Low Fat High Fiber Cheese?

- Food producers are increasingly interested in developing food products that address nutritional issues related to “Chronic Lifestyle Syndrome.”
- A high fat diet increases the risk of Coronary Heart Disease, a major cause of death in U.S., which is about 26% of the total deaths.
- Various hydrocolloids are used as fat replacers in dairy products like starches, gum and fibers.
- **Inulin**, a fructo oligosaccharide derived from chicory roots, is a dietary fiber that forms a particle gel and behaves as a fat mimic in dairy foods (Fagan, et al. 2006).
- Numerical papers have established correlations with the material properties (Yield values, Modulus) and texture in food. Compression and extension tests have been employed to characterize texture in cheese (Brown, J.A. 2003 and Lu, Y. 2008).

Objective:

This research aims to develop a reduced fat, high fiber, process cheese using inulin as a fat replacer, and to develop a rheological method to measure textural characteristics related to fat content in process cheese.

How are we achieving it?

Full fat (32%) processed cheese and reduced fat (27%) processed cheese with 0 - 3% added inulin were made, and resulting changes to texture were quantified. Protein content was similar for all cheeses.

Process Cheese Manufacture:

- **Ingredients**
 - Shredding cheese.
 - Weighing ingredients.
- **Stephan Cooker**
 - High Shear mixing @ 1200rpm
 - Pasteurization 85°C for 3 min
- **Filling & Storage**
 - Storage @ 4°C

Chemical Analysis:

- % Fat – Determined by Majonnier Method
- % Protein – By Kjeldahl Method
- % Moisture – Atmospheric Oven Method

Rheological Analysis:

Cheese samples were cut into uniform slices, and rheological properties were determined under extension at constant rate (10 mm/sec) on an **INSTRON® Universal Testing Machine** (Model 3342, Canton, MA) at constant temperature of 4°C. Force and distance data were converted to stress/strain coordinates and plotted to determine yield stress values.

Results & Discussion (Cont.)

- Yield stress (point at which the material fails) derived from the process cheese stress-strain curves decreases from 18.5 kPa to 5.4 kPa when fat is lowered from 32% to 27%.
- Adding 1% - 3% inulin to reduced fat process cheese increases yield stress and at higher levels can approximate yield values of full fat cheese.
- Reduction in fat content makes the cheese more elastic. Adding inulin increase firmness corresponding to texture of full fat process cheese.
- Higher concentrations of inulin are better fat mimetics because they form a more compact particle gel (Phillips & Williams, 2000).

Conclusion:

Fat in processed cheese contributes to its material and textural properties which can be characterized by stress/strain curves generated by tensile deformation. Resulting yield stress measurements can be an important dimension in characterizing texture changes resulting from fat reduction and may be a predictive tool in reformulating reduced fat process cheese to mimic textural qualities of its full fat counterpart.

Acknowledgement:

This research is supported by Student Research Grant from UW- Stout Research Services. We would like to thank Mainstreet ingredients, La Crosse providing us samples for Non fat dried milk and BK Giulini for emulsifying salts.

References:

