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ABSTRACT
Consider solutions (H(x,e),G(x,e)) of the von Karman equations for
the swirling flow between two rotating coaxial disks
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1.1) e + HH''' +GG' =0 ,
and
1.2) €G'' + HG' - H'G =0 .

We also assume that !H(x,s)l_i B/e while lG(x,e)' < B. This work considers
the shapes and asymptotic behavior as € -+ 0+. We consider the kind of limit
functions that are permissible. The only possible limits (interior) for
G(x,c) are constants. If that limit constant is not zero, then %?-H(x,e)

will also tend to a constant.
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SIGNIFICANCE AND EXPLANATION

Under appropriate conditions the steady-state flow of fluid between two
planes rotating about a common axis perpendiculaf to them may be
described by two functions H(x,e), G(x,e) which satisfy the coupled system
of ordinary differential equations

eHV + HH''' + GG' =

|
[=]

eG" + HG' - H'G 0.

i

The quantity € > 0 is related to the kinematic viscosity and %-= R is
usually called the Reynolds number.

These equations have received quite a bit of attention. First of all,
people who are truly interested in the phenomena modeled by these equations,
e.g. fluid dynamicists, are interested in this problem. However, as these
equations have been studied by a variety of mathematical methods, they have
taken on an independent interest. The major methods employed have been
(i) Matched Asymptotic Expansions and (ii) Numerical Computations. In both
approaches technical problems have appeared. There may be "turning points,"
i.e. points at which H(x,e) = 0. Such points require special and delicate
analysis within the theory of (i). As numerical problems, these equations
are "stiff" - precisely because ¢ 1is small. The occurrence of "turning
points"” only makes computation more difficult.

For these reasons, these equations have become "test” problems for methods
of "matching in the presence of turning points" and "stiff 0.D.E. solvers."
However, when one has "test problems,” one needs to know the answers.
Unfortunately here the answers are largely unknown.

In this report we study the asymptotic behavior as, € becomes smali.
A wealth of qualitative information is obtained which will enable one to

further the various "test" programs.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



ON THE SWIRLING FLOW BETWEEN ROTATING COAXIAL DISKS,
*
ASYMPTOTIC BEHAVIOR I.

(1) @)

Heinz Otto Kreiss ~° and Seymour V. Parter

1. Introduction

In 1921 T. von Karman [5] developed the similarity equations for incompressible
axi-symmetric fluid flows. In 1951 G. K. Batchelor [1] used the von Karman approach
to study the fluid motion between two rotating planes, rotating about a common auis
perpendicular to them. Despite the passage of time and the work of many people, this
problem is far from being completely understood.

Following Batchelor, K. Stewartson [20] made a further study of the problem and
disagreed with several of Batchelor's basic conclusions. 1In the ensuing years many
people have attacked this problem. Numerical calculations have been carried out by
Lance and Rogers [7], C. E. Pearson [15], D. Greenspan [3], D. Schultz and D. Greenspan
{19}, I.. O. Wilson and N. L. Schryer [23], G. L. Mellor, P. J. Chapple and V. K. Stokes
{13}, ¥. D. Nguyen, J. P. Ribault and P. Florent [14], S. M. Poberts and J. S. Shipman
[17). Formal matched asymptotic expansion methods have been applied by A. M. Watts [22]
who also did numerical calculations) K. K. Tam [21], H. Rasmussen [16], B. J. !ztkowsky
and W. L. Siegman [12]. Undoubtably many others have also worked on this problem and we
are unaware of their efforts.

Rigorous mathematical results are a bit sparse. There are (to our knowledwe) exactly
three papers concerned with the existence question, S. P. Hastings [4], A. R. Elcrat [2]

and J. B. Mcleod and S. V. Parter [10). The first two obtained existence and unicueness
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%) . The third concerns itself

tesults for small values of the Reynolds number (R =
only with the case of counter-rotating planes. An existence theorem is obtained for
all € > 0 and a complete asymptotic description (as e = O+) is given for the solu-
tions obtained. Not a word is said about unicity. A later paper by McLeod and Parter (11}
gives a negative result (in the limit as € -+ 0) of the existence of solutions which
are monotone in the angular velocity. That results contradicts a conjecture of Batchelor.

"The interplay between all of these approachs has been extremely profitable and
interesting. The conjectures and remarks of Batchelor and Stewartson, the "shapes"
obtained in numerical calculations and the general gualitative results of the formal
asymptotic expansions have all led to “target" questions. In their turn these target
questions have been studied analytically, numerically and by formal expansion methods.
For example, the results of [10] cast doubt on the calculations of [3] and a refined
method was proposed in {19]. One of the goals of [12] was to obtain -~ via formal
etpansion techniques - the solutions of [10].

Let us now describe the problem. Let the planes be placed at x =0 and x = 1l
and rotate about the x-axis with constant angular velocities QO' Ql respectively.
let 9 qe, qx denote the velocities in cylindrical coordinates (r,8,x). Following
von Karman [ 5] and Batchelor [1] we make the ansatz that qQ, is a function of x
alone, i.e. there is a function H(x) such that

q = -H(x) .

