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ABSTRACT

An algorithm for the nonlinearly constrained opti-
mization problem is presented. The algorithm consists of
a sequence of major iterations generated by linearizing
each nonlinear constraint about the current point, and
adding to the objective function a linear penalty for each
nonlinear constraint. The resulting function is essen-
tially the Lagrangian. A Kantorovich-type theorem is given,
showing quadratic convergence in terms of major iterations.
This theorem insures quadratic convergence if the starting
point (or any subsequent point) satisfies a condition which
can be tested using computable bounds on the objective and

constraint functions.






A QUADRATICALLY CONVERGENT LAGRANGIAN

ALGORITHM FOR NONLINEAR CONSTRAINTS

1. INTRODUCTION

Among the most appealing methods for nonlinear con-
straint problems, from a theoretical standpoint, are vari-
ous versions of the cutting plane and penalty function
methods, (see e.g., [McCormick, 71]). However, many of the
penalty function methods become ill-conditioned due, for
example, to the penalty becoming infinitely large. The
cutting plane methods become ill-conditioned due to the
linear dependence of the linearizations in the constraints.
These difficulties are largely overcome by the algorithm
presented earlier [Rosen, Kreuser, 71], and discussed in
more detall in this paper. The penalty terms remain
finite and the nonlinearities in the constraints are put

into the objective function, [Beale, 67].

The algorithm is motivated by the existence of efl-
ficient computational algorithms for convex linearly con-
strained problems [Fletcher, 71], and reduces the original
problem to a sequence of such problems (major iterations).

A major iteration is generated by linearizing each non-



linear constraint about the current (infeasible) point,
and adding to the objective function a linear external
penalty for each violated nonlinear constraint. The re-
sulting function is essentially the Lagrangian correspond-

ing to these violated constraints.

A similar penalty 1s used by Kelley and Speyer
(1970) in their improvement of an earlier method [Rosen,

617.

The idea of putting the nonlinearities in the objec-
tive was discussed by Beale (67) and a certain implementa-

tion was considered by Wilson (63).

Robinson (72) has developed quadratic convergence

for a similar algorithm. A comparison of the two algorithms

is discussed in a later section. The assumption here on

the Hessian of the Lagrangian is stronger than in Robinson's

paper, however here we obtain explicit estimates for the
guadratic convergence neighborhood in terms of information
at the point xo . The estimates here could be used as a
stopping criteria with an explicit bound given on the
distance from the final point obtained by the algorithm to

the optimum point.

For the algorithm presented below a Kantorovich type

theorem is given showing quadratic convergence in terms of




major iterations. Computational results verify this qua-
dratic convergence even when some of the assumptions of

the theorem are not satisfied.

2. THE ALGORITHM AND ASSUMPTIONS

2.1 The Problem

The problem may be stated as

Min ¢O(X)
subject to
.(x) <0
¢J()__
X € En
n 1 . . .
¢j : B > E are convex and differentiable, j=0,1,...,m
) %
and an optimal solution x is assumed to exist.

2.2 Definitions

\ k . \ . . .
For any fixed x we define the linecarization of

¢i(x) about xk as

S I C e I LT C Lo Y E s B EE R I

where V¢ denotes the gradient (column) vector and Vo'



is its transpose. Also define the set of indices

I(x) = {j|¢j(x)3p} , and

the corresponding Jacobilan matrix

J = J(x) = [V¢j(x>]jel(x)

Finally, we denote by Jf(x) the generalized inverse

of J(x) , where

} .

st = gyt

J'
provided J'J 1is non-singular. Also let

p'(x) = (¢1(X),¢2(X),---,¢m(X))

Given

o= (X SA )

1’X2"" m
Define

? (
Ald.(x)
Q]‘ — l (:] (]

P(x,A) oo (x) +

then

i

L

VO(x,A) = VW) = Ve (x)
J

lkjv¢j(X)




and

2 2 2 v 2
VIR, A) = Vh(x,A) = Ve () 4 T AV e ()
j=1 "
To simplify notation we let
I .
Hj(x) = V ¢j(x) jg=0,1,...,m

H(x) = Vu(x,2)

with the dependence on A 1implied.

Given Xk and kk define ik to be that point

for which

vo (5,05 = o

Note that the existence of ik will follow from the

strict convexity in x of Y(x,)\)

Define ik as
L e A G C O EIC DR T
Note that

7 GEY 85k = - ()



so that ﬁk satisfies the linearized constraints.

