jobs performed worse but still better than S-coupled jobs. We also found that the size of RMTs
may affect the relative behavior of the coupling modes — for example, when Actions and Checkers were
significantly larger than External Tasks, CA-coupling performed worse than EC-coupling. Sharing of data
between tasks of a job resulted in improved response times, but the coupling mode choice was found to be

important except when the degree of data sharing was extremely high.

It is clear from our results that transactions should be kept as short as possible. This implies that the
weakest correct coupling mode should be chosen for each rule in the active database. S-coupling, which
combines all of the tasks of a job into a single transaction, always resulted in the worst performance and
should be avoided whenever possible. (Note that the S-coupling results are also indicative of what the
response times would be for transactions that have been explicitly augmented with code to check condi-
tions and perform actions, as is often done in systems that do not provide rule support.) The experiments
involving changes in RMT complexity and in the number of tasks per job also indicate that rules should be
designed with care, as both the distribution of work between Checkers and Actions and the likelihood of
triggering recursive RMTs affected performance significantly. In addition, they indicate that the passive

database should be designed to support efficient access by the RMTs.

A last point brought out by our experiments is that the response of the system degrades rapidly when
it is exposed to very high loads. The internal activity generated within the system in response o external
interactions, combined with restarts caused by increased data contention, can bring the system into satura-
tion very rapidly as the arrival rate is increased beyond a certain point. Load control techniques to prevent
system breakdown under heavy loads (e.g., through the invocation of contingency plans) clearly need to be

investigated.

In the study reported here, we have dealt exclusively with transaction management issues in active
databases. Our model of an active DBMS provides us with a framework for studying other aspects of

active database management as well. The next focus of our research will be the problem of scheduling the

-33-

physical resources (buffers, CPUs, and disks) of an active DBMS in the presence of time constraints such

as deadlines. We intend to study this problem in two phases. Initially, we will restrict our attention to the

problem of meeting time constraints in passive databases. We will then extend our work in the area of

scheduling to active databases; there we will examine the possibility of invoking contingency plans when

time constraints cannot be met by the tasks as scheduled originally. The ultimate goal of this research

effort is to design a set of scheduling policies for an active, time-constrained DBMS that encompass both

transaction scheduling and resource scheduling.

REFERENCES

[Abbo88]

[Blak86]
[Bune79]

[Care88]

[Daya88a]

[Daya88b]

[Daya88c]

[Eswa75]

[Eswa76]
[{Gray79]
[Hans87]

(Hsu88]

{Huds86]

Abbott, R., and Garcia-Molina, H., "Scheduling Real-time Transactions: a Performance
Evaluation," Proc. of the 14th Int'l Conf. on Very Large Data Bases, Los Angeles, CA, Aug.
1988.

Blakeley, J. A., Larson, P-A., and Tompa, F. W., "Efficiently Updating Materialized Views,"
Proc. of the ACM SIGMOD Int'| Conf. on Management of Data, Washington, D.C., 1986.

Buneman, P., and Clemens, E., "Efficiently Monitoring Relational Databases," ACM Transac-
tions on Database Systems, Sept. 1979, pp. 368-382.

Carey, M., and Livny, W., "Distributed Concurrency Control Performance: A Study of Algo-
rithms, Distribution, and Replication," Proc. of the 14th Int'l Conf. on Very Large Data Bases,
Los Angeles, CA, Aug. 1988.

Dayal, U., et al, "HiPAC: A Research Project In Active, Time-Constrained Database Manage-
ment," Technical Report CCA-88-02, Computer Corporation of America, Boston, MA, June
1988.

Dayal, U., et al, "The HiPAC Project: Combining Active Databases and Timing Constraints,"
Special Issue on Real-Time Data Base Systems, SIGMOD Record 17, No. 1, March 1988.

Dayal, U., Buchmann, A., and McCarthy, D., "Rules are Objects Too: A Knowledge Model
for an Active, Object-Oriented Database Management System,” Proc. 2nd Int'l Workshop on
Object-Oriented Database Systems, Bad Muenster am Stein, Ebernburg, West Germany, Sept.
1988.

Eswaran, K. P., and Chamberlain, D. D., "Functional Specifications of a Subsystem for Data
Base Integrity," Proc. of the 1st Int'l. Conf. on Very Large Data Bases, Framingham, MA,
Sept. 1975.