Then, as a consequence of the steady state Navier stokes equations we find that
T
q =7 B &
and, there is a function G(x) such that
T
qa =-5-G(x) -

These functions {H(x),G{x)) satisfy the ordinary differential equations

1.1) enl¥ & HEm 4+ GG' = O

1.2) €G" + HG' - H'G = 0



where € 1is the kinematic viscosity. The associated boundary conditions are

1.3) H(0) = H(1) = 0, (no penetration)
1.4) H'(0) = H'(1) = 0, (no slip)
1.5) G(0) = 2Qo. G(1) = 291 .

However, our results are independent of these boundary conditions, Hence
they apply to the cases where one has "suction" or "blowing" on the planes.

In this work we are concerned with the asymptotic behavior of solutions
(H(x,sn),G(x,en)) as e > 0+ wunder the basic hypothesis:
H.l) There is a constant B such that
1.6a) lax, e 3| < B/E_ .

1.6b) 6 (xse ) |

[A

B

This hypothesis has been used, implicitly or explicity, in many of the studies

connected with this problem. There are good reasons for this. For example, if we set

1.7) £=%, BE0 = FHEE), (e = cxe)
then equations (1.1), (1.2) become
4 3
d a a
1.8a) [-d-g—}h+h[dg]h+ga—€—g—0,
a)? a dh
1.8b) {EE} g + h[&f]g - {E)g =0,

on the larger interval [0, ;%}. Many of the formal asymptotic expansion studies [21],
[16], [22] have used this "stretching" and then "matched" with the numerical results of
Rogers and lance [18] for the semi-infinite region, i.e. the von Karman problem.
Numerical studies based on "shoating"™ methods [13], [17] have found it convenient
to make this change and then actually compute (h(E,E),g(E,E)). In fact, Wilson and
Schryer [23] who did not use a shooting method also found these variables convenient
for calculation. Moreover, the solutions found by MclLeod and Parter [12] do, in fact,
satisfy these estimates.

One may integrate equation (1.1) to obtain

1.9) eH'* + HH" + —;-cz -%— 2 = e

3=



where u(e) is a constant. This constant is of some independent interest. For

example, in the semi-infinite problem i.e. single disk or von Karman problem, one sets

1.10) b =2 Linleeo1% 2 0,

Ko
and 1y is a known quantity. On the other hand, in [10] it was found that u(e) ~ -g.
And, of course, in the two disk problem, u{e) is unknown.

In section 2 we set € = 1 and study solutions of (1.1), (1.2) on large intervals
[0,E] with E >> 1. Here we discover several points of interest for the single disk
problem. 1In section 3 we return to the finite interval and values of & < 1. Under
the assumption H.l we are able to make the change of variables (1.7) and apply the
results of section 2. The main results of this section are (i) If u(en) +u as

€, + 0+, then ﬁ > 0, (ii) one may select a subsequence n -+ 0 such that, there is

a constant g_  and for every &, 0 < § < ;b

1.11) Max{|G(x,e ) -g |; 0<8<x<1-6}>0 as ¢ =0.
x "k

Moreover,

1.12) e, ) » 342 .

These results are cénsistent with the suggestions of both Batchelor (who emphasized the
case g_ # 0) and Stewartson (who emphasized the case g, =0).
In section 4 we consider the case U > 0. In this case we find that there is a

constant h_ such that
H(xlE )
"k
—————— - h l; § <x <1 ~-8p>0.
e o|F O ZX S
"

Much of our work described in this paper is based on the properties of the function

1.13) Max

1.14) B(x,e) = [G' (x,6)12 + [H"(x,e)12 .
The basic result, due to MclLéod [ 9], [10], is

Lemma ¢: The function ¢(x,e) satisfies the differential equation

1.15) €% + HY' = 2¢[(GM 2 + ()2,



and, the function

x
@'(x,s)exp{é [ m(t,e)at)

*o0

is nondecreasing. Since it is also holomorphic, it has at most one zero. Thus the

behavior of ¢(x,e) 1is described in one of the following three ways:

{(a) ¢ is monotone decreasing on its interval of definition,

8) ¢

is monotone increasing on its interval of definition,

(v) there is an interior point <y such that ¢' <0 for x <y and 9' > 0 for

X > Y.



2. Some Basic Estimates

In this section we are concerned with obtaining estimates on functions (h(&),g(£)?}
which satisfy the differential equations

iv

2.1a) h™ + hh''' + gg* = 0, 0<E<E
2.1b) g™ + hg' - h'g = 0, 0<E<E
vwhere

2.2) 0<1<E<®
Moreover, these functions satisfy the a-priori estimate

2.3) )] <8, lg@®@| <B.

Throughout this section the letters E, B will denote these constants.

