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Introduction 

The measurement of primary production of water bodies has 

long been of great concern to hydrobiologists, particularly since Lindeman 

(1942) explicitly formulated the theoretical basis of dynamical ecology.  

The basic in situ technique was pioneered by Gaardner and Gran (1927) as 

follows: (1) samples were collected at a number of depths in the euphotic 

zone; (2) these samples were enclosed in clear and darkened bottles which 

were then resuspended at the collection depths; (3) the bottles were allowed 

to incubate in situ for a length of time sufficient for photosynthetic activity 

to produce a measurable change in some chemical parameter; (4) the 

bottles were retrieved, and the uptake or evolution of some chemical 

species which could be related quantitatively to carbon uptake was measured; 

(5) the results were plotted against depth and the curves integrated plani

metrically to derive areal production rates (mg C/m 2 . incubation time).  

With some minor variations, this basic methodology has remained essentially 

unchanged up to the present day.  

It is obvious from the description that the in situ method is exceed

ingly time consuming, costly in ship time, and not well adapted to cover very 

large water bodies, where it is frequently impractical for a ship to remain 

long at a single station. Moreover, day-to-day variability of areal production 

is often so great that daily measurements would be needed to estimate annual 

or seasonal rates reliably (Rodhe, et al. 1958, Fee 1971). This is clearly 

unfeasible with the in situ method even on small lakes. Further, the in situ 

method provides no rational approach for interpolating between observations 

since it does not incorporate the actual variations of surface irradiance.  
14 

Also, technical complications associated with the use of C as a tracer of 
carbon uptake (Steeman-Nielsen 1952), for example, extracellular excretion 

and respiration, confine incubation times to short intervals, usually 4 to 6 

hours (Vollenweider et al. 1961). It is not a simple matter to extrapolate 

these incubation rates, which cover only a short part of the daylight period,
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to daily rates (Vollenweider 1970). Finally, since natural light is used, 

experiments can be performed only during a brief part of the day---a waste

ful consequence when ship time is costly. A technique in which samples 

could be continuously processed has proved to be much more economical 

and practical.  

To overcome the above difficulties, to thereby extend surveys in 

both space and time, a more general approach is required. The theoretical 

basis for such a procedure has been presented elsewhere (Fee 1969, 1971).  

This report gives a brief summary of the main theoretical and methodological 

conclusions and presents the digital computer programs necessary for 

routine application, to implement Vollenweider's (1970) suggestion that this 

method be adopted, where possible, in studies of phytoplankton productivity.  

Theory 

Vollenweider (1965) proposed a photosynthetic model (graphed in 

Figs. 1 and 2) 

[1+ i2) (1 + (ai) 2) n ] 

where p the relative rate of carbon uptake per unit volume at the relative 

light intensity i. Photosynthetic rates are made relative to the optimum rate 

of carbon uptake; and absolute light intensities are made relative to the light 

intensity V' which is defined graphically in Fig. 1. As shown in Fig. 2, the 

parameters a and n describe the type and degree of inhibition of photosynthesis 

by high irradiances (Fee 1969). This model covers a wide range of data from 
the literature. It is a modification of an equation first proposed by Smith 

(1936) from empirical data. This was used by Talling (1957) to study integral 

photosynthesis in some English lakes.



0, g_ =0 (Smith Equation)

n-l1a-I

3 4 5 6

Figure 1. Photosynthesis vs. irradiance diagrams which illustrate the difference between I and 
I' and between P and P o Ik is the irradiance at which the extrapolation of the nearly k adbewe max opt k 

linear portion of the P/I curve intersects the asymptote P = Pmax" I is the irradiance at 

which this extrapolated line intersects the line P = POp0

P/Pmax

1.0 

0.8 

0.6 

Popt

0.2

o4 
0

I/l k



4

00.6- .0.  
00.6 

00.7 %f.- 0.8

0.40.4 ._ 1. 0.-" .5 

C: 0.2 - "- 0.2

0 2.5 
0 

0 0.70 140 2.10 2.80 0 0.70 1.40 2.10 2.  

H0 1.0 I 1.0, 

Sa -2 oQ=a4 o0 
a=2 0 

0 

0.8- 0.8

0.  
S0.6 06 

0 A 
O"A0. 5 0.4

0.20 

0.2- 1.0 02 

2.0 -___ 1.5 

0.0 
0 0.70 1.40 2.10 2.80 0 0.70 1.40 2.10 

Relative Light Intensity (I /Ik) 

Figure 2. The photosynthesis model with different parameter 
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at the top of each box and some representative values of n 

are superimposed on the appropriate lines.



By measuring the transparency of a given water body, it is possi

ble to use equation [ 1] to compute the photosynthetic rate at any depth if 

the absolute irradiance at the surface is known. This photosynthesis/depth 

curve may be integrated in various ways; numerical integration is much 

the most convenient if a digital computer is available. This gives the 

integral rate at an instant in time. By measuring surface irradiance at a 

number of times during the day and repeating the depth integration, a col

lection of depth integrals is computed. The daily rate is obtained by inte

grating the depth integrals over time; again, any convenient integration 

procedure may be used.  

Fee (1969, 1971) derived an analytical expression which mathemat

ically describes the procedure just outlined verbally and is suitable for 

direct computer solution, viz., 

= Y°P1 2 f f °  k 1 -- dy dx] [2 

- 0 1. (+y2) (1a2y 2)11 

where 

P = the rate of carbon uptake per unit volume and time, 

X :the daylength, taken with zero at midday, 

Popt the optimum, or highest, rate of carbon uptake per unit 

volume and time (see Fig. 1), 

E extinction coefficient of the waterbody, 
6 =an auxilliary function of a and n (see Fee 1969 and below), 

10 (x) the absolute surface irradiance at normalized time x = 2t/X, 
It a light saturation parameter (see Fig. 1), k 
z =depth, 

t = time, 

x, y =dummy variables, and 

a, n =parameters of the model (see Fee 1969).
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Fee (1969, 1971) also proved that 

= 1(1 + Iop t
2 )(1 + aJIot)2 ]2p [3] 

where 

opt 2R1n)a + Va2(n-1) 2 + 4n4] 

Appendix 1 contains a digital computer program, written in 

FORTRAN IV, which accepts as input Popt' X, E, ' a, nand (x); and 

uses equations [213, [-1 and [ 41 to compute daily integral photosynthesis.  

Simpson's rule for numerical integration is used for both the depth and time 

integrations. This treatment offers the considerable advantages that: 

(1) the model parameters a and n can assume any real values - -- not just 

those that allow an analytical solution of the depth integral; (2) no a priori 

assumption is made about the distribution of solar irradiance over time; and 

(3) the application to any particular system is straightforward, and indeed 

routine, once the parameters of the system are known or estimated.  

The other major problem in implementing this solution is to obtain 

estimates of a, n and I from experimental data relating relative photosynthetic 

rates to irradiance. The other parameters (Popt' X, E and I(X)) can be 

measured directly (see Fee 1971 for complete example). When a high degree 

of accuracy is not necessary, suitable approximations to the values of" a and 
n may be obtained by visual conmparison of the experimental data with the 

family of curves presented in Fig. 2; and I can be closely approximated with 

the method shown in Fig. 1 or by using Vollenweider's (1960) method for in 

s itu data. In practice, the applications to date have shown that slight var ia 
tions in a and n do not affect the computed integral rates to any great extent.
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On the other hand, the values have been found to be quantitatively impor

tant and must be accurately estimated at all times (Fee 1971).  

