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DIGITAL COMPUTER PROGRAMS FOR THE 

DEFANT METHOD OF SEICHE ANALYSIS 

INTRODUCTION 

Surface seiches are long, standing waves which can occur 

in closed basins or bays. To compute the seiche parameters in 

actual basins, gulfs or bays, several procedures are available.  

Of these, the Defant (1961) method of analysis is the most useful.  

However, the lack of readily available computer programs has 

limited the scope of its application, because of the burden of 

reprogramming. The programs presented here should eliminate 

much duplicated effort.  

Seiches are initiated when a force acts impulsively over 

a large part of the waterbody. Steady wind stress can also start a 

seiche by inducing a temporary displacement of part of the water, 

so that at equilibrium the acceleration due to the component of 

gravity acting down the slope of the water surface balances the 

stress. When the wind stress is then removed, the displaced water 

moves back toward the position of static equilibrium, but over 

shoots because of its kinetic energy. The oscillation thus initiated 

continues until altered by another external force or until the energy 

is lost by friction.
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Figure 1 shows the horizontal and vertical water displace

ments associated with the simplest of this class of waves. Any 

harmonic of the basic mode may be generated, but the lower har

monics usually dominate because of the greater frictional damping 

per unit time of the higher modes (Mortimer, 1953). Since seiches 

are free waves, their periods are determined by the morphometry 

of the basin. The magnitude of the response of the lake to any 

applied force depends on the magnitude of the force and whether the 

forcing function is near resonance with any of the free periods of 

the lake (Mortimer, 1965).  

A number of computational schemes have been developed 

for predicting the periods of seiches in real lakes. Hutchinson 

(1957) and Defant (1961) have given thorough reviews of these tech

niques. The Defant (1918; in English, 1961) method has considerable 

advantages over most of the other methods in that it gives the rela

tive horizontal and vertical displacements of water particles 

associated with the seiche in the same computation as that giving 

the period. The limitations of the method are known both empiri

cally (Fee and Bachmann, 1968) and theoretically, so the amount of 

effort expended can be adjusted to the accuracy desired. The basic 

technique may also be used for the solution of other problems, for 

example in computing the phase speeds of internal waves for general 

vertical density profiles (Johnson and Fee, 1968).
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This report describes the theory and applications of the 

Defant method along with appropriate computer programs. It is 

hoped that this will allow a wider use of this unique tool.
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THEORY 

The basic equations describing water motion in a seiche 

can be explained using Figure 2. The symbols used in the formulae 

are listed in Table 1.  

TABLE 1. Symbols used in the text and figures 

x and X a point along the axis of the lake or bay 

tx the horizontal displacement of water particles at x 

T x the vertical displacement of water particles at x 

Sx the area of a cross-section of the lake at the point x 

qx the volume of water passing through a cross-section 

at x 

vx the surface area of the lake or bay between sections at 

x and x-1 

bx the breadth of the lake or bay at the point x 

g the acceleration due to gravity 

A the length of the "Talweg" (defined in the text) 

t time 

h the mean depth of the lake or bay 

~the difference operator 

T the period of free oscillation of the lake or bay



The equation of continuity is an expression of the conser 

vation of matter and may be derived as follows. The difference 

between the volume of water passing through sections X, and X2 

(Fig. 2) is seen to be approximately the area of the surface of the 

lake times the mean vertical displacement between the two sections.  

Aq --[(b, + b2)/2]AX 2 [(771. + 72)/2] V2(7+ 72/ 

This must equal the change in volume of the compartment of the 

lake between X, and X2, which is (Stl - S3t). Thus, the finite 

difference form of the equation of continuity is 

where the bars indicate averages. As Ax approaches zero, this 

becomes the equation of continuity 

6 (S t ) 7 T x (S = - ieb (1) 

The equation of motion simply states that the acceleration of a 

water particle is proportional to the slope of the free surface above
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it. This is formulated as 

2t =- g tx (2)

The Defant analysis starts with equations (1) and (2). The 

horizontal displacement in a seiche is assumed to be a simple har

monic function of time and an unspecified function of position, 

= %o (x) cos (2 rt/T) 

Taking two derivatives of gives 

62--- = -(4 2/W 2 ) 

t'2 

It follows from (2) that 

b? = (41 2 /gT 2) ax 

Introducing finite differentials and letting

= (4 Wr2gT 2)Ax



gives 

773 2= 71 + Ot 

Assuming linearity in , one obtains 

77 =771 + (t+t2)(a/2) ( 

where subscripts 1 and 2 refer to successive cross sections.  