Furthermore ﬁk will exist since we assume that the
columns of J(xk) (or gradients of constraints) are

linearly independent.

2.3 The Algorithm

Step 0:  Start with an arbitrary point xO

s

Step 1:  Given xk compute XK by

k

Xk - —JT(xk

)Ve,(x7)

Step 2: Compute XK+1 as optimum point of

- K.,
Min ¢O(x) + E Xj¢j(x)

AL>0

J
subject to

k s 4 .
hj(x) <0, j=1,2,...,m
Step 3: Are Kuhn-Tucker conditions for the
problem 2.1 satisfied
No xk+l - xk s go to step 1.

Yes: xk = xk+1 STOP.




Remark 2.3.1

It is assumed that the problem has at least one
nonlinear constraint. If there are any linear con-
straints they are included with the linearized con-
straints in the subproblem only and do not appear in
the Lagrangian function. The point XO defines a set
of m nonlinear constralnts which are violated,
¢i(xo) >0 , i=1,2,...,m . It is assumed that
1 <m <n , and that these m constraints are the
active nonlinear constraints at X* . By active we

%
mean that ¢i(x ) =0 , Ay > 0 i=1,2,...,m , where

the A? are the corresponding set of optimal dual

nultipliers.

Remark 2.3.2

The convexity of the problem may allow a global
convergence proof to be given or at least a global con-
vergence criteria is available. If x* and X% are
the optimal pair, then because of the convexity of the

constraint set we have

POET < pGE ) = e )

so that if



w(xk,Ak—l) > w(xk—l,kk—g) + G(IIXK__XK«lII)

(6(-) is a forcing function) then we have a global
convergence proof. This has been observed computa-

tionally. The idea is further explored in [Kreuser, 73].

Femark 2.3.3

We desire a least squares estimate of AK S0

that we might compute Xk in general as

min || 7o, (x) + SE YIS

A>0
The point x¥ is assumed to satisfy the strict conple-
mentary slackness assumption with linear independence
in the gradients of the active constraint set. There-
fore in the 1limit (xk+x*) , which is our main concern

here, the procedures are identical.

2.4 Assumptions

The following are assumed to hold on the set

2y ) = {XI]|x~xO|Iip}

for sone o > 0




o1 (3 (0T ()72 < 82
Hhere

J(x) = EV¢1(X>,V¢2(X),»--,V¢m(X)]

no

4.2 ]]Hj(x)|] < By j=0,1,...,m

2.4.3 cond(HJ(x)) <C J=1,2,...,m

H

(cond(+) is the condition number of the matrix, i.e.,
the ratio of the maximum to the minimum eigenvalue)

anrd Hg(x) ia positive semi-definite
{

2. 4.4 Il V¢i(x)![ivD i=0,1,...,m

2.&.5 li! v(bo(x) _<_U

Let
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20C

Ky = grL2) 6|+ -

0 (x H 1/2

e R TC Sl
H

Note that 6(x) takes on the character of an optimality

function [Mangasarian, 721].

3. CONVERGENCE THEOREM

Given the problem, 2.1, definitions, 2.2, algo-
rithm, 2.3, and assumptions, 2.4, as previously stated,

0 X .
assume X satisfies

BB
H 0 0 .0 1
3.0.1 —= || ¢(x)|| + || W(x A < ——
200y ~ 20BR°
(or 8(x%) < f%)
. 1
with p > =

Then the sequences {xk}, {}k}, and {%} exist and

satisfy the following:

R I 4 B I e

)

ISR e
e

k %
3.0.3 X € QO (=) and x = x¥ g QO (

with || 6(x )| =+ 0
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3.0.4 AT >+ A% with || vy

K+l 112
3.0.5 [ I e
Proof: The proof follows by establishing the following
five lemmas:

Lemma 3.1: R =

= =

2 1s an upper bound on the condition
1 k
)

number of Viw(x, A for X € QO (p) and

R CA G EIC IR C S PPN

with Xk € {Xk}
Proof: We have

v¢0(ik) +oIEEOE = 0

50
ky 2
Foa (9117 = Mo @oank > DD
B
or

1A ] < 8l vo,ll < 8D

equlvalently
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” )‘klll f_ml/QBD

Also
Lk k
1 vogll = 19| < z[af] ||vo, |l

, ky _ k
f_DZ“‘il =D H>‘ Hl

1 Yol K 1/2
Ei D i H Hl m gD
Now consider
m
voy = Hy + ) ASH, , x? >0
i=1 **
Then for any y
Ml w12 = 2 <y ey -
1+ OCH - Y-

(1+m1/28D)BH|ly||P

i

2ml/

I A

2 2
DBy |l v 17 = sl vl

o
-
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Lemma 3.2:

|ka+l__xk|! < Rl/gliﬁk-XkH
bR 2y | 25 - )
Proof: We have
[ I e N B E |
Now: since X%° is feasible
w(Xk+l Xk) < w(Ak k)
Also
PR = ) ¢ 12T - E 9
and
P25 = w0+ 1280 - 9% EEN
therefore we have
o | JHL gk 2 <M2Hﬁ K12

this gives

R IS na[Ers |

< R

+o]] xS - %
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and so

1 k 1/2 K k
Bl 72 I

< R X -X

+ (1+R1/2)|| Xk"ikH

Lemma 3.3:

Sk 1 k Kk
175 -x"] < m1||Vw(X A

Proof: We have
~k .k

G = G w12 - 79 %)

and

w(ik,kk) - w(xk,Ak) + VW‘(XK,AK)(QK-—XK)

o125 - K% k)

adding these we have

o o D [0}
17225 - #9200y 4 1722 - K9Pk )

~k k
X -x)

= —vpt (A ¢

50

~K 1 k < ~K k
T e S [ TE S S N [ [ |
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It %% = x¥ then the lemma holds trivially.

Otherwise X # X and

< v ]
1

Lemma 3.4:
I ﬁk"xkll < 1/2M28ml/2[|xk-—xk~l[}2
Proof:
125 =012 = o () (@ BT T ()
< 8% e 1®
since
h?"l(xk> <0 5=1,2,...,m
we have

¢j<x“> - h§’1<xk> + 172055 - Ky ek

50

M
161 < m()
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and
1/2|lxk~—xk_l}{2

< 1/2M26m

Lemma 3.5:

B

RSN SR P

Proof:

Let

Ty = () aEN) e (O

From Kuhn-Tucker conditions at xk , we have

k- k- !

3.5.1 v (KK = Lp i h e

k
for some u > 0 80
Vo, () + TGEONTT = LGS
and
”Jr<xk>v¢o(xk> . Xk“l - JT(XK)J(Xk“l)UK
and so

1l
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Now

k-1

v (K00 = pe K ETLy o GF Sk

- _J(kal)uk + J(XK)JT(XK)J(XKNI)UK

k-1, k

= - [T - 3T 1R

k-1, k

= —P(XK)J(X Ju

where P(xk) = [I - J(XK)JT(XK)] is a projection opera-

tor.
Now since

P(x5)I(x5) = 0

and
PO <1

we have

35,2 WG < IR - sGETH R

k k k-1

<Mt T - x ]

We also have from 3.5.1



50

3.5.3 NN R s S|

We also have

Vw(xk"l,kk“l+uk) _ vw(xk—l,Kk_l) + J(xk l)uk
S TTC S G W ISP St
from 3.5.1.
Then since
min || vy (70 ]
A
. . _ 4 k-1
is attained for A = A we have
- - - - k
5500 |l ve TR < e
< v GETE R Sy AT )
k k-1
< M| xT - x|
also
3.5.5 [RIE N S IR R T e e S |
T T e G W O SN |

A
o
=

N
!
>
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from 3.5.4.

Then combining 3.5.2, 3.5.3, and 3.5.5 we have
. k .k k - 2
v GRS )] < 2ems )] x - |7

7]

Combining the results of Lemmas 3.1-3.5 we obtain

(R R TC S IR Far
Since
a(xo) < é%
we have
%X & QO(%) and XK > x* ¢ QO(%)

similarly AKX > 2" with || Wl ~ o0

The estimate

k
[ESEEE IR

follows directly from the above as, for example in

[Kantorovich and Akilov, 647].
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NUMERICAL EXAMPLE AND COMPUTATIONAL RESULTS

We first give a simple numerical example in

“

D

variables with 2 quadratic constraints and a linear

objective function. The

constants needed to determine

the domain of convergence are easily obtained for this

example. The problem 1is
Min c'x ¢1(x) < 0
b1 -
% ¢,(x) <0
where
c = (‘-659 _'5) "'-7)
¢1(x) = .15xl + .2x2 . x3 )
_ 2 2 ae?
¢2(x) = .25x1 +.15x2 + .3x3 T
This has the optimal solution
¥ % % 1.0
Xy % X, T x3 = 1.
with
: A* = 1.0
Al = .5 5 = L