If a digital computer is available, very good estimates of a, n and 

I may be obtained starting from first principles. For any assumed combi

nation of the parameters, one may fit the model at the experimental irradi

ances. Some arbitrary method of comparing the fitted model to the data 

points is needed and further a criterion for determining whether the fitted 

combination is in some sense the "best" possible fit. Because of the 

highly non-linear nature of the model, this is a difficult problem. Mathe

matically, the essence of the problem is that of finding the parameter vector 

X (a, n, IK) 
such that a chosen single-valued function, f (X), attains a minimum at X.  

The route to a solution is further complicated by constraints on the para

meters, since all must be real and non-negative. A three-dimensional 

representation of a problem of this sort is shown in Fig. 3. The choice of 

f (X) is critical in this formulation. Any number of single -valued functions 

of parameter fits could be envisioned. For example, the summed absolute 

values of the differences between the fitted model and the observed data 

points might be a reasonable choice. Probably the most widely used and 

best understood of such functions is the expression 

f(x) -j (0i - )2 
i=1 ' 

1 

where 0. is an observed value of the relative photosynthetic rate at a speci

fied irradiance, E. is the expected value at that irradiance under the assumed 

parameter combination and m is the number of observations. In words, this 
function represents the summed squared deviances of the observed values of 

relative production from the expected values under the assumed parameter 

combination. Each deviance is normalized by the expected value of relative 

production to make differences relative to the magnitude of the numbers being 

treated. Mood et al. (1963) prove that this widely used "goodness -of-fit"



f( ) a 

Figure 3. A hypothetical parameter space showing the type of 

minimization problem treated by the programs in Appendices 2 

and 3. The minimum value of f (X) occurs at X (a , n
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function is asymptotically distributed as the statistical chi-squared proba

bility function; and f (X) will hereafter be referred to as X2 

Having thus chosen f (X), a computational scheme for finding 

the minimum of X2 for an arbitrary set of data must be found. Graphically 

this problem consists of placing a ball anywhere in the three-dimensional 

parameter space of Fig. 3 (this represents our first estimate) and allowing 

it to roll until it stops. It is immediately apparent that if there is more than 

one minimum the stopping point will be dependent upon the starting point.  

In fact, the only way of being certain of finding a global or smallest minimum--

as opposed to a local minimum---is to try an infinite number of different 

starting points. This is obviously impossible in practice and the scheme 

developed below is not designed to find a global minimum but only a local 

minimum. Thus, the first estimates supplied by the user are of critical 

importance in determining the final parameter combination . For a and 

n these first estimates may be obtained by comparing the experimental P/I 

curves with those given in Fig. 2.  

With a fixed parameter vector X the computer can calculate X2  If 

it can also determine how X2 varies in the vicinity of X, then a scheme can be 

devised such that X can be changed to reduce X. Specifically, if the partial 

derivatives of X space are known at X then the gradient of x is a vector, 

2 ax 
2  ka X 

VX2 (3a 'k) 

which points "uphill", nornial to a contour line of equal values of X including 

the point x2 (X). Thus -v x× points "downhill", or towards a mininmm. By 

seeking along this vector we can devise a scheme, for finding a better estimate 

of X. The gradient vector is thus used to provide a linear approximation to 

the nonlinear parameter space. It is apparent that the criterion for a solution 

to the problem is the condition v'<2 = 0, the zero vector. Thus, any local 

minimum is a proper solution. The constraints on the parameters previously
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mentioned are viewed as "walls" which intersect the parameter space and 

at which special steps must be taken so as not to project the next estimate 

into the prohibited space.  

This general kind of formulation is obviously amenable to many 

numerical approaches. Indeed, Box (1966) has compared eight of the best 

modern techniques. He found that the most powerful general procedure for 

finding local minima is that of Fletcher et al. (1963). Their method is the 

one used here; they give the theoretical derivation, proofs of stability and 

the rate of convergence and none of this needs repetition here.  

We may now proceed to use this theoretical base by providing the 

gradient vector, v×X. It is proved in Fee (1971) that: 

q [(i)] ' [5] 

where q is an arbitaray parameter. Now, from equations [1], 13], and 

14], the following relationships may be derived (see Fee 1971 for proofs): 

Ji l [ [ 2 2 -1 S 2 - , 

_Ei_ _ _ _ 

a k) [1+(aI/61'k)2] [1+(I/5I'k)21 [7] 

__ - In(D\++aI/6 k)_] 

3a. 611k [1+-I/6ik 2[1+(AI1 k) 2 7[]



- 6 a'opt 
Iopt @q

1 
+ 2 6 lopt {(l+Jopt

2 ) ia[1+(aIlopt)2]+

21 alot 
opt 1q

-. [1 + (al )2] 
aopt

[1+ (aIopt) 2 ]n}

2nalop t [I + (alopt)]"m2 n-i 1opt 2 1+ (aa a Iopt

= [i + (alopt)2]n {,1 [1+ (alot) 2 ]

1 
4n-oPt

+ 21a 2 10 )t 

l+(alopt)
a'opt } 
D n

a 2 (n-1) 2 (1-a) - 4n 1 v/-2 37-1T 4-+T

[ 10]

[11] 

[12]

and finally,

9jijt 1 
n 4Il'a 1 opt [ +2 (n-4) 2 -2n

11

[9]

I1opt 
3a

-a ]
[131

an [i opt ) n
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Appendix 2 presents a computer program, written in ALGOL for the 

Univac 1108, which combines equations [ 5] through-[13] with the method 

of Fletcher and Powell (1963) to yield a statistical method for estimating 

a, n, and I . Appendix 3 contains a FORTRAN IV program which gives 

identical results.  

The experimental data relating relative photosynthetic rate to 

light, needed for input to this program, are most usefully obtained with a 

constant light incubator. Data from in situ measurements are confusing for 

two reasons: (1) it is difficult to get enough observations in the region of 

high irradiance because of the exponential drop of light; most of the bottles 

end up in the subsaturation light levels of the P/I curve; (2) the variations 

of surface irradiance during the incubation time make it difficult to specify 

to what irradiance a given rate of photosynthetic production corresponds; this 

is especially true of the bottles near the surface---they may be at inhibiting 

levels of irradiance at the start of the experiment and at subsaturation levels 

at the end. The ability to define and maintain the light climate are great 

advantages of the incubator method. The fact that the quality of light differs 

from the in situ light climate does not appear to be too important for most 

quantitative applications (Talling 1960). If it is deemed necessary to simulate 

the in situ spectrum, this can be done with either chemical (McAllister et al.  

1964) or glass filters (Kiefer et al. 1970). An incubator which was found suit
able for applying the model to the Great Lakes is described and illustrated by 

Fee (1971). Figure 4 shows a typical set of experimental data obtained with 

this incubator from Lake Michigan and the fitted model of them given by the 

program in Appendix 2.  

In the application of these procedures to an actual field situation, 
one more computer program is frequently useful. Most solarimeters produce 

an analog chart as output while the program presented in Appendix I requires 

that data be digitally formatted and equally spaced in time. It is an exceedingly 

time consuming procedure to manually read these data directly from the 

charts and punch them onto data processing cards. A mechanical digitizer 

can greatly expedite this process and also give better results than can be
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obtained manually. Fee (1971) used a d-Mac Pencil Follower for this 

purpose and there are a number of other machines now available that 

could be adapted for this. Appendix 3 presents a computer program, 

written in FORTRAN IV, which was developed to process the output 

from such a device. The program was written so that for curves which 

are quite smooth, only a few points need to be digitized and the program 

will use linear interpolation to compute the equally spaced data points.  