We recall a basic estimate due to Landau [6].
Lemma 2.)l: Let £(&) € CN[O,B] and let n > 0 be a given positive number. There is a
constant C(n,N) depending onlyon nn and N and not on the length E, such that:

for 1 <j<N-1

2.4)

{é—ig]jf]lw scmm gl + ““EEJNfl

Moreover, if n 5_%-3 then

2.5) Hell, <5 Nenll, + 2 1l -

Proof: See [6].

Remark: In most instances this lemma is applied when N is small, however we shall
also use (2.5) when n is large.

Lemma 2.2: Let h(f),g(f) satisfy (2.l1a), (2.1b) and (2.3). There are constants Bj'

j=1,2,... (depending only on B and not on h,g) such that

3 3
d d
2.6 "[as] n [da}g”,,f—‘*j' 0OsE<E.

From (2.1a), (2.1b) and lemma 2.) we obtain

+
Proof: Iet n = - . .
oot (45)
IR0l < sisctn,ar + nll™]l_1 + Biectn,2) + nflg”ll_1.

Ng"ll, < Biecn,a + nll™]|_1 + Bisctn,2) + nllg”|l_1-



Collecting terms and adding the inequalities we obtain

- 28m (][n™V]|_+ llg"]|_1 < 28%(c(n,4) + c(n,2)] .

That is

In™)l, + lle*ll. < 48%(ctn,4) + cn,2)] .

Thus, (2.6) follows from (2.4) and repeated differentiations of the basic equations.

In the remainder of this section we use these estimates and lemma ¢ to obtain
even stronger estimates.

Let

. 2 “ 2
2.7) $(E) = [g'"(E}]1" + [h" ()17 .
Then lemma ¢ (with ¢ = 1) applies. Suppose ¢'(£) > 0 on a "large" subinterval
of [0,E]. Since
2 2

0§¢(£)5_Bl+82 '

then ¢'(£) must be "small" on "relatively large"” sets. Our next result makes this
statement precise. The details of the proof are left for an appendix.

Lemma 2.3: Let

2.82) xg = maxts lell oot il llenll L} o xy =&+
2.8b) K, = fferer1l_ -

Let

2.9) 162 <L <E .

Then for every interval [o,8] € [0,E] of length L, i.e.,

2.10) g-a=1L,
such that
2.11) $'(5) >0, Ee€ [a,B] ,

there is subinterval f[a',8'] T [a,B] such that

2.12a) B - ot > 1112
16K
and
) 174
2.12b) 024" &) 2 () :

-



Moreover, on this interval,

1 1/8
. " < + —
2.12c) 2 )] < (K, + 1) [L]
Proof: The estimates (2.12a), (2.12b) follow immediately from Theorem A of the Appendix
while (2.12c) follows from (2.5) applied to ¢*' with
. 1.1/8
T .

Corollary 2.3: On this same interval [a',B'] we have
-1/4

/8 1/8

2 - -
2.13) (h'*') + (g")2 < BL + (1 + Kl)L ! f_KzL ' .

Proof: Apply (2.3), (2.12b) and (2.12c) to the differential eguation (1.16) (with e =

Temma 2.4: Suppose [a',B8'] € [0,E] is a large interval, i.e.

2.14) gt - ar > —2- 112

16x0
on which

e n ~1/16
2.15) |neer] + Jgm| < kL
where L 1is so big that
2.16) Mo 32 M2 g - an
32K

0
Then there is a constant K4 such that
2.17) @] <xp 2, jgr@] cxa
2.18) @] < x 2.

= L1/32° Applying (2.5) to the function h'(f§) we have

Inell, <232 el + 22732 ne ]

-1/32 f.K4L.1/32 .

1/64

Then, with n =1L we obtain

1 .1/64y, . -1/64 ~1/64
Ieell, <3 2%l + 22 Inll, < k2%

A similar argument gives the result for l]g'"m.

==



Further applications of lemma 2.1 give the following additional estimates.

Lemma 2.5: Suppose [a,8] € [0,E] is an interval on which

2.19) 0 < $(6) < k16

and

2.20) B-a> % 11/32 .
Then, there is a constant M such that

2.21a) l¢° (8] < m7Y/32
2.21b) lom (&) | < m2/84
2.21c) [nrre ey | < w1/
2.214) lam &) ] < mp71/84
2.21e) In*(gy] < m"/%%
Theorem 2.1: Suppose E = +». Then, either $(E) =0, or
2.22) ¢ () < 0, 0<E<o .

Proof: Suppose there is a point EO' 0 5.50 < o at which (2.22) is violated. Then
$*' () > 0, 50 <E < 4o ,
Iet L be so large that we may apply Lemma 2.3 in the interval [EO + L, EO + 2L].

Thus we find an interval [a,B] C [Eo + L,E0 + 2L] such that

lm&)] < /8
and

~1/16

V8 gv@] < ke .

lh”'(a)l < KL
If L is sufficiently large we may also apply Lemma 2.4 to discover that

2.23) loc®)] < r7I26

By the nature of ¢(£), this last estimate holds on the entire interval [EO,EO + L].
However, since I is arbitrary we have

$(8) =0, g <& .