The following values of

2.4 are readily computed for

the bounds defined 1n section

*

X c¢lose to X




We obtain

B.. ~ .60

and

=
no
I
n
W
-l
™
fan
l
-3
eo]
}_J

588
8 R5/2 1 55 037,
GCH

w =

. . . 0o .
Thus gquadratic convergence is guaranteed 1f X is

chosen so that (see 3.0.1).

ne 63 e+ v a0 < .66 x 107°

¥
Furthermore, the mininum point X lies within a

specified neighborhood of XO , glven by



| % -x

¥
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0
I

1 ~ -
< =T .5 x 10

4

The above problem was run and the results are tabulated

below.

[SY

Xk
1

.400000000000+001
.140814126335+001
.141540253018+001
.100344693378+001
.100177824399+001
.999999796560+000
.999999998328+000

Xk
2

. 300000000000+001
.209147185050+001
.117819855510+001
.10L4418228872+001
.100017776652+001
.100000080687+001

.9999999986 Th+000

k

*3

.200000000000+001
.212616067179+001
.115405773821+001
.105338714695+001
.100032113343+001
.100000114609+001

.100000000516+001

k
Al

.357401079274-001
.275816335414+000
.370833146850+000
.49 7025418582+000
.k99789601640+000
.500000219458+000

.199999999953+000

x
Ao

.391755067482+000
.511728502746+000
.804316163533+000
.959390616610+000
.999061042181+000
.999999111523+000

.999999997883+000
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k ot xK U}(xK k_1) w(xk,kk)
1 .550000000000+001 ~-.550000000000+001 -.305991140607+001
2 . 3449 34022092+001 -.269906T7T7978+001 -.220022306410+001
3 .231695134025+001 -.203577323012+001 -.189138667240+001
L .191170265582+001 ~.186181790886+001 -.185055577832+001
5 .185146953675+001 -.185004705302+001 -.185000013909+00)
6 .18500010T7k95+001 ~.185000000423+001 -.185000000335+001
T .185000000335+001 -.185000000335+001 -.185000000335+001
IRIE [RZTE SRSl
. T17251699 384+001 .2975328L9921+000
.215592360871+001 .193892243334+000
.485033297270+001 .104205265276+000

.56773329267T7-001

.131846727134-002

.960995:96161-006

.565608340368-012

.234713633264-001
. 7804 31236867-003
.637321935539-006

., 142970029057~-008

which

The problem was started with XO = (4, 3, 2)

does not satisfy the quadratic convergence criterion.
However, the sequence obtained does converge and 1 we

6

take the initial point to be x the test 4.2 is satis-
fied and we do get quadratic convergence from that point

on. It is seen that X6 also satisfies 4.3.



24

The algorithm described here has been tested com-
putationally on a variety of nonlinear constraint test
problems. A code [Kreuser, 71] based on Goldfarb's syn-
thesis of Rosen's linearly constrained gradient projection
and Davidon-Fletcher-Powell unconstrained minimization

was used to solve the subproblem at each major iteration.

The largest problem solved thus far consisted of
30 variables and 30 quadratic constraints of which 20 were

active at the optimum point.

Typical computational behavior is illustrated by
the following tabulated results. The problem consisted
of a linear objective function in 15 variables having 15

ellipsoidal constraints, of which 10 were active at the

optimum. An interior starting point (XO = 0) was chosen

and the corresponding multipliers were zero (AO = 0)
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CUMULATIVE

CONSTRS . « . .  GRADIENT STD.
K VIOLATED || 6(x) ]| |1xk-x |[|1xk-x Il ¢g-¢o EVALS. TIME
0 0  .000 .387+1  .34U+1 +.920+4 1 .000

1 15 JA7T745 .155+2 34441 -.368+5 17 .028

2 15  .1l4+5 62041  .275+1  -.147+5 29 .131
315 .243+4  ,191+1  .212+1  -.A453+4 41 .219
L 15 .329+3 .314+0 LJ1144+1 - THT7+3 54 .308
5 10 .953+1 .118-1 .259+0  -.281+2 73 .388
6 10  .1ks-1  .181-4  .104-1 -.lh27-1 90  .lus5s5
7 0 .338-7 .232-8  .161-4 -.996-7 107  .523

(Note that this is the same problem for which results
are presented in [Rosen, Kreuser, 71]. The results
given here were obtained with a double precision version

of the program, .477 + 5 means .477 x 105).