It was previously shown that the volume increment of the 

lake between sections I and 2 is approximately (v2 (t + ?2)/2).  

Thus, the total volume passing through section 2 is 

q2 = q,+ Aq where q = V2(T71 + 772)/2 

Equations (3) and (4) are now used to derive an analogous relation 

for t. Integration of (1) gives

x= x-1

3)

4)

px j t (x)b (x) dx 

0

where x is a dummy variable. Now Sx x is the volume of water



passing through the section at x. Thus 

S - s tq,+Aq1 - s2 [q,+ [v2+(7 1 + 1 / 4 )/2] I 

Using (3) and solving for G gives 

=-(S + W-v/ 4 ) [ q, + (7h + atj/4) v2 /2] 

Equations (3), (4), and (5) are the equations used in the Defant

analysis.

8
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PROCEDURE 

Starting with the best available chart of the lake or bay, the 

initial and most subjective step in applying the Defant method is to 

draw a straight line or a smooth curve along the deeper parts of the 

basin. Following Defant, this line is called the "Talweg" and repre

sents the assumed track of the standing wave. A number of cross

sections are then drawn approximately perpendicular to the Talweg.  

It is not necessary that the cross-sections be equally spaced. Indeed, 

best results are usually obtained if they are rather widely spaced 

where the basin is regular and closely spaced where it changes 

rapidly. The number of cross-sections needed has been inves

tigated by Fee and Bachmann (1968). Four lakes, ranging from 

the very complex basin of Lake West Okoboji in northeast Iowa 

(Pachmann, et al., 1966) to a theoretical uniform rectangular 

basin, were considered. In all basins, with only 10 to 20 sections, 

the Defant method gave an answer for the uninodal seiche 99% of 

that given by 160 sections (88 sections in the case of Lake Tahoe).  

The positions of the nodes were unaffected by the number of sections.  

The vertical displacements, however, were very sensitive to the 

number of sections and upwards of 80 were needed to define the 

wave profile in asymetrical basins. It appears that in most cases 

twenty sections will be sufficient to give the period and the positions
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of the nodes of the uninodal seiche. A proportionate increase would 

be necessary for finding the parameters of the higher harmonics.  

After determining the positions of the cross-sections, the 

areas of the cross-sections and the surface areas of the lake be

tween successive cross-sections are measured. These data 

together with the distances between cross-sections are used with 

equations (3), (4), and (5) to carry out the numerical integration.  

The calculations are started by specifying that 77 = 100, 

q, = 0, and j = 0 at one end of the lake. An approximation to the 

correct period is made and is used to compute a. Merian's 

formula [ T = 2 e / v,1] is normally used for this first approxima

tion. With this information, t2 is computed using equation (5), and 

is in turn used in equation (3) to find 772. Knowing r2, equation (4, 

can be used to get q2. These three numbers are then used to com

pute the same parameters for the next section. If the approximation 

to the period was correct, , will be zero when the other end of the 

lake is reached. Normally many values for the period must be 

tested before an adequate answer can be obtained. The calculation-3

become tedious but are readily adapted to computer solution.  

Figure 3 shows the logic used in programming the problem for a 

digital computer. Appendix 1 is a FORTRAN II program incorpor .

ting the logic of Figure 3. The method is easily extended to the
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study of bay oscillations by specifying that there be a node at the 

mouth of the bay. Appendix 2 is the FORTRAN program that has 

been developed for this. This program contains no mouth correction.  

The technique used for finding the roots is commonly 

referred to as the "method of false position" or the "binary chopper." 

This method does not converge as rapidly as others, for example 

the Newton-Raphson, but it has the advantage of being independent of 

the slope of the curve and converging with certainty in a specified 

number of iterations. Other methods are highly sensitive to the 

initial approximation to the period and may not converge at all if a 

poor approximation is used. In practice, the method presented here 

converges quite quickly. For example on the IBM 360/50 only 

3. 85 seconds of execution time were required to find the para

meters of the uninodal seiche in Lake Tahoe with 8 sections.  

SUBROUTINE DEFANT is invoked with a FORTRAN CALL 

statement. Sufficient documentation is presented in the appendices 

to explain the data required. Care should be taken that the units of 

the data coincide with the units used for the acceleration due to 

gravity. A typical program that would use SUBROUTINE DEFANT 

is given in Appendix 3. Appendix 4 is an ALGOL program equivalent 

to the FORTRAN contained in appendices 1 and 3. Figure 3 should 

allow easy adaptation of this subroutine to other computer languages.
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Figure 2. Diagram of a lake illustrating the terminology used.



FIGURE 3. Flow chart ot program logic for the Defant analysis 
for closed basins.
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APPENDIX 1 

C DEFANT PROGRAM FOR COMPUTING THE. PERIODS OF FREE OSCILLATION 

C OF CLOSED BASINS 

C FORTRAN II 

SUBROUTINE DEFANT(S2, V2 ,N, DELX, T3,AINCR, IN) 

DIMENSION S2(1), V2(1), HD2(199), VD2(199), Q2(199), DELX(1) 

C S2 IS THE ARRAY OF CROSS SECTION AREAS 

C V2 IS THE ARRAY OF SURFACE AREAS 

C N IS THE NUMBER OF SECTIONS IN THE LAKE 

C DELX IS THE ARRAY OF DISTANCES BETWEEN SUCCESSIVE CROSS SECTIONS 

C T3 IS A CLOSE APPROXIMATION TO THE PERIOD OF OSCILLATION 

C AINCR IS THE INCREMENTING CONSTANT 

C IN IS THE NUMBER OF NODES IN THE SEICHE 

PRINT 1,IN 

1 FORMAT (iHi, 27HDEFANT CALCULATIONS FOR THE,2X, Ip2X, 12H MODAL SEICH 

1E) 

J = IN/2 

J = 2*j 

IF (IN-J) 3,2, 3 

2 B=-1.  

GO TO 4 

3 B=1.0 

4 G = 35.29728 

C G IS THE ACCELERATION DUE TO GRAVITY AT THE LATITUDE OF THE LAKE 

C THE UNITS USED HERE ARE KM AND MIN 

C THE UNITS OF THIS CONSTANT DETERMINE THE UNITS OF THE OUTPUT 

IC = 0 

C IC IS A COUNTER FOR THE NUMBER OF ITERATIONS 

K=0 

C THE BOUNDARY CONDITIONS FOLLOW 

5 VD1 =100.0 
HD1 =0.0



Q1 = 0.0 

DO 6 I=I,N 

ALPHA = F*DELX(I)/(T3*T3) 

HD2(I) = -(QI+ (VD1 + (ALPHA*HD1)/4.0)*V2(I))/(S2(I)+ALPHA*V2(I)/4.0) 

VD2(I) = VD1+ALPHA*(HDI+HD2(I))/2. 0 

Q2 (I) = Q1+ V2(I)*(VD1+ VD2(I))/2. 0 

Q1 = Q2(I) 

VD1 = VD2(I) 

6 HD1 = HD2(I) 

IC = IC+I 

PRINT 7 ,IC,T3,HD1,VD1,Q1 

7 FORMAT(1H0,2X,9HITERATION ,14,5X, 5HT3= ,Fll. 6,5X, 6HHD1 = ,E15.8,5 

lX, 6HVD1 = , E15.8, 5X, 5HQ1 = ,E15.8) 

IF (K-i) 8,13,18 

8 A =-HD2(N) 

IF (IN-J) 9,10,9 

9 IF (A) 12,23,11 

10 IF (A) 11,23,12 

11 AINCR = -AINCR 

12 K=1 

T3 = T3-AINCR 

GO TO 5 

13 IF (A*HD2(N)) 14,23,12 

14 IF (AINCR) 15,16,16 

15 T1=T3 UAINCR 

T2 = T3 

GO TO 17 

16 TI=T3

1-2



T2 = T3+AINCR 

17 K=2 

GO TO 21 

18 IF (HD2(N)*B) 19,23,22 

19 T2=T3 

20 IF (ABS(T3-(TI+T2)/2.0)-0.0001) 23,23,21 

21 T3 = (T!+T2)/2. 0 

GO TO 5 

22 T1=T3 

GO TO 20 

C CONVERT THE PERIOD TO MORE CONVENIENT TIME UNITS 

23 T =T3/60.0 

C WRITE OUT THE RESULIS 

PRINT 24 , T, (I, HD2(I), VD2(I), Q2(I),I= 1, N) 