However, since ¢(£) is a holomorphic function, ¢(£) = O.



Remark: This result is similar to a result of McLeod [11]. However, the proof
is quite different, as are the hypothesis.

Theorem 2.2: Suppose E = +®, Then Lim g{f) exists, call it g_. The constant of

E=m
integration u 1is given by
yolal.
Proof: Choose a large number L and let
h(£) = -h(2L - £), 0<E<2L
glg) = g2 - &), 0<E<2L
pe) = M2+ g9 o0cEgaL.

Then, (ﬁ(g),&(g)) satisfy (2.1a), (2.1b) and (2.3). Moreover, ;(5) satisfies (with ~
appropriately placed) (1.16). Finally,

§°(6) = -'(2L - €) >0, 0 <E <2,
As in the proof of theorem 2.1 we apply lemma 2.3 on the interval [L,2L]. Applying

lemma 2.4 we find that

05_5(5)51\41,“1/16, 0<E<L.
Applying lemma 2.5 we find that, as L + +=
R =ow ™V, o<er<rn,
ire) =ow™??, o<cezin,
Ry =oM%, o<zcn.
That is
n(g) =ow V%, Lerc<a,
) =ow 3, Leg<o,
nrvE) =ow %), ncrc<on.

Inserting these estimates into (1.9) gives
1
2
Thus p > 0. If u =0 then g =0. If u >0, lg(i)l is bounded away from zero for

(2.24) g2(€) +u as £+ .

¢t sufficiently large. Let ¢ = sgn g(§), £ large. Then the theorem follows with

g, = (/zmo .

=10~



3. The Asymptotic Behavior of G{x,c)

Returning to the functions (H(x,€),G(x,€)) which satisfy (1.1), (1.2) on [0,1]
we consider their behavior as € * 0+. Of course, we also assume H.l, i.e. (l.6a),
(1.6b). We make the change of variables (1.7) and consider the "stretched" functions
h(£,€), g(£,€) on the interval [O, 7%= 1. We observe that

n

r r-1 r
4a 2 ad
&ﬁd h(g,e) = (&) &ﬁj H(x,e) ,

(1L,

r r
5 d
[dé;] g(&,¢€) (g) [d_x-) G(x,€) .

Lemma 3.1: Let ({H(x,e),G(x,€)} be a solution of (1.1), (1.2) which satisfies (1.6a),

(l.6b). IlLet Bj be the constants of lemma 2.2. Let

12 1.2 .
CO—ZB+ZBI+BB2+B3.
Then
3.2) luter} <c. .

o]
Proof: Using (3.1) we see that

3 2 2
a d 1 2 1 [fa
[ds] h + h{ds] h+ 29 2 [[de]é] :

Iemma 3.2: Let 6, 0 < § < %- be given. There exists an €(8) > Q@ and an M(§) > 0

u(e)

depending only on 8§ and B such that: for 0 < e < €(d) and § i./E.E <1 - § we have

1/64

3.3a) g, | < M&e ™, g€, 0] f_M(G)sl/64

3.3b) Ih' g0 < 1?8, nrge | < wer /12

Proof: Let
' 2 " 2
$(E) = [g'(E,e)]” + [h"(£,e)]° .
Then ¢(&) satisfies (1.16) with € =1 and lerma ¢ applies. Let K_, K. be as

0 1
in lemma 2.3. Let

i e(s) = 62/(32)21(3 }
Then, if 0 < e < €(8)
2 & 1
3.4) 6Ky S5 ==L<7==E.

«11-



Let y{e) be the unique point at which ¢(£) assumes its minimum.

Case 1: Y(e) € 1-6 . In this case
7"/“,

$' (&) >0, 1—51.&:‘55_1-_%5,

$'(€) <0, %65_/555_6.
Th timate (3.4) impli that (2.9) holds f the two intervals L 8 S
e estimate .4) implies a . olds for e n e o/l
1~38 1'%6
7E ,~m;%r- . Hence we may apply lemma 2.3 and lemma 2.4 to obtain subintervals
outside [-7:: 1 }_6] and a constant M(8) so that (3.3a) holds. Since ¢(E) assumes
: -8
its maximum on the boundary of any interval, (3.3a) holds on all of [7:~ 1 7= ]. The
estimates (3.3b) now follow from lemma 2.2.
Case 2: vy(e) ¢ -9 For definiteness suppose (e) < S Then we argue
: /—, 7= . n pp Y i qu
1—61'%‘S
as above to obtain the estimate (3.3a) on a subinterval of [ e 7= ]. Then

since ¢' > 0 for £ > y(e) we see that (3.3a) holds on all of S 3;:;12] . As
before, (3.3b) follows from lemma 2.2.

Lemma 3.3: Let &8, 0 < 6 < %- be given. Let € < e€(8) and let {H(x,e),G(x,g)} be

a solution of (1.1), (1.2) satisfying (1.6a), (1.6b). Then, for § < x <1 - § we have

1/128 1/64

3.5) I-;—Gz(x,e) - e | < M) (e + Be /64

M(G) 1.