On the other hand, if the record is quite irregular the data can be 

numerically smoothed by digitizing the record at very close intervals 

of time and the program will use the trapezoidal rule for numerical 

integration to compute averages. There are two restrictions on the 

input data: (1) the data must be continuously increasing in time, i.e., 

the record must not double back on itself; and (2) the change between 

two successive ordinates must not exceed a user specified quantity.  

These two restrictions are imposed to ensure that the digitizer did not 

make a mechanical error. They also serve as a check on the quality of 

the digitizing. If an error of the first type occurs, the point is dropped.  

If an error of the second type occurs, the value for the ordinate is inter

polated between the preceeding and succeeding points. Obviously, if too 

many errors of either kind occur, it will probably be wise to redigitize 

the data. This program is general, and can therefore also be used for 

many other applications, for example in the digitizing of water level 

records for use in spectral analyses (Fee 1969b).  

Discuss ion 

Early attempts to simplify the measurement of areal primary 

production through the use of shipboard incubators (Steemann-Nielsen 

1952, Sorokin 1956) lacked a general theoretical framework. In particular, 

no account was taken of the actual distribution of surface light over time 

and empirical factors were used in the formulae. None of these formulae 

has been adopted for routine use by limnologists or oceanographers. The 

approach of the present work is general enough to apply to many water

bodies.
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These programs and the method based on them are strictly 

valid only for water bodies whose eupohtic zones are vertically iso

thermal and optically homogeneous. On large lakes, such as the Great 

Lakes, the oceans, or lakes which are too shallow to stratify, this is the 

usual situation. Vertical wind induced turbulence prevents the development 

of inhomogeneity in the upper layer where the bulk of primary production 

takes place. If a significant amount of light extends into a deeper layer 

which has different optical properties or algal populations, the lower 

layer would be treated separately and the total production obtained by 

summing the output from the two layers.  

For the lakes which are so shallow that appreciable light reaches 

the bottom, the areal primary production by the phytoplankton given by 

equation [ 2] will be too large because the limits of the integral are from 

the surface down to the depth of the euphotic zone. This equation can be 

modified to incorporate the depth limitation as follows: 

UZP(Z') 
-- a' 2 27 -n dy dx 

1 10 (x)/- 6 I'k114dx ZPz)- LJjo(x)eC [(l+y ) (l+ay)) [ 14] 

6 Ilk 

where z' is the linear depth at the station. To compute the total daily 

carbon fixation for that part of a lake which can be assumed to be horizontally 

uniform in temperature, transparency and algal biomass, the hypsographic 

curve A(z), which gives area as a function of depth (Welch 1948) is used as 

follows: 
A(z) UP(z) dz 

0[15] 

where zm is the maximum depth of the water body. with only slight modi

fications, the program presented in Appendix 1 can be used to solve equation 

[14]. Equation [15] can be solved planimetrically or numerically. For 

deep lakes, equation [ 15] of course is just A 2 P, where A is the surface 

area of the lake and I31P is the solution to equation 1 2 given by the program 

in Appendix 1.
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The programs presented in Appendices 1, 3 and 4 are com

pletely compatible and should be directly usable on any computer 

that will compile FORTRAN IV. As documented in these appendices, 

there are limits to the number of data points that can be handled, but 

these limits can be changed by adjusting the DIMENSION statements 

as desired.  

The A LG0L program (Appendix 2) conforms to ALG0L 60 

specifications (Naur 1963). However, since input and output statements 

are not yet standardized, these are different for every ALG0L compiler.  

Anyone familiar with the FRMAT statements of F0RTRAN IV will be 

able to decipher the corresponding ALG0L statements by direct compari

son of Appendices 2 and 3. Any unresolved questions can be answered 

by referring to the Univac 1108 ALG0L 60 reference manual (Univac 1967).  

The printer plotting routine (PR0CfEDURE PLAO) is the only part of this 

program that contains statements likely to cause real difficulty in con

version. The F0R MAT statements "F3" and "FF" contain variable repeat 

factors and this procedure also uses STRING variables. These could be 

converted either by deleting the plotting capability from the program alto

gether, or by making the repeat factors fixed and changing the alpha data 

to a representation allowed by the computer being used. This is not a 

critical part of the program, however, since it is used only for visually 

comparing the input data with the fitted model. Indeed, Appendix 3, which 

gives identical results to Appendix 2, does not use the plotting routine.  

It can be removed from Appendix 2, simply by deleting PROCEDURE PLOT 

and the third and fourth lines from the end of the program, which call this 

procedure. Differences in the character set may be-the source of further 
confusion. Scale factors are indicated by the symbol "?&". For example, 

the number 0.0014 would be written as 1.4 & -3. Multiplication is indicated 

by the symbol "*" instead of "x", anld exponentiation is denoted by "?**"? 

instead of "I ". Moreover, the relational operators .>, .. , ) , -, > and 

are coded as GEQ, LEQ, NEQ, k!QL and LSS and GTR, respectively. The 

last deviation from ALG0L 60 is that in 1108 ALG0L labels referenced before 

their occurrence must be declared in a I.k AL statement. This occurs at
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the 14th line from the end of the program and must be removed for com

patability with the Revised Report (Naur 1963).  

Acknowledgments 

Dr. C. H. Mortimer read the manuscript and made many helpful 

suggestions, R., J. Ristic prepared the figures and K. Lehnhardt typed 

the manuscript. I was supported by a National Science Foundation Pre 

doctoral Fellowship.



References 

Box, M. J. 1966. A comparison of several current optimization 

methods, and the use of transformations in constrained 

problems. Computer J., 9: 67-77.  

Fee, E. J. 1969. A numerical model for the estimation of photosyn

thetic production, integrated over time and depth, in natural 

waters. Limnol. Oceanogr., 14: 906-911.  

____* 1969b. Digital computer programs for spectral analysis of 

time series. Spec. Rept. No. 6, Center for Great Lakes Studies, 

Univ. Wisconsin--Milwaukee, 18 pp. + 3 App.  

0 1971. A numerical model for the estimation of integral primary 

production, and its application to Lake Michigan. Unpubl. Ph. D.  

thesis. Univ. Wisconsin Library, Madison.  

Fletcher, R. and M. J. D. Powell. 1963. A rapidly convergent descent 

method for minimization. Computer J., 6: 163 -168.  

Gaardner, T. and H. H. Gran. 1927. Investigations of the production of 

plankton in Oslo Fjord. Rapp. et Proc. -verb., Cons. Internat.  

Explor. Mer, 42: 1-48.  

Hutchinson, G. E. 1957. A treatise on limnology. Vol. I. Geography, 

Physics, and Chemistry, John Wiley and Sons, New York, xiv + 1015 p.  

Kiefer, D. and J. D. H. Strickland. 1970. A comparative study of photo

synthesis in seawater samples incubated under two types of light 

attenuator. Limnol. Oceanogr. 15: 408 -412.  

Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology. Ecology, 

23: 399-418.  

McAllister, C. D., N. Shah, and J. D. H. Strickland. 1964. Marine phyto
plankton photosynthesis as a function of light intensity: a comparison 

of methods. J. Fish. Res. Bd. Canada, 21: 159-181.  

Mood, A. M. and F. A. Graybill. 1963. Introduction to the Theory of 

Statistics. 2nd. ed. McGraw-Hill, New York, xvi +443 p.  

Naur, P. Led.]. 1963. Revised report on the algorithmic language ALGOL 

60. Communications of the Assoc. Comp. Machinery, 6: 1-17.

18



19

Rodhe, W., R. A. Vollenweider and A. Nauwerck. 1958. The primary 

production and standing crop of phytoplankton. In: Perspectives 

in Marine Biology, ed. by A. A. Buzzati-Traverso. pp. 299-322.  

Univ. California Press, Berkeley.  