24 FORMAT(1H1, 37HTHE COMPUTED PERIOD OF OSCILLATION IS , 2X, F10. 4, 2X, 5 

lHHOURS //(5X, 13, 5X, 9HHD2(I) ,E15. 7, 5X, 9HVD2(I)= ,E15. 7, 5X,8HQ 

22(I) = ,E15.7)) 

RETURN 

END

1-3



APPENDIX 2

C DEFANT PROGRAM FOR COMPUTING THE PERIODS OF FREE OSCILLATION 

C OF BAYS 

C FORTRAN II 

SUBROUTINE DEFANT(S2, V2, N, DELX, T3, AINCR,IN) 

DIMENSION S2(1), V2(1), HD2(199), VD2(199), Q2(199), DELX(1), X(199) 

C DELX IS THE DISTANCE BETWEEN ADJACENT SECTIONS 

C IN IS THE NUMBER OF NODES IN THE SEICHE 

C AINCR IS THE INCREMENTING CONSTANT 

C N IS THE NUMBER OF SECTIONS IN THE LAKE 

PRINT 1 ,IN 

1 FORMAT (iHi, 27HDEFANT CALC ULATIONS FOR THE, 2X, Ii,2X, 12HMODAL SEICH 

IE) 

J = IN/2 

J =2*J 

IF (IN-J) 3,2,3 

2 B=-1.  

GO TO 4 

3 B =1.0 

4 G = 35.29728 

C G IS THE ACCELERATION DUE TO GRAVITY AT THE LATITUDE OF THE LAKE 

C THE UNITS OF THIS CONSTANT DETERMINE THE UNITS OF THE OUTPUT 

F= 39.478419/G 

IC =0 

C IC IS A COUNTER FOR THE NUMBER OF ITERATIONS 

K=0 

C THE BOUNDARY CONDITIONS FOLLOW 

5 VD1 = 100.0 

HD1 =0.0 

Q1 = 0.0



DO 61=1,N 

ALPHA = F*DELX(I)/(T3*T3) 

HD2(I) = -(QI+ (VDI+ (ALPHA*HD1)/4.0)*V2(I))/(S2(I)+ALPHA*V2(I)/4. 0) 

VD2 (I) = VDI+ALPHA*(HD1+HD2(I))/2.0 

Q2(I) QI+ V2(I)*(VD1+VD2(I))/2.0 

Q1 = Q2(I) 

VD1 =VD2(I) 

6 HD1 = HD2(I) 

IC =ICI1 

PRINT 7 ,IC,T3,HD1,VD1,Q1 

7 FORMAT(1H0, 2X, 9HITERATION ,14, 5X, 5HT3 = ,Fll. 6,5X, 6HHD1 ,E15.8,5 

1X, 6HVD1 = ,E15.8,5X, 5HQ1 = ,E15.8) 

IF (K-i) 8,13,18 

8 A = VD2(N) 

IF (IN-J) 9,10,9 

9 IF (A) 12,23,11 

10 IF (A) 11,23,12 

11 AINCR = -AINCR 

12 K=1 

T3 = T3-AINCR 

GO TO 5 

13 IF (A*VD2(N)) 14,23112 

14 IF (AINCR) 15,16,16 

15 T1=T3+AINCR 

T2 =T3 

GO TO 17 

16 T1=T3 

T2 = T3+AINCR

2-2



17 K=2 

GO TO 21 

18 IF (VD2(N)*B) 19,23,22 

19 T2=T3 

20 IF (ABS(T3-(T1+T2)/2.0)-0.0001) 23,23,21 

21 T3 = (Tl+T2)/2.0 

GO TO 5 

22 T1=-T3 

GO TO 20 

C CONVERT THE PERIOD TO MORE CONVENIENT TIME UNITS 

23 T =T3/60.0 

C WRITE OUT THE RESULTS 

PRINT 24 , T, (I, HD2(I), VD2(I), Q2(I) ,I= 1, N) 