Eswaran, K. P., "Specifications, Implementations, and Interactions of a Trigger Subsystem in
an Integrated Data Base System,"” IBM Research Report RJ1820 (Aug. 1976).

Gray, J., "Notes On Database Operating Systems,” in Operating Systems: An Advanced
Course, R. Bayer, R. Graham, and G. Seegmuller, eds., Springer-Verlag, 1979.

Hanson, E., "A Performance Analysis of View Materialization Strategies,” Proc. of the ACM
SIGMOD Int'l Conf. on Management of Data, San Fransisco, CA, 1987.

Hsu, M., Ladin, R., and McCarthy, D., "An Execution Model for Active Data Base Manage-
ment Systems," Proc. 3rd Int’'l Conference on Data and Knowledge Bases, Jerusalem, Israel,
June 1988.

Hudson, S., and King, R., "CACTIS: A Database System for Specifying Functionally-Defined
Data," Proc. 1st Int'l Workshop on Object-Oriented Database Systems, Pacific Grove, CA,
Sept. 1986, pp. 26-37.

-34-

[Koen81]

[Kotz88]

[Lind86]
[Livn88]
[Morg83]

[Rasc88]

[Rose78]
[Rous82]
[Sel188]
[Stan88]
[StonB6a]

[Ston86b]

[Ston86¢]

[Ston88]
[Tay85]

[Tzvi88]

Koenig, S., and Paige, R., "A Transformational Framework for the Automatic Control of
Derived Data,” Proc. of the 7th Int'l Conf. on Very Large Data Bases, Sept. 1981, pp 306-318.

Kotz, A. M., Dittrich, K. R., and Mulle, J. A., "Supporting Semantic Rules by a Generalized
Event/Trigger Mechanism," Proc. Int'l Conference on Extending Database Technology, Ven-
ice, Italy, March 1988.

Lindsay, B., Haas, L., Mohan, C., "A Snapshot Differential Refresh Algorithm," Proc. of the
ACM SIGMOD Int'l Conf. on Management of Data, Washington, D.C., 1986.

Livny, M., DeNet User’s Guide, Version 1.0, Computer Sciences Dept., Univ. of Wisconsin,
Madison, W1, 1988.

Morgenstemn, M., "Active Databases as a Paradigm for Enhanced Computing Environments,"
Proc. of the 9th Int'| Conf. on Very Large Data Bases, Florence, Italy, 1983, pp. 34-42,

Raschid, L., Su, S. Y. W., "A Transaction Oriented Mechanism to Control Processing in a
Knowledge Base Management System,” Proc. 2nd Int'l Conf. on Expert Database Systems,
Tyson’s Corner, VA, 1988, pp 163-174.

Rosenkrantz, D., Stearns, R., and Lewis, P., "System Level Concurrency Control for Distri-
buted Database Systems,” ACM Trans. on Database Systems 3, 2, June 1978.

Roussopoulos, N., "View Indexing in Relational Databases," ACM Trans. on Database Sys-
tems 7, No. 2, June 1982, pp. 258-290.

Sellis, T. K., and Roussopoulos, N., "Deep Compilation of Large Rule Bases," Proc. 2nd Int'l
Conf. on Expert Database Systems, Tyson’s Corner, VA, 1988.

Stankovic, J., Zhao, W., "On Real-Time Transactions," Special Issue on Real-Time Data Base
Systems, SIGMOD Record 17, No. 1, March 1988.

Stonebraker, M., "Triggers and Inference In Database Systems," On Knowledge Base Manage-
ment Systems, Brodie and Mylopoulos (Eds.), Springer-Verlag, 1986.

Stonebraker, M., and Rowe, L.(editors), "The POSTGRES Papers,” Memorandum No.
UCB/ERL M86/85, Electronics Research Laboratory, University of California, Berkeley, CA,
5 November 1986.

Stonebraker, M., and Rowe, L., "The Design of POSTGRES," Proc. of the ACM SIGMOD
Int'l Conf. on Management of Data, Washington, D.C., 1986.

Stonebraker, M. (editor), "Readings in Database Systems,” Morgan Kaufman Inc., 1988.

Tay, Y., Goodman, J., and Suri, R., "Locking Performance in Centralized Databases,” ACM
Transactions on Database Systems, 10, 4, December 1985, pp. 415-462.