Smith, E. L. 1936. Photosynthesis in relation to light and carbon dioxide.  

Proc. Nat'l. Acad. Sci. U.S., 22: 504.  

Sorokin, U. I. 1956. (On the use of radioactive carbon C-14 for the study 

of primary production of water basins)(in Russian) Trudy vsesoyuznovo 

gidrobiologicheskovo obshchestva, 7: 271-286.  

Steemann-Nielsen, E. 1952. The use of radio-active carbon (C-14) for 

measuring organic production in the sea. J. D. Cons. Internal.  

Explor. Mer, 18: 117-140.  

Talling, J. F. 1957. The phytoplankton as a compound photosynthetic 

system. New Phytol., 56: 133-149.  

0 1960. Comparative laboratory and field studies of photo

synthesis by a marine planktonic diatom. Limnol. Oceanogr., 

5: 62-77.  

Univac. 1967. Univac 1108 Multi-processor System ALG0L Programmer's 

Reference Manual. UP-7544. Sperry-Rand Corp.  

Vollenweider, R. A. 1960. Beitrige zur Kenntnis optischer Eigenschaften 

der Gew~sser und Prim~trproduktion. Mem. Ist. Ital. Idrobiol., 

12: 201-244.  

. 1965. Calculation models of photosynthesis -- depth curves 

and some implications regarding day rate estimates in primary pro

duction measurements. Mem. Ist. Ital. Idrobiol., 18 (Suppl.): 

425-457.  
_______. 197 0. Models for calculating integral photosynthesis and 

some implications regarding structural properties of the community 

metabolism of aquatic systems. pp. 455-472. In: Prediction and 

Measurement of Photosynthetic Productivity. Proc. IBP/PP Tech.  

Mtg., Tieboii, 14-2 1 Sept. 1969.



20 

and A. Nauwerck. 1961. Some observations on the C-14 

method for measuring primary production. Verh. Internat.  

Verien. Limnol., XIV: 134-139.  

Welch, P. S. 1948. Limnological Methods. McGraw-Hill, New York, 

xvii + 381 pp.



Appendix 1 

The FORTRAN IV program for computing the double integral of 

photosynthetic carbon uptake over time and depth is listed in this 

appendix. The input data are assembled on punched cards in the format 

listed below. The type of data, i.e., either integer, real, or alpha, 

follows the description of its position. Further explanation of the input 

data is given by comments in the program itself.  

Card #1:

Col. 1-10:

Col. 17-20:

Card #2: 

Col.  

Col.  

Col.  

Col.  

Col.  

Col.  

Card #3:

1-10: 

11-20: 

21-30: 

31-40: 

41-50: 

51-60:

The unit of mass in which the data are coded; this 

will normally be the milligram (alpha).  

The unit of length in which the data are coded; usually 

the meter (alpha).  

The optimum rate of photosynthesis, Popt(real).  

The extinction coefficient of the waterbody, 6 (real).  

The daylength in time units the same as those used for 

irradiance (usually minutes), X (real).  

The parameter I (real).  

The parameter a (real).  

The parameter n (real).

Col. 1-5: The number of data points on the irradiance curve.  

This must be an odd number and the rightmost digit 

must be in column 5 (integer). This number may not 

exceed 901 unless the DIMENSION statement is altered.  

Card /4 and following: 

The surface irradiance values at the number of data points specified 

on card #3. Eight data points are punched on each card, each one 

taking six columns, and being separated from the next value by two 

spaces, i.e., the format is 8 (F6.3,2X). For successive data sets, 

repeat cards 2 through 4. Comments in the program indicate the 

procedures used in the calculations. A set of test data is included at 

the end of the program listing.  

21
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C*****THIS PROGRAf, COMPUTES THE DAILY INTEGRAL OF PHOTOSYNTHESIS OVER 
C DEPTH IN A BODY OF WATER.  
C 

REAL IKeNPLAMBDA 
DIMENSION AP(901),AI(9Ol)PD(101)PIMASS(1O)PILENTH(1O),ITITLE(12) 
READ (5#11) IMASSP ILENTH 

11 FORMAT(10AlplOA1) 
C 
C IMASS IS THE UNIT OF MASS USED. THIS WILL NORMALLY BE A MILLIGRAM, 
C ILENTH IS THE UNIT OF LENGTH USED. THIS WILL NORMALLY BE A METER: 
C 
99 READ(5#13eEND=100) POPTFEPLAMBDAPIKPAPN 
13 FORMAT(6F10.3) 

Cl = SQRT(((I,-N)*A+SQRT(A*A*(N-1.)*(N-1.)+4.*N))/(2.*A*N)) 
DELTA = SQRT((1.+C1*Cl)*(l,+A*A*CI*C1)**N)/C1 
READ(5#14) ITITLEPM 

14 FORMAT(12A6eI8) 
PRINT 15PITITLE 

15 FORMAT(' 'P12A6) 
IF((M/2)*2 *EQ. M) M = M+1 
PRINT 45PMPPOPTPELAMBDAIKPAPNPDELTA 

45 FORMAT(' M ='IP4/' POPT="PF9.3#/' EXTINCTION COEFFICIENT ='PF9,3/ 
1 ' DAYLENTH =IF9.3/' I(K)PRIME =t'F9.3/' A 'ePF9.3/ I N 'ePF9.3/ 
2 ' DELTA '=,F9.3/) 

C 
C POPT IS THE OPTIMUM RATE OF PHOTOSYNTHESIS.  
C E IS THE EXTINCTION COEFFICIENT OF THE WATERBODY.  
C LAMBDA IS THE DAYLENGTH, 
C IK IS THE P/I CURVE SATURATION PARAMETER.  
C A IS ONE OF THE PHOTOSYNTHESIS INHIBITION PARAMETERS.  
C N IS THE OTHER INHIBITION PARAMETER.  
C DELTA IS THE AUXILLIARY INHIBITION PARAMETER.  
C BE SURE THAT THE UNITS OF ALL THE DATA ARE THE SAME* ESPECIALLY 
C CHECK THE UNITS USED FOR THE RATE PROCESSES.  
C THE THREE PARAMETERS A' N AND IK MAY BE ESTIMATED WITH ANOTHER 
C COMPUTER PROGRAM PRESENTED IN APPENDIX 2.  
C 

READ(5#l#END=1O0) (AI(I)rI=ItM) 

1 FORMAT(13F6*2) 
C 
C M IS THE NUMBER OF IRRADIANCE VALUES TO BE USED IN THE TIME 
C INTEGRATION# IT MUST BE AN ODD NUMBER* 200 VALUES 
C WILL BE A SUFFICIENT NUMBER. MORE THAN THIS MAY BE DESIRABLE IF 
C THE IRRADIANCE CURVE IS HIGHLY IRREGULAR BUT THIS WILL INCREASE 
C THE COMPUTER EXECUTION TIME CONSIDERABLY.  
C AI IS AN ARRAY CONTAINING THE SURFACE IRRADIANCE AT N EQUALLY 
C SPACED TIMES OVER A DAY.  
C THE FOLLOWING STEPS NORMALIZE THE IRRADIANCE DATA.  
C 

Cl =IK*DELTA 
DO 3 I1IM 

3 AICI) =AICI) / Cl 
C 
C LIGHT IS NOW NORMALIZED.  
C 

Cl =A*A 
DO 4 JZ1,M
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H = O.01*AI(J) 
Y = 0.0 

C 
C THE FOLLOWING STEPS INTEGRATE PHOTOSYNTHESIS OVER DEPTH AT AN 
C INSTANT IN TIME USING SIMPSONS RULE.  
C 

DO 5 I=1p101 
AY = Y*Y 
D(I) 1,0/SQRT((1.0+AY)*(1.0+C1*AY)**N) 