24 FORMAT(1H1, 37HTHE COMPUTED PERIOD OF OSCILLATION IS , 2X, F10.4, 2X, 5 

1HHOURS //(5X,I3, 5X,9HHD2(I) = ,E15.7, 5X,9HVD2(I) = ,E15.7,5X,8HQ 

22(I) = ,E15.7)) 

RETURN 

END

2-3



APPENDIX 3 

C THIS IS A PROGRAM WHICH CALLS SUBROUTINE DEFANT TO COMPUTE THE 
C SEICHE PARAMETERS OF THE FIRST FIVE MODES OF FREE OSCILLATION 

C OF A LAKE OR BAY.  

DIMENSION S2(199), V2(199), DELX(199) 

READ 1, N, (S2(I), V2(I), DELX(I), 1=1, N) 

1 FORMAT(13/(3F10. 4)) 

SUMi = 0. 0 

SUM2 = 0.0 

SUM3 = 0.0 

SZERO = 0.0 

DO 2 I=1,N 

C FIND THE VOLUME OF THE LAKE BY MULTIPLYING THE AVERAGE CROSS 
C SECTION AREA TIMES THE DISTANCE BETWEEN SECTIONS.  

SUMI =SUM1 + (SZERO+S2(I))*O. 5*DELX(I) 

C FIND THE LENGTH OF THE TALWEG 

SUM2 =SUM2 + DELX(I) 

C FIND THE TOTAL SURFACE AREA OF THE LAKE 

SUM3 =SUM3 + V2(I) 

2 SZERO = S2(I) 

C ESTIMATE THE UNINODAL PERIOD OF OSCILLATION USING MERIANS FORMULA 

T3 = 2. 0*SUM2/SQRT(39.29728*SUMI/SUM3) 

AINCR = 0. 1*T3 

DO 3I=l,5 

CALL DEFANT (S2, V2,N, DELX, T3,AINCR, I) 

AINCR = ABS(AINCR)/FLOAT(I+1) 

3 T3 = T3*FLOAT(1)/FLOAT(I+1) 

STOP 

END



APPENDIX 4

BEGIN COMMENT .BURROUGHS EXTENDED ALGOL PROGRAM FOR 

COMPUTING THE SEICHE PARAMETERS OF CLOSED BASINS; 

ARRAY S2, V2, DELX[ 1:199]; 

INTEGER J, I,NODESN; 

REAL SUM1, SUM2, SUM3, AINCR, SZERO, T3; 

FORMAT FMT1(12), 

FMT2(3F10. 3), 

FMT3(I6,X5, El2.5,X2, El3. 6,X4, El4.7,X3, El3.6), 

FMT4(16, X6, El4.7, X4, El4.7, X4, El4. 7), 

FMT5(X1," ITERATION ",X4," PERIOD ",X7, "HOR. DISPL. ", X6, "VERT.  

DISPL. ",X5," VOL. DISPL. ?), 

FMT6(XI," THE COMPUTED PERIOD OF OSCILLATION IS ",E13.6," MI 

NUTES."), 

FMT7(XI," SECTION " ,X6," HOR. DISPL. "X7," VERT. DISPL. ",X6," VO 

L. DISPL."); 

FILE IN READER(1, 10); 

FILE OUT ALINE 4(1,10); 

PROCEDURE DEFANT(S2, V2, DELX,N,T3, AINCR, NODES); 

VALUE NNODES,AINCR; 

INTEGER N, NODES; 

REAL T3,AINCR; 

ARRAY S2, V2, DELX[ 1]; 

BEGIN 

INTEGER IC, K; 

REAL ZALPHAETA1,Q1,XE1,G,B, F, A, T1,T2,F1; 

LABEL GUTS, MAELSTROM.,HOPE, TESTIT, ISITINTER, UPDATE, WHERAMI ,NEW, 

OUTPUT; 

ARRAY XE2,Q2,ETA2[1:199]; 