Proof: We make the change of variables (1.7), using (3.1) and (3.3a), (3.3b) we obtain (3.5).
Note: While the analysis given in this paper is primarily concerned with "limit"
behavior and families (i.e. sequences) of solutions (H{x,e),G(x,e)) which satisfy
H.l = (1.6a), (1.6b) the estimate {3.5) provides a "check" which may be applied to any
calculated pair {H(x,e),G(x,e)?. We simply must carry out some messy computation.
That is, (i) find a B for (1.6a), (1.6b); (ii) carefully follow the steps of section 2
and compute M(S8); (iii) check (3.5).

Theorem 3.1: Let en + 0+ and let (H(x,sn),G(x,sn)) be a corresponding sequence of
solutions of (1.1), (1.2) which satisfies H.1, i.e. (1.6a), (1.6b). Suppose

3.6) uie ) > ¥ as e, O+ .

-)2-



(Mote: 1In view of lermma 3.1 one can always extract a subsequence so that (3.6) holds.)

Then
3.7a) >0
1

; § < < =
and; for every , 0 8 10
3.7b) Max{le(x,en) -2n]; §<x<1-8}+0 as € o+ .
Moreover, if ﬁ = 0 then
3.8) Max{lG(x,sn)[; §<x<1=-8+0 as e o+ .

1f ﬁ > 0 then there is a subsequence ny + o and a square root, say A, of 2;

such that
3.9) Max{|G(x,e_ ) -al; §<x<1-6}>0 as e > O+.
n, -7 - n

In fact, if

- 1/128 1/64 1 1/64 1 -
3.10a) lute) = ul + Mm@ e/ + B/ + MO s 0 < 5w
then

1.2 9 -
3.10b) ZG(x,en)leu, §<x<1l=-6 .
Thus G(x,en) is of one sign and
3.11) |G(x,en) - /23 sgn G(xlsn)l 7= -
/2

Proof: The estimates (3.7b) follows immediately from (3.5). The inequality (3.7a)
follows from (3.7b). Then (3.8) is apparent. When % >0 and (3.10a) holds we have
from (3.5) and the triangle inequality

%—Gz(x,en) - ﬁl 02

L

w0

Then, (3.10b) follows at once. We then have

lote) - /2 | - et + /ol <o

R . . . 1l
and (3.11) follows at once. Thus, choosing "signs" at a fixed point, say ) =3

we obtain (3.9).

-13-



4. The Asymptotic Behavior of H{x,e) : G > 0

‘Let &, 0 < § < fg be given. Let €(68) be the value determined in section 3
and suppose 0 < ¢ < e(§). Let (H(x,¢),G(x,c)) be a solution of (1.1}, (1.2) on {0,1]
which also satisfies H.1, i.e., (1.6a), (1.6b). We alsoc suppose that there is a
constant 1 > 0 such that

4.1a) u(e) > u/2>0,

4.1b) 2 6% x,e) 2 /4 > o,

[N
ol
(=23

L[]

§ <x<1l-

The main result is
Theorem 4.1: There are positive values Z = s(G,ﬂ), K=K(§), g= o(ﬁ) where & depends
only on 8,‘ﬁ and B, K depends only on § and B, while c(;) depends only on ﬁ

and B, such that, for § <x <1~ 3§

4.2a) 2% e - ute] < R(§)expl-oe /3%y,
4.2b) Hf;] H(x,e)| < ¢ 2 x(s)exp{—ce'1/384}, r=1,23,
4.2¢) |§; Glx,e)| < s—llzx(ﬁ)exp{-ce-l/a’s‘l} .

Finally, there are constants a, b such that

4.3a) Iﬁ:-ﬂ(x,a) - al 5_a-l/ZK(G)exp{-ce-l/384} P
4.3b) lotx,e) - b] < e Y% (8)expl-oe /30 |
4.3c) Ib] = Y2u(e) .

Of course this theorem immediately implies certain limit theorems for subsequences
of solutions.

The proof is relatively straight-forward and follows the general pattern McLeod's
work in [8]. Unfortunately there are many details to check out. We outline our
approach.

Step 1: We make the change of variables (1.7) and consider the functions h(.,e), g(&,€)
on an "interior" interval [a,B8] which satisfies
4.4a) 6//;5_;: <g< (1 =-8//k.,

4.4b) B -a=rLle) = ¢ 1/38
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Step 2: We find an equivalent integral eguation.
Step 3: We prove local uniqueness for solutions of the integral equation.
Step 4: We prove that the desired solution of the integral equation can be obtained
via Picard iteration.
Step 5: We see that the limit of the Picard iterates satisfies the appropriate estimates.
Step 6: We return to the original variables x, H(x,£).,G(x,e).
We can imagine step 1 has been done.