5Y=Y +H 
AP(J) = D(1) 
DO 6 l=2p98#2 

6 AP(J) = AP(J) + 4*0*D(I) + 2,0*D(I+1) 
4 AP(J) = O.O033333333*AI(J)*(AP(J) + 4.0*D(100) + D(101)) 

C 
C THIS COMPLETES THE DEPTH INTEGRATION.  
C THE INTEGRATION OVER TIME FOLLOWS.  
C 

DALYPS = AP(1) 
L=M-3 
DO 7 J=2pLe2 

7 DALYPS = DALYPS + 4.0*AP(J) + 2.0*AP(J+1) 
DALYPS = DELTA*POPT*LAMBDA*0.33333333*(UALYPS + 4.0*AP(M-1) + AP(M 
1))/(FLOAT(M-1)*E) 

C 
C THE TIME INTEGRATION IS NOW COMPLETED.  
C 

PRINT 10p UALYPSP IMASSP ILENTH 
10 FORMAT( 1Xe36HTfHE DAILY INTEGRAL PHOTOSYNTHESIS IS.E15.8lX,1OA 

11eIXPIOHPER SQUARE IOA1/) 
PUNCH 8# ITITLEeDALYPS 

8 FORMAT(12AbPF8.2) 
GO TO 99 

100 STOP 
END 

A DATA SET THAT MAY BE USED TO TEST THE PROGRAM IS: 

MILLIGRAM METER 
0.477 .370 940.0 .028 1.000 .254 

LAKE MICHIGAN. STATION 1. 25 JUNE 1970. 95 
.00 .00 .00 .00 .01 .03 .04 .06 .08 .09 .13 .15 .17 
.21 .22 .22 .25 .28 .30 .33 .35 .37 .39 .41 .43 045 
*47 .50 .51 .52 .52 .18 .21 .55 .61 .63 .66 .65 .64 
.62 .65 a67 .63 .61 .56 962 .61 .65 s70 .68 .68 58 
.67 .69 .70 .68 .67 ,62 .59 .57 .56 .53 .46 .39 .50 
.68 .45 .34 .36 .41 .24 .39 .51 .44 .37 .32 .23 .20 
.20 .17 .11 .10 .08 .07 .05 .04 .03 .03 .03 ,03 .03 
.02 .01 .01 .01 

THE CORRECT ANSWER IS 3343.27 MILLIGRAMS CARBON/SQUARE METER PER DAY.



Appendix 2 

The ALGOL 60 program, written for the UNIVAC 1108 digital com

puter, used for estimating the parameters a, n, and I is listed in this 

appendix. The input data are assembled on data processing cards in the 

format specified below. The data on the cards can be either integer or 

real.  

Card #1 and following: The following numbers in free format (i.e., 

separated by one or more spaces).  

1. The number of pairs of experimental data points to be used in 

the computations.  

2. P opt' the optimum rate of photosynthetic carbon fixation per 

unit volume and time.  

3. A first estimate of the parameter a.  

4. A first estimate of the parameter n.  

5. A first estimate of the parameter L .  

6. Pairs of data points, each consisting of an irradiance value and 

the photosynthetic rate corresponding to that irradiance. The 

program as now written allows a maximum of fifty pairs of such 

data points. This can be increased by changing the ARRAY 

declarations in the second line of the program.  

As output the program gives the path followed in arriving at the final param

eter combination---giving the values of the parameters and the partial 

derivatives at each iteration---the final fitted photosynthetic rates, and a 

printer plot showing both the input data and the fitted data.  

The program will go through a maximum of fifty iterations in the 

search for a local minimum. If none is found it simply returns the parameter 
values given by this number of iterations. The user can either accept this 

as a working solution or try the computations again with different initial 

estimates of the parameters. A set of test data, which may be used to 

assure that the progr:am is functioning properly, is included at the end of 

the listing.
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BEGIN 
ARRAY LITP Pp PEXP E0:50p Xt GEO43J 

REAL DELTAItPOPTPIKtFN#A; 
INTEGER NPTStItJtKtLtIER; 
PROCEDURE FUNCT(ARG#VALPGRAD); REAL VAL; REAL ARRAY ARGPGRAD; 

BEGIN 
REAL SUMIKtSUMASUMNPIOPTHPGDISCRRPTPUtSpDDECBPV#YDEVPEXPEK; 
FORMAT F1(3(D8.4p

t : I)PD9.*4t : te4(R13e6tt : 't)Al); 

SUMIK:=VAL:=SUMA*=SUMN:=0.0; A:=ARG[2]I N:=ARG[1); IK:=ARG[3]; 

IF N LEG 0.0 THEN N:=ARG[13:=190&-6I 
IF A LEG 0.0 THEN A:=ARGE2]:=*.0&-6; 
S:=N-IO; T:=A*A; U:=S*S; 
DISCR:=SGRT(TU+4*0*N)S 
IOPT:=SQRT((-S*A+DISCR)/(2°0*N*A)); 
R:=IOPT*IOPT; 
DEV :t 1.0+R; V:=1.0+T*R; Y:= V**N; 
DELTA1:= IOPT/SQRT(DEV*Y); H:= 40*N*A*IOPT; 
B:=DELTAI*DELTAI! 
D:= (A*U/DISCR - DISCR)/(H*A); 
E= (N*(T*S+2.0)/DISCR-DISCR-A)/(H*N); 
G:=(B*(N*A*DEV*(V**CN-.OI))*(A*D+IOPT)+Y*D)-D)/IOPT; 
H:=E*((T*N4IOPT/V-1°0/IOPT)+DELTAl*SQRT(Y/DEV))+05*LN(V); 
D:=B; E:=T*D; DISCR:=N*A*(A*G-l.O); T:=T*N; 
FOR I:=l STEP I UNTIL NPTS DO 
IF (IOPT:=LITEI]/IK) GTR 0.0 THEN 
BEGIN 

B:=IOPT*IOPT; U:=E*BS V:=l.0+U; Y:=BD; R:=iO+Y; 

PEXPEI]:=PEXPEK:=IOPT/SQRT(R*(V**N)); 
DEV:=PLXPEK-PEI3; 
VAL:=VAL + DEV*DEV/PEXPEK; 
S:=PEXPEK-(PEI3*PEI3)/PEXPEK; 
B:=l,0/R; 
SUMA:=SUMA+S*Y*(G/R+DISCR/V)I 
SUMN:=SUMN+S*(Y*H*(B+T/V)-0,5*LN(V))S 
SUMIK:=SUMIK+S*(N*U/V-B)/IK; 

END; 
IF N LEG l.O&-5 AND SUMN GTR 0.0 THEN 
BEGIN SUMN:=0.0; SUMA:=I.O&+5*SUMA END; 

IF A LEG 10&-5 AND SUMA GTR 0.0 THEN 

BEGIN SUMA:=OO; SUMN:=l.0&+5*SUMN END; 

GRADE1]:=SUMN; GRAD[2]:=SUMA; GRAD[33:=SUMIK; 
WRITE(PRINTERFIANl.0/DELTAlIKVALSUMASUMNPSUMIK); 

END COMPUTING THE CHI SQUARED FUNCTION AND ITS PARTIAL DERIVATIVES; 

PROCEDURE HUNT(NXFGESTEPSLIMITIER3; VALUE NESTEPSLINIT; 

REAL ARRAY XtG; INTEGER LIMITNIER; REAL FESTEPS; 