Tzvieli, A., "On The Coupling of a Production System Shell and a DBMS," Proc. 3rd Int'l
Conf. on Data and Knowledge Bases, Jerusalem, Israel, June 1988.

APPENDIX: A Coupling Mode Example

The purpose of this Appendix is to illustrate how one can exploit rule semantics to determine where

transaction boundaries should be placed in an active DBMS. In particular, we use an example based on an

inventory control rule to show how changes in the semantics of the rule affects the way in which ETs and

RMTs can be coupled into transactions. The coupling alternatives discussed here are a subset of the tran-

saction coupling modes that can be specified for rules in the HiPAC system [Daya88c].

-35.

Parts(pno, pname, size, weight, importance)
Stock(pno, quantity, ordered)
Prices(pno, supplier, cost)

Figure Al: Information About Parts in Stock.

In this example, we will assume that we have an active DBMS controlling the operation of a com-
pletely automated warehouse, with parts being requested at terminals and obtained from the warehouse via
a computer-controlled delivery system. Figure Al summarizes the part-related information that is kept in
the passive portion of the database for this application. The DBMS stores a description of each part, the
quantity of each part both in stock and on order, and the current price for each part from each supplier that

carries that part. Checkouts from the warehouse are monitored by the inventory control rule presented in

Figure A2 When a checkout of a critical part reduces the sum of the amount in stock and the amount on
order to a level below 100, the rule places an order for additional 1000 parts from the supplier who is offer-
ing the part at the lowest price at the moment. The ordering action itself is performed by a procedure

called PlaceOrder, which generates a requisition and also updates the number of part instances on order.

Figure A2 says nothing about how transaction boundaries should be imposed for the inventory con-
trol rule. One possible coupling mode in the HiPAC system is N-coupling. With N-coupling, a user tran-
saction that updates the quantity on hand for a part will cause HiPAC to schedule the condition-check for
the rule to be performed as a separate transaction. Then, if this condition-checking transaction detects that
the part is both critical and running low, the part-ordering action will be scheduled as a third, separate tran-
saction. These scheduling decisions are reliable in the sense that the system guarantees that the condition
will be checked eventually (despite system failures) and that the action will eventually be performed if the
condition is indeed found to be satisfied. However, all rule-related processing takes place outside the user

transaction (and only if it completes successfully). N-coupling’s advantage is therefore that it minimizes

3 The language used to express the rule in our example is not the actual HiPAC rule language; it is simply an informal, relation-
al calculus-like language intended to convey the flavor of ECA rules. Identifiers preceded with § are variables used to capture and pass
values from one part of a rule to another.

-36 -

both the impact of the rule on the user transactions and the length of the rule-related transactions; however,
it can potentially permit the placement of multiple orders (if several orders for the same critical, low-

quantity part occur within a sufficiently short time period).

A rare possibility of multiple orders may be tolerable in some applications, but other applications
may deem it intolerable. In the latter case, HIiPAC's CA-coupling mode can be used to prevent double-
ordering. With this coupling mode, the condition-check and the action (if needed) take place as a single,
separate transaction; again, this transaction is scheduled (reliably) by a user transaction if it updates the
quantity on hand of a part. As in the fully decoupled (i.e., N-coupled) case, CA-coupling adds no rule-
related processing to the user transaction. And, since the condition-check and the action occur together as
a single transaction in this case, it is guaranteed that double orders will not be placed. However, it is possi-
ble for potentially long delays to occur between the update to the quantity on hand and the subsequent

placement of an order, as might happen if the system is heavily loaded.

If the needs of the application dictate that the placement of an order is a prerequisite for the success-
ful delivery of a critical part which is running low, then the entire execution of the rule must take place as
part of the user transaction. In this case, HIPAC’s strictest coupling mode, S-Coupling, must be specified
for the rule. With this coupling mode, HiPAC will ensure that the delivery of the part will occur only if the

ordering action (if required) is performed successfully.

on:
update quantity of Stock(3pno, $quantity, $ordered)

if:
(S in Stock where S.pno = $pno and S.quantity + S.ordered < 100)
and (P in Parts where P.pno = $pno and P.importance = "critical")

then:
PlaceOrder($pno, $supplier, 1000)
using Ssupplier =
(P1.supplier from PI in Prices where P1.pno = $pno and
PI.cost = (min(P2.cost) from P2 in Prices where P2.pno = $pno))

Figure A2: Inventory Control Rule for Critical Parts.

-37-