Step 2: The integral equation. Let

4.5a) ho = h{a,c), 90 = Gla,e) ,
ul(E) = g(§,e) - go: uz(E) = h{(g,e) - h0
4.5b) u3(E) = g'(£,e), u4(E) = h'(§,e) .,
us(E) = h"(£,€), uG(E) = h'*''(E,e) .
let
4.6a) U= ( u_,u_,a, ,u_,u )T
- ull 21 31 41 5' 6 ’
[0 o0 1 o o o0 ]
0 0 0 1 0 0
0 0 '~h0 g0 0 0
4.6b) R=16 o0 0o o 1 o '
0 0 0 0 0 1
i o 0 -g, 0 0 -hy |
_ - - - T
4.6c) b = b(u) = (O,O,ulu4 u2u3,0,0, ulu3 u2u6) .

The equations (2.1a), (2.1b) now take the form

dau
4.7) at AU + b(U) .

A direct calculation shows that the eigenvalues of A are the roots of

i
o

2, 2 2 2
4.8) A [go + AT+ ho) |

15



Essentially this same eigenvalue problem arises in [8] and we can ecasily check the

following formulae for the eigenvalues A, , k = 1,2,3,4,5,6. Let

k
1 1 4 2.1/2 2,1/2
T - 4 —
Py 5 By Y3 {(hO + 169.) + ho} >0,
_.1 . 4 2.1/2 | 0 2,1/2
P, = -5 Ny 2ﬁ{(ho+1690) + hil <0,
1 4 2.1/2 2,1/2
T=35 {(ho + 16g,) ho} .
Then, the eigenvalues of A are
4.9%a) Xl = kz =0 ,
R = + 3 = 3 = - i
4.9b) 33 pl it, A4 XB py ~ it
4.9c) 15 = p2 + it, )‘6 = )‘5 = Py it .

It is easy to see that Py >0 and Py < 0 provided that 9 ¥ 0. However,

{(4.1b) gives

4.10a) B> g2 >0/ .
And, for all € we have
4.10b) Il <3 .

Thus a simple compactness argument shows that there is a constant p > 0 such that

4.10c) p2-<-—p<0<p-<—pl°

Let us diagonalize the matrix A. We construct the matrix of eigenvectors. Let

4.11 %o
.1la) m(d) = )‘+ho '
and let
10 my)  mO) mBdg)  mOg) ]
o 1 1 1 1 1

0 O k3m(k3) A4m(k4) lsm(ls) Xsm(?tG)

4.11b) Te | O O A3 X4 AS 16 .
2 2 2 2
o 0 X3 A4 AS 16
3 3 3 3
i o 0 13 A4 As AG 1
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Using the fact that

4.11c) m) = = - , 3<k<6

x*Po 9

one can easily verify that the columns of T are eigenvectors of A and
-1 . -
4.114) T "AT = dlagonal(0,0,k3,k4,ks,k6) = A

Moreover

where "x" marks an element we do not need to compute. (See [8] where an analogous

calculation is carried out.)

let

-1
4.13a) U= 1V, V=7T"0U .
Then (4.7) takes the form

av

4.13b) at AV + a(v) ,
where
4.13c) aw) = v ib(rv) .

Thus, we have essentially found our integral equation.

Lemma 4.1: Let V(E) be any solution of (4.13b). Then

£
4.24a) v () =v (a) + [ a.(vit))dt, i=212,
3 i a2 3

A;(E-8) A (E-B) £ A, (t-B)

4.14b) v, (E) = v (B)e +e [ e a,w(t)at, j =3,4,
Aglem)  Ay(E-a) & A, (t-a)

4le) v (8) = vylae +e [ e? ejvinae, =56

Qa

Proof: Integrate (4.13b).

=)=



Step 3: Local uniqueness.

It is essential that we distinguish between the components vj(E) of V(£). Let

4.15a) llvier|] = max{]vj(E)l; j=1,2,3,4,5,6.}
b

4.15b) N(V(E)) = max{lvj(g)l; j = 3,4,5,6.}
b

4.15¢) M(V(E)) = max{lvl(g) I,lvzte;) I} .

Lemma 4.2: There are positive constants a,,a.,a

;i Y
1135084 such that; if Vv, are each

6-vectors,

lawy - awm |l < a MV - ¥) - N(V) +
4.16)
aMYIN(V = ¥) + a NV - V) [N(Y) + NW)] .

These constants al,az,a3 are uniformly bounded.

Proof: The coefficients of T are bounded functions of. go,ho. A campactness argument
shows they are uniformly bounded. The form of T shows that: for k = 3,4,5,6 and
j=112

ﬁjuk = ijjk(V3'v4'V5'v6) + ij(v3,v4,v5,v6)

vhere ij is linear and homogeneous while ij is quadratic and homogeneous. Thus,
(4.16) follows from the form of b(U).