NODES:=NODES-2 x(NODESDIV2) ;IFNODES=0THENB:= -1.0ELSEB:=1.0; 

F : = 4.0 x 3.1415927 x 3.1415927 / 35.29728; K: = IC: = 0;



WRITE(ALINE[DBL], FMT5); 

BEGIN GUTS: XE1 :=Q1 :=0.0; ETAl :=100.0; Fl :=F/(T3xT3); 

FOR I: = 1 STEP 1 UNTIL N DO 

BEGIN 

ZALPHA : = Fl x DELX[I]; 

XE2[I] -(Qi + (ETAl + ZALPHA x XEI x 0.25) x V2[I]) / (S2[I] + ZALPHA x V2[I] x 

0.25); 

ETA2[I] : =ETA1 + 0.5 x ZALPHA x (XE1 + XE2[I]); 

Q2[I] := Qi + V2[I] x 0.5 x (ETAI + ETA2[I]); 

XEI : =XE2[I];Q1 :=Q2[I]; ETA1 :=ETA2[I] 

END; 

IC : = IC + 1; WRITE(ALINE,FMT3,IC,T3,XE1,ETA1,Q1) 

END GUTS; 

IF K < 1 THEN GO TO MAELSTROM 

ELSE IF K=ITHEN GO TO HOPE 

ELSE GO TO TESTIT; 

MAELSTROM: A: = XE2[ N]; IF NODES = 0 THEN GO TO WHERAMI 

ELSE IF A = 0.0 THEN GO TO OUTPUT 

ELSE IF A < 0.0 THEN GO TO UPDATE 

ELSE INTER: AINCR : = -AINCR; UPDATE: K : = 1; T3: = T3 - AINCR; 

GO TO GUTS; 

WHERAMI: IF A = 0.0 THEN GO TO OUTPUT 

ELSE IF A > 0.0 THEN GO TO UPDATE 

ELSE GO TO INTER; 

HOPE: Fl : =A x XE2[ N]; IFF1O = 0.0THEN GO TO OUTPUT 

ELSE IF Fl <0.0 THEN IF AINCR < 0.0 THEN 

BEGIN Ti : = T3 + AINCR; T2: = T3; K : =2; GO TO NEW END 

ELSE BEGINTI :=T3; T2: = T3 + AINCR; K: = 2; GO TO NEW END 

ELSE BEGIN T3 : = T3 - AINCR; GO TO GUTS END; 

TESTIT: Fl : = B x XE2[ N]; IF Fi = 0.0 THEN GO TO OUTPUT

4-2



ELSE IF Fl <0.0 THEN BEGIN T2 = T3; GO TO ISIT END 

ELSE Ti : = T3; 

ISIT: IF ABS(T3 -(Ti + T2) x 0.5) -<0.0001 THEN GO TO OUTPUT 

ELSE BEGIN NEW: T3 : = (TI + T2) x 0.5; GO TO GUTS END; 

OUTPUT: WRITE(ALINE[ DBL] , FMT 6, T3); WRITE(ALINE[ DBL], FMT7); 

FOR I : = 1 STEP 1 UNTIL N DO 

WRITE(ALINE, FMT4,I,XE2[I], ETA2[I], Q2[I]); 

END DEFANT; 

SZERO : =SUMi : =SUM2 : =SUM3 : =0.0; READ(READERFMTI ,N); 

FOR I: =1 STEP 1 UNTIL N DO READ(READER, FMT2,S2[ I],V2[ I] ,DELX[ I]); 

FOR I: = 1 STEP 1 UNTIL N DO BEGIN SUMI : =SUM1 + (SZERO + S2[I]) x 0.5 x DELX[I]; 

SUM2 : = SUM2 + DELX[I]; SUM3:=SUM3 + V2[I]; SZERO : = S2[I] END; 

T3 : = 2.0 x SUM2 / SQRT (35.29728 x SUM1 / SUM3); AINCR : =0.1 x T3; 

FORJ : = 1 STEP 1 UNTIL 5 DO BEGIN DEFANT (S2, V2,DELX, N,T3,AINCR,J); 

AINCR :=AINCR / (J + 1); T3: =(Jx T3) /(J+ 1) END; 

END.

4-3
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