BEGIN INTEGER KOUNTN3,N31,N2,NJKL; 
ARRAY HCO:N*(N+7)/2J; 
FORMAT FI(I2,A1); 
REAL OLDFTDYHNRMGNRMDXAMBDAALFADALFAFXtFYZW; 
FUNCT(XtFG); IER:=KOUNT==O; 
N2=N+N; N3:=N2+N; N31:=N3+1; 

Ll: K:=N31; 
FOR J:=l STEP 1 UNTIL N DO 
BEGIN HEK]:=I.0; IF (NJ:=N-J) LEG 0 THEN GO TO L5; 

FOR L:=l STEP 1 UNTIL NJ DO H[K+L3:=O.O; K:=K+NJ+I; 
END; 

L5: WRITECPRINTERF1,KOUNT:=KOUNT+1)S OLDF::FS
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FOR J:=l STEP I UNTIL N DO 

BEGIN HEK:=N+J):=GEJJU HEK+N]:=XEJ]! K:=J+N3; T:=O; 

FOR L:=1 STEP 1 UNTIL N DO 
BEGIN T:=T-GELJ*HEKJU IF L GEG J THEN K:=K+ ELSE K:mK+N-L 

END; H(JJ:=T 
END ; 

DY:=HNRM:=GNRM:=0. 0 
FOR J:=l STEP I UNTIL N DO 

BEGIN HNRM: =HNRM+ABS(HCJJ) GNRM:=GNRM+ABS(G(JJ)1 
DY:=DY+H[.JJ*G[JJ END; 

IF UY GEQ 0 OR HNRM/GNRM LEQ EPS T1ILN GO TO L511 

ALFA:=2. 0(EST-F)/UYS AMB0:=A = 0S 

IF ALFA GTR 0.0 AND ALFA LSS AMBUA THEN AMtUA:=ALFAU 

ALFA:=OoO. FY:=F; 
L16: FX*=FY; DX:=DY 
L17: FOR I:=1 STEP 1 UNTIL N 00 

IF (PEXPI1]:=X[I3+AMBDA*H[IJ) LSS -1,0&-6 THEN 

BEGIN AMBDA:=-XIJ3/HEI; GO TO Li7 ENLUJ 

FOR I:=1 STEP 1 UNTIL N DO X[IJ:=PEXP[I]S 
FUNCT(X#F#G) FY:=F; DY:=0.0o 
FOR I:=l STEP 1 UNTIL N DO DY:=DY + GCIJ*HEI]1 

IF DY GTR 0.0 THEN 60 TO L22 ELSE 

IF DY EQL 0 THEN GO TO L36 ELSE 
IF FY GEQ FX THEN GO TO L22$ 

ALFA: =AMbDA: =AMBUA+ALFA ; 
IF HNRM*AMBUA LEO i.&+10 THEN GO TO Llu; 

IER:=2U GO TO XIT; 
L22: T:=OUO; 
L23: IF AMBDA EQL 0.0 THEN GO TO L3bl 

Z:=3. O* (FX-FY)/AMBUA+DY+DX 
ALFA:=MAX(ABS(Z),ABS(DX)PABS(DY))I DALFA:=Z/ALFAU 

DALFA: =DALFA*DALFA-DX/ALFA*DY/ALFA; 
IF DALFA LSS 0.0 THEN GO TO L51; W:=ALFA*SQRT(DALFA)U 

ALFA: =DY-DX+W+W U 
IF ALFA NEG 0.0 THEN ALFA:=(DY-Z+W)/ALFA ELSE 

ALFA:=(Z+CY-W)/(Z DX+Z+DY) !ALFA:=ALFA*AMBDA; 

L24: FOR I:=1 STEP I UNTIL N DO 
IF (PEXPCI]:=XCI3 + (T-ALFA)*HCI) LSS -l,0&-6 THEN 

BEGIN ALFA:=T+XEIJ/HEIJU GO TO L24 END; 

FOR I:=1 STEP 1 UNTIL N DO XEIJ:=PEXPEI]; 
FUNCT(XPFPG) ; 
IF F LEQ FX AND F LEQ FY THEN Go TO L36; 

DALFA:=0.00 
FOR I:=l STEP I UNTIL N DO DALFA:=DALFA + GI*HEI3; 

IF DALFA GEQ 0 OR F GTR FX THEN GO TO L33; IF F EQL FX AND DX EQL DALFA THEN GO TO L365 
FX:=FU DX:=DALFAU T:=AMBDA:=ALFAU GO TO L23U 

L35: IF FT NEQ F OR DY NEQ DALFA THEN 
BEGIN FT:=FU DY:=DALFA! AMBDA:=AMBDA-ALFAU GO TO L22 ENDS 

L36: IF OLDF-F+EPS LSS 0 THEN GO TO L51; 

FOR J:=i STEP 1 UNTIL N DO 
BEGI N K : N+J ! HECK]: =GLJJ-HEUKJU 

K :=N+K U HEKJ]:XUJJ-H[KJ U 

END U 
IER:=O! 
IF KOUNT LSS N THEN GO TO L42U 

T:=Z;:0OUO
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FOR J:=l STEP 1 UNTIL N DO 
BEGIN W:=HEK:=N+J3; K:=K+N; T:=T+ABS(HCK3); Z:=Z+W*HCKJ END; 

IF HNRM LEG EPS AND T LEG EPS THEN 60 TO XIT; 
L42: IF KOUNT GEG LIMIT THEN 60 TO L50; ALFA:=O; 

FOR J:=l STEP I UNTIL N DO 
BEGIN K*=J+N3; W:=060; 
FOR L:=1 STEP I UNTIL N DO 
BEGIN W:=W+HEN+L]*HEKJ! IF L GEQ J THEN K:=K+1 ELSE K:=K+N-L 
END; 
K:=N+J; ALFA:=ALFA+W*HEKJ; HEJJ:=W 

END; 
IF Z*ALFA EQL 0.0 THEN GO TO Lu; 
K:=N31; 
FOR L=1 STEP 1 UNTIL N DO 

BEGIN KL:=N2+L; 
FOR J:=L STEP 1 UNTIL N DO 
BEGIN HLKJ:=H[K]+H[KLJ*HEN2+J]/Z-H[LJ*HEJJ/ALFA; K:=K+1 END; 

END; GO TO L5; 
L50: IER:=1; GO TO XIT; 
L51: FOR J:=l STEP 1 UNTIL N DO XEJJ:=HCN2+JJ; K:=N2+N; 

FUNCT(XPFPG); 
IF GNRM -EPS LEG 0 THEN BEGIN IER:=O; Go TO XIT END ELSE 
IF IER LSS 0 THEN GO TO XITI IER:=-l; GO TO L1l 

XIT: END FMFPF 
PROCEDURE PLOT(XPYPZPXLENTHPYLENTHPN); VALUE NPXLENTHPYLENTHI 

INTEGER NPXLENTHPYLENTH; ARRAY X#YrZJ 
BEGIN 
STRING LINE(PAD(10)PLASTPART(130)); 
INTEGER IPJPKPLPNROWS; 
REAL XMINXMAXPYMINPYMAXpXSCALEeYSCALEPS; 
PROCEDURE IMPROVESCALE(XMINPXMAX); REAL XMINFXMAX; 

BEGIN 
XSCALE:=XMAX-XMIN; 
IF XSCALE GTR 0.0 THEN 

BEGIN 
I:=-ENTIER(0,43429448*LN(XSCALE)); 
YSCALE:=10.0**I; 
I:=ENTIER(XMIN*YSCALE); 
XMIN:=I/YSCALE; 
S:=01/YSCALE; XSCALE:=ENTIER(XMAX*YSCALE)/YSCALE; 
IF XSCALE LSS XMAX THEN 
FOR XSCALE:=XSCALE+S WHILE XSCALE LSS XMAX DO; 