Lemma 4.3: Let M(S) be the constant of lemma 3.2. Let Kl be a uniform bound on

-1
Irl,.  tee
1/192

4.17a) KlM(G)e =0 ,
4.17b) 1006 =28,
and assume that
4.17¢) ) 5_—;— .
Assume that

- 1
4.18) (al + a, + 2a3)L(g)e 235

Let vl(a), Vz(u). V3(B). V4(8). Vs(a). Ve(a) be specified so that

maxflvl(u)l.lvz(a)l,lv3(3)[.|v4<3)l,|v5(a)|,lv6<a)l} <6 .

«18-



Then, there is at most one solution V(E) of the integral equation (4.14a), (4.14b),
(4.14c) with these boundary values and satisfying
4.19) lveer]] <e .

Proof: Suppose Y(E),W(§) are two such solutions. Let

"

4.20a) D = max{|la(v(&)) -awmEN]: « <& <8},

4.20b) E

i}

max{|lv(&) -w®|l: «<E<8}.
From lemma 4.2 and (4.19) we have

4.21a) DS (a +a,+ 2a,)EB .

From the integral equation we see that

4.21b) E < L(e)D < Le)(a) + a, + 2a,)EB .

2

Thus, either E = 0 or

1l f_L(e)(al +a, + 2a3)8

which contradicts (4.18).

Step 4: The Iteration.

Let vl(a), vz(a), v3(8), v4(6), vs(a), vs(a) be determined from h(&,e), g(§,e)
via the transformations (4.5b), (4.13a). We seek to recover the appropriate V({) via
Picard iterations. That is, let VO(E) = 0. Assuming that vr(g) has been computed

we determine Vr+l(£) from the equations

£
4.222) vHE) =v (@) + [ a.wT(enar,  §=1,2,
3 3 5 3
A (E-B)  AJ(E-B) & =A.(t-B) )
4.220) vilg) = v, (Be ] +e § e I a.wTEnar, 3=3.,4,
3 j A 3
A, (E-a) A (E-a) E =i, (t-a)
4.22c) v§+1(5) = vj(u)e J +e? f e 3 dj(Vr(t))dt: j = 5,6 .

a

lemma 4.4: Let Vr(E) be computed as above. Assume that

1/4
4.23a) d(a1 +a, + 4a,)8 <1,
and
4.23b) SADTRARE
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then

4.24a) M E) - vl < 25_1 ,
4.24b) NV (E) - Vil ieyy < _géi [épl(ﬁwﬁ) . epz(E-a)] '
4.24c) MVE(E)) <20,
4.244) NV (£)) 5_2e[¢pl(€—8) + ep2(€~a)] .
(x)

Moreover, the functions V (£) converge uniformly to a function V(£) which satisfies
the integral equation (4.14a), (4.14b), (4.14c) and

4.25a) M(V(E)) < 28 ,

p, (E-B) p,(E-a)
4.25b) N({V(E)) 5_29[¢ . + e 2 ]

Proof: We observe that (3.2) together with the choice of L(e) implies that the
solution V(E) determined by (h(£,e),g(§,e)} satisfies

4.26) lvieyll <o .

therefore, a-fortiori, the boundary conditions satisfy the same estimate. Thus, (4.24a),
(4.24b) are satisfied for r = l. We proceed by induction. Assume that (4.24a),

(4.24b) are satisfied for «r

il

1,2,«+.,r.. Then, (4.24c), (4.24d) are also satisfied

0
for r = l,2,...,ro. Applying lemma 4.2 we have
r r r.- 2 p, (E-8) p.,(E-a)
law % -aw © @Enll <2~ (@ +a v aap et ve? ]
- ro—l 1l 2 3
2
4.27) ;
7/4 1 0, (E-8) p, (E-a)
< 8 [; ! + e 2 ] -
\ 2
Substitution into (4.22a) gives
r . +1 r 7/4
RO @ -vl@] <ZE0 . yoa,2.
2

However, using (4.23b) we have (4.24a) with r = r, 4+ 1. Substitution of (4.27) into

{4.22b) gives
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r +1 r 7/4 p,(E-B) B p,(E~t)
v, @ - vlw] <Lt el ae
29 &
/4 p (E-a) B p.(E-t)
L2 [ el at, § =3.4 .

r
0
2 13
Since £ < t < B over the interval of integration, we have

DZ(E-G)]

+ e

r +1 r 7/4 o, (E-8)
L 5] 1 .
0 (EL [é y 3 =3,4.

lv,® @ - vj°(s)l <

2 0

A similar computation applies for 3j = 5,6. Thus, using (4.23b) we obtain (4.24b)

for r = ro. Thus, the lemma is proven.

Proof of Theorem 4.1: Let § be replaced by %-6. That is, replace e(8§) by e(%-&)

and replace M(§) by M(%-G) and consider [a,B] which satisfy

4.28a)

N

%f_u< pea-Ltase.

Let E(G) be the largest € so that (4.17c), (4.18), (4.23a), (4.23b) are satisfied, and

4.28b) J74 8
-2

s Q-39

O E

an interval [c,B] which satisfies (4.28a) and (4.4b).