The linearization about an interior point for con-
vex constralnts gives xl as an exterior point (in fact,
all 15 constraints are violated). Bounds were placed
on the variables so that the violation would not be too
great (it still was 477 x 105). The sequence of polnts
still converged from the exterior of the domain as shown.
The optimal function value is 9203 , so that the relative
7 -11

error in ¢O is approximately 1.1 x 10 . These

calculations were done on a UNIVAC 1108, for which we
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have time (sces.) = 27 x (std. time). A pradient cval-
nation consists of computing the gradient of the Laprangian

furiction.

It should be noted that the sufficient conditions
for gquadratic convergence are certainly not satisfied by
XO in this example. We do nevertheless get convergence
which appears to be at least quadratic for k =5, 6,
and 7. The behavior of other test problems was similar

and details will be given in [Kreuser, 73].

5. EXTENSION AND COMPARISON

The algorithm presented here can be modified rather
easily to handle the general nonlinear programming prob-

lem. Consider the general problem

Min ¢O(x)

subject to

N
(@)

¢3(X) J=Ll,2, .0,
¢j(x) = 0 jEm+l,m+2,...,%

The extended algorithm is then given by

Pick € > O
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Given

Define

I(x%)

1

{j|1<j<m and ¢j(xk)i—e}

and corresponding Jacobian
T =700 = [V e () utg | gemtl,mb2, .. . ,2)

(See also [Kreuser, 73] for alternate definitions.)

and
st gt
Step 0: Start with an arbitrary point x

Step 1l: Given xk compute Ak by
V= T e ()

Step 2: Compute Xk+l as optimum point of

] 3
min ¢ (x) + 3 AN e 0+ T A% g0
X 0 k Jod j=m+1 Jd
Aj>0 ¢
1<j<m

subject to the complementary condition
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h?(x) =0 ir A >0 1<j<m
k .
hj(x) < 0 otherwise
and h?(x) = 0 for JEm+l,m+2,...,4%

This algorithm has been tested successfully using
some of Colville's problems [Colville, 68] where the
convexity condition is not satisfied. It 1s shown in
[Kreuser, 73] that under certain conditions on the
Hessian of the Lagrangian that the same quadratic convergence

is obtailined.

The algorithm proposed by Robinson [Robinson, 72]
will now be compared with the extended algorithm given

above.

Robinson's algorithm for the subproblem is

(given xk and Xk)

k k
Min ¢.(x) + £ A[¢.(x) -h.(x)]
% 0 3 J J J

subject to

h?(x) <0 Jj=1,2,...,m

%
As we approach the optimum polnt X the con-

. ¥
straints which are active (¢j(x*) = 0, Aj > 0) at the
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optimum also satisfy the conditlion that the linearizations
%

are active at points xk close to x . So the subproblem

is equivalent to

i K K
Min ¢.(x) + % A [o.(x) -h,(x)]
%o PR it

subject to the complementary condition

if s o

3
N
4
p—
H
(@)

o
—
>
~—
A
O

s otherwise

Since A? h?(x) =0, 1<j<m , it follows that the

subproblem becomes

Min ¢, (x) + 3 A? b ()

x 2550
j

subject to the complementary condition.

¥
Thus, once xk is close enough to x , the two

objective functions are the same, provided the A? are

the same.

We assume the same values of A? are used and we

wish to compare the values of x?+1 obtained.

[3

Consider multipliers u?+l such that



k+1 k k+1l k+1 k
v X + I ALVe. (X = - I W, "V, (x
bo(x) AINC ws e ()
and multipliers w?+l such that
k+1 k- k+1
Voo () + 1 ASLve 6T - ve, (X))

k+1 k
= -X . Vb . (X
W ¢J( )

In Robinson's algorithm the new xj 's are glven

by

Equating the two expressions above gives

k+ g o k
- Ty 1v¢j<xk> = - z<w§ l-~x§>v¢j<x )

3

so that if the V¢j are linearly independent we have

R L

J J J
then with

e

J J J

the algorithms would be identical in the 1limit.




The relationship between Newton's algorithm, the
Rosen-Kreuser algorithm presented here, and the Robinson
algorithm are considered in detail in [Kreuser, 73].
Considered also are various alternative technigues for

computing the multipliers Ak
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