XMAX:=XSCALE; 
END 

END; 
FORMAT F1(R1O.3p'+'pS130A1)p F2(XlOptItS130A1)t 

F3(X6t :XLENTH+1:(R9.2pXl)A1)p 
FF(Xllptl'P:XLENTH :t.. .. +~~) 

XMIN:=XMAX:=XE1J; YMIN:=MIN(ZE1JYE1J); YMAX:=MAX(Z(1].YC1J); 
FOR I:=2 STEP I UNTIL N DO 

BEGIN 
IF X[I3 LSS XMIN THEN XMIN:=XEIJ; 
IF XEI GTR XMAX THEN XMAX:=XCIJ; 
IF YE1] LSS YMIN THEN YMIN:=YEIJ! 
IF YEI GTR YMAX THEN YMAX:=YEI; 
IF ZEI] LSS YMIN THEN YMIN:=ZEIJ; 
IF ZEI) GTR YMAX THEN YMAX:=ZCIJ;



28 

END; 
IMPROVESCALE(XMINPXMAX); IMPROVESCALE(YMINPYMAX); 
XSCALE:=10*0*XLENTH/(XMAX-XMIN); 
YSCALEOO=690*YLENTH/(YMAX-YMIN); 
FOR I:=l STEP 1 UNTIL N DO 
BEGIN 

XEII:=ENTIERCXSCALE*(XEII-XMIN)+095)+l; 
YE13:=ENTIEREYSCALE*(YE13-YMIN)+0*5); 
ZEII:=ENTIEREYSCALE*(ZEII-YMIN)+Oo5); 

END; 
NROWS:=6*YLENTH; 
YSCALE:=590/YSCALE; YMAX:=YMAX+YSCALE; 
FOR I:=O STEP 1 UNTIL NROWS DO 

BEGIN LASTPART:=' f; 
L:=NROWS-I; 
FOR J:=l STEP 1 UNTIL N DO 

BEGIN 
IF ZCJI EQL L THEN LASTPART(XIJJ) tQf ELSE 

IF YCJI EQL L THEN LASTPART(XEJI) 
END$ 

IF I EQL NROWS THEN WRITE(PRINTERPFlPYMINPLASTPART) ELSE 

IF MOD(IP5) EQL 0 THEN 
WRITE(PRINTERPFlPYMAX:=YMAX-YSCALLPLASTPART) ELSE 

WRITE(PRINTERPF2pLASTPART); 
ENU; 

WRITE(PRINTLRPFF); 
XSCALE:=l0e0/XSCALE; 
WRITE(PRINTERPF3#XMINPFOR I:=l STEP 1 UNTIL XLENTH DO 

XMIN:=XMIN+XSCALE); 
END PLOT; 

FORMAT FO(A3vlO8(9=0)pAlpt:tPX3ptAtpX4pt:9pX5#INIPX4pt:tpX3r 
IDELTA :IPX5p9IKIPX4p9:9rX5p9CHI**29PX4p9:9pX3p 
OPCHI**2/PA :IPX3ptPCHI**2/PN :tFX3ptPCHI**2/PIK :IPAIP 

108(f=l)pAl)r 
PAGEMPITHE NORMALIZEDW AND FITTED(g) DATA ARE PLOTTED BELOWt 

PAIPOIF POINTS OVERLAP THEN ONLY AN 0 APPEARSOPAI*l)t 

ENDPLOT(X47#'NORMALIZED IRRADIANCEP I/(DELTA*IK)9#A2)v 

Fl(EPINDATA ='#13#X2p'POPT ='pD10*6rX2p'IK =IPD10*6p 
X2ptA=9tDlOo6tX2ptN=ttDlOo6pAlo2tX20t 

ILIGHT VSe PHOTOSYNTHESIS DATA FOLLOW0**vrAl91p(8D10e5pAl)lp 

F30THE NORMALIZED AND FITTED DATA FOLLOW 9*elvA2*lp45(l=')pAlp 

I:I/(DELTA*IK) : POBS/POPT PWITTED) :IrAlp 

I 1/(DELTA*IK) :IPX2itoPOSS/POPTtivX3pt:9ooX3t9P(FITTED)'IpAlp 
45(t I)PAlt(DlOo5pX4pt:9tDl2o8PX2p9:tpDl2o8tAl)); 

LOCAL LABEL EOFr LOOP; 
- - & & , w% -e- e, r,% ̂ ff-%,r IV W - A - tl - CAD T-0-1 CTc7P I IINTTI NPTc-% no
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EOF: END.  

A DATA SET THAT MAY BE USED TO TEST THE PROGRAM IS: 

20 100.0 0.02 0.5 0.5 
0.17 90.8 0.0516 100.0 0.0146 79.5 0.0072 46.*4 
0.17 83.6 0.0516 100.0 0.0146 87.5 0.0072 49.5 
0.17 88.9 0.0516 100.0 0.0146 89.7 0.0072 50.5 
0.17 75.9 0.0516 100.0 0.0146 81.2 0.0072 50.5 
0.17 81.2 0.0516 100.0 0.0146 84.4 0.0072 46.7 

THE CORRECT ANSWERS ARE: A=1.0000e N=0.1806@ IK=0.0128 AND CHI**2=0.0411.



Appendix 3 

A FOTRAN IV program for estimating the model parameters a, 

n and I is listed with comments in this appendix. Unlike the ALGOL 

version given in Appendix 2, this program does not include the printer 

plotting capability. The comments given in the program apply also to 

the corresponding statements in the ALGOL program.  

The format of the input data is given below; the type of data, i.e , 

either real or integer, is given in parentheses following its description.  

Card #1: 

Col. 1-5: The number of pairs of pairs of data points available 

for fitting the curve, (integer).  

Col. 6-15: P the optimum rate of carbon uptake per unit opt' 

volume and time (real).  

Col. 16-25: A first estimate of the model parameter I (real).  

Col. 26-35: A first estimate of the model parameter a (real).  

Col. 36-45: A first estimate of the model parameter n (real).  

Cards #2 and following: (there must be as many cards as the number in 

columns 1-5 of the first card).  

Col. 1-10: An experimental irradiance value (real).  

Col. 11-20: The rate of photosynthesis per unit volume and time 

corresponding to the irradiance value in columns 1-10 

(real). Be sure that the units of these rates are the 

same as the units used for P opt" 

To process successive data sets, place card decks after the initial one in 

the format specified. The same data set that was given at the end of 

Appendix 2 may be used to check the proper operation of this program.
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REAL LIT(50)PP(50)PPEXP(50).X(4)tG(4)PDELTA1,POPTIKFAtN 
COMMON LITPDELTA1PPOPTPIKtA#NPTSN 
COMMON /XX/ PEXP 

10 FORMAT(///p1Xl08('=')p/' :p3XptA4pt tt5XONtt4Xtt:op3Xt 
$ 'DELTA :o,5XP'IKt,4Xt:t5X,'CHI**2t4Xt:'t3X,'PCHI**2/PA :'.  
$ 3XP'PCHI**2/PN :'p3XP'PCHI**2/PIK :'/1Xp108('=')) 

11 FORMAT('1NDATA =fpI3v2Xp'POPT =tFl0.6p2Xt'IK '=trF106r2X, 
S 'A ='pFI096t2XpON =F10.6//20Xp'LIGHT VS PHOTOSYNTHESIS DATA FOL 
SLOW...'/(8F1O.5)) 