Then if 0 < ¢ f_E(G), every point £ € [ ) can be placed at the center of
On this interval we construct the function V() of lemma 4.4. However, the
local uniqueness result of lemma 4.3 assures us that this V(E) is precisely the
function V() obtained from {(h(f,e),g(£,e)) via the transformations (4.5a), (4.5b),
(4.13a). Let K, be a bound on ”T][ as ho, 9%
(4.10a), (4.10b). Then, due to the form of T,

range over the values allowed by

-1/384}

4.29) |uj(E)l :_4K28exp{— %‘e R j = 3,4,5,6.

vhere p 1is the constant of (4.10c). Let

1

4.30a) K(8) = 4K,K M(5 §) < 4K,0 ,
- £

4.30b) o=5.

Then (4.2b), (4.2c) follow from (4.29) and (3.1l). The estimates (4.2a), (4.3a),

(4.3b), (4.3c) follow from these.
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The next theorem is an immediate consequence of theorem 4.1.

Theorem 4.2: Let <H(x,cn),G(x,£n)) be a seguence of solutions of (1.1), (1.2) which

satiafy H.1l. Suppose these are constants W, 9, with g: = 2y such that

4.31) u(e ) >0,
1
and, for every &, 0 < § < 0 ve have
4.32) max{IG(x,en) - gml; §<x<1l~-8}+>0 as e, > 0+ .

Then there is a subsequence €_ - 0+ and a constant ho so that

4.33) max“{l/gl Hix,e ) - h

k

ol; §<x<1-6}l+0 as e ~+0+.

Moreover, if en <+ 0+ and there is a function h(x) such that

k
4.34a) max{|7é;— H(x,e ) -h(x)]; § <x<1-6}+0 as ¢ =+0,
n, Tk
then
4.34b) h(x) = const .
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Appendix

In this appendix we prove the following very plausible result:

smooth function defined on a very large interval and if - ¢ (&)
monotone, then there are relatively large intervals on which

tunately the complete proof is technically complicated.

Theorem A: Let ¢(f) satisfy

a.l) 0 < ¢(&), 0<E<L,
A.2) $*(€) >0, O0<E<L.
et

2.3) x, = maxL, Joll_. ot Il el )

and suppose that

2

a.4) 16K, < L .
Then, there is a subinterval [a',B8'] T [0,L] such that
A.5) B'. - a' > 16K21+ - 2
0
and
11174
a.6) 0 <¢'(8) < [E] .

We require a basic estimate based on the mean value theorem.

if ¢(8) is a
is both positive and
' (5)

is small. Unfor-

Lemma A.l: Let f € Cz[O,L]. Suppose
2
a.7) "—é—z-f <M,
ag @
and
af
A.8) 'ds (EO)‘?_A>0-
Let
a.9) b = min{2 E, L~-E
2M ‘-0’ o
Then
af A
A.10) |§E_ & 25, E -b2E<E +‘b .
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1 ]1/4 8K

Proof of Thecorem A: Let [E = 4§ > -—L-Q- « We construct a sequence of points

0 < X, < xl < *++ € <L with the following properties

¢'(x0) > 8,
¢'(x)=l6 ¢»'(x)>§- for x_ < x < x
1 2’ 2’ 1’
¥ — L]
¢(x2)-—<5. $'(x) < 6, for X 2x<x,,
[ = 1 ' §.
$ (x2j+1) 5 s, ' (x) > > for x_, <x < x2j+1 ’
[ - v
¢ (x2j+2) s, $'(x) < §, for X, < _<_x2j+2 .

To accomplish this we proceed as follows. If ¢'(0) > &8 then X, = 0, if not %,
is the first point at which tb(xo) = 6. Let x, be the first point larger than X,
such that ¢(xl) = % § and so on. If Xy 2 % L then the theorem is true. Assume

xo < %— L. By Lemma 1 the number of intervals is finite. Let N be the last index.

Then x < L. If N even, then ¢'(x) _>_—6- for x_ < x < L. Thus

N — 2 N
K > 4x) > (- x
0 - L' =2 N°
That is
2 L
L-x) 5% 27-

If N is odd, then ¢'(x) < § for x_< x 2 L. Thus, we can assume IL - X

L
< -,
N — - 4

N
Therefore

1
- > .
X X > L

Let R be the number of interval (x2 ) = on which ¢'(x) > -g—-. We first

3" %2541
seek a bound on R. By Lemma A.l



Thus

25+1
§ 8 ,
R22K012£ $'de <K,
J‘zj
and
A.11) R < aK2/8°

Similarly, the total length L' of these intervals satisfies

s 25+1
AR N $'at < X,

J xzj
and
A.12) L' < 2K /6§ < L.

- 70T — 4
The number of intervals (xzj-l'xzj) - on which ¢'(x})< § - is (R % 1) and their
total length L" satisfies
L L

" — - T —
A.13) I.~_>_2 L_>__4.
Thus

2
max (x ) L L8

—Z®R+ 1D >

. - X,
j & A7l 404K + 69

which proves the theorem.
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