12 FORMATC THE NORMALIZED AND FITTED DATA FOLLOW...'//1Xt45(t=)/ 
$ ':I/(DELTA*IK) : POBS/POPT : P(FITTED) :'/1XP45(=t)/ 
$ (FlO°5o4Xt9:tpFl2,8t2XPI:PF12,8)) 

20 FORMAT(ISP4F102/2F10.2) 
C READ AND PRINT THE INPUT DATA 
1 READ(52OPEND=100) NPTSPOPTPIKA#N,(LIT(I),P(I)eI=I1NPTS) 

PRINT Il, NPTStPOPTIKtANe(LIT(I)tP(I)eI=lNPTS) 
PRINT 10 

C NORMLIZE THE PHOTOSYNTHETIC RATES BY POPT TO GET RELATIVE RATES.  
DO 2 I=INPTS 

2 P() =P(I)/POPT 
X(1) N 
X(2) A 
X() =IK 

C FIND THE MINIMUM CHI**2 VALUE AND BEST PARAMETER COMBINATION.  
CALL HUNT(3,X,F,G,1.OE-6,1.OE-6,50,IER) 

C NORMALIZE THE LIGHT DATA 
DO 3 I=1,NPTS 

3 LIT(I) = LIT(I)*DELTA1/IK 
C PRINT THE ANSWERS.  

PRINT 12,(LIT(I),P(I),PEXP(I),I=lNPTS) 
GO TO 1 

100 STOP 
END 

SUBROUTINE FUNCT(ARGPVALPGRAD) 
REAL LIT(50),P(50),PEXP(50),ARG(I),GRAD(1),IK,N 
COMMON LITPpDELTA1,POPTIKAtNPTS,N 
COMMON /XX/ PEXP 
DOUBLE PRECISION SUMIKSUMNSUMAS,T,UtDISCRPIOPTPRPDEVPVeYHB,D, 
S EtGPPEXPEK 
DOUBLE PRECISION EELTA1 
FORMAT(O '3(F8. ot : '),F9.4 t : 'e(E13.6,' : ')) 
VAL = 0.0 
SUMIK 0.0 
SUMA = 0.0 
SUMN 0.0 

C CHECK TO ASSURE THAT CONSTRAINTS ARE OBSERVED.  
IF(ARG(1) .LE. 0.0) ARG(l) = 1.OE-06 
IF(ARG(2) .LE. 0.0) ARG(2) = 1.OE-06 
N = ARG(1) 
A = ARG(2) 
IK = ARG(3) 

C COMPUTE VARIOUS CONSTANTS TO BE USED IN THE ITERATION LOOP.  
S = N-1.0 
T = A*A
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U = S*S 
DISCR =DSQRT(T*U + 4.0*N) 
IOPT =DSQRT((-S*A+DISCR)/(2.0*N*A)) 
R = IOPT*IOPT 
DEV = 1.0+ R 
V = 1.0+ T*R 
Y = V**N 
EELTA1 = IOPT/DSQRT(DEV*Y) 
H 4 .0*N*A*IOPT 
8 = EELTA1*EELTA1 
D = (A*U/DISCR-DISCR)/(H*A) 
E = (N*(T*S+2.0)/DISCR-DISCR-A)/(H*N) 
6 = (B*(N*A*DEV*(V**(N-1.0))*(A*D+IOPT)+Y*D)-D)/IOPT 
H = E*((T*N*IOPT/V-1.0/IOPT)+EELTA1*DSQRT(Y/DEV))+0.5* ALOG(V) 
D B 
E T*D 
DISCR = N*A*(A*G-1.0) 
T = T*N 

C START OF THE LOOP FOR COMPUTING CHI**2 AND ITS PARTIAL DERIVATIVES 
DO 4 I=PNPTS 
IOPT = LIT(I)/IK 
IF(IOPT .LE. 0.0) GO TO 4 
B = IOPT*IOPT 
U = E*B 
V = 1.0+U 
Y = 8*0 
R = 10+Y 

C COMPUTE THE EXPECTED PRODUCTION FOR THE GIVEN IRRADIANCE.  
PEXPEK = IOPT/DSQRT(R*(V**N)) 
PEXP(I) PEXPEK 

C COMPUTE THL DEVIANCE OF THE OBSERVED FROM THE EXPECTED PRODUCTION.  
DEV = PEXPEK - P(I) 

C COMPUTE THE CHI**2 VALUE.  
VAL = VAL + DEV*DEV/PEXPEK 
S = PEXPEK - (P(I)*P(I))/PEXPEK 
B = l.o0/R 

C COMPUTE THE PARTIAL DERIVATIVE OF CHI**2 WITH RESPECT TO A.  
SUMA = SUMA + S*Y*(G/R + DISCR/V) 

C COMPUTE THE PARTIAL DERIVATIVE OF CHI**2 WITH RESPECT TO N.  
SUMN = SUMN + S*(Y*H*(B + T/V) - 0.5* ALOG(V)) 

C COMPUTE THE PARTIAL DERIVATIVE OF CHI**2 WITH RESPECT TO IK, 
SUMIK = SUMIK + S*(N*U/V - B)/IK 

4 CONTINUE 
C SEE WHETHER THE PARTIAL OF CHI**2 WITH RESPECT TO N POINTS OUT OF 
C THE REGION. IF SOP SET IT TO ZERO AND INCREASE THE PARTIAL WITH 
C RESPECT TO A BY FIVE ORDERS OF MAGNITUDE.  

IF(N.LE.1.OE-5.AND°SUMN.GT.O.) GO TO 5 
GO TO 6 

5 SUMN =O.  
SUMA = 1.OE+5 * SUMA 

C SEE WHETHER THE PARTIAL OF CHI**2 WITH RESPECT TO A POINTS OUT OF 
C THE REGION. IF SOP SET IT TO ZERO AND INCREASE THE PARTIAL WITH 
C RESPECT TO N BY FIVE ORDERS OF MAGNITUDE.  
6 IF(A.LE.1.OE-5.AND.SUMA.GT.0.) GO TO 7 

GO TO 8 
7 SUMA = O.  

SUMN = 1.E+5*SUMN
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GRAD(l) = SUMN 
GRAD(2) = SUMA 
GRAD(3) = SUMIK 
DELTAl = ELLTAI 
V = lo/DELTAl 

C PRINT THE COMPUTED VALUES.  
PRINT 1p ApN#VrIKFVAL#SUMApSUMNpSUMIK 
RETURN 
END

SUBROUTINE HUNT(NvX#FvGpEST#EPSrLIMITpIER) 
DIMENSION H(15),X(1),G(1)rPEXP(1) 
COMMON /XX/ PEXP 
CALL FUNCT( XPFPG) 
IER=O 
KOUNT=O 
N2=N+N 
N3=N2+N 
N31=N3+1 

1 K=N31 
DO 4 J=IN 
H(K)=I.  
NJ=N-J 
IF(NJ)5t5t2 

2 DO 5 L3=PNJ 
KL=K+L 

3 H(KL)=O.  
4 K=KL+l 
C START OF THE ITERATION LOOP.  
5 KOUNT=KOUNT +1 

PRINT 60p KOUNT 
60 FORMAT(f ITERATION NUMBER f13) 
C SAVE THE CHI**2 VALUE. PARAMETER VECTOR AND GRADIENT VECTOR.  

OLDF=F 
DO 9 J=.N 
K=N+J 
H(K)=G(J) 
K=K+N 
H(K)=X(J) 

C DETERMINE THE DIRECTION VECTOR.  
K=J+N3 
T=O.  
DO 8 L=ltN 
T=T-G(L)*H(K) 
IF(L-J)6t7t7 

6 K=K+N-L 
GO TO 8 

7 K=K+l 
8 CONTINUE 
9 H(J)=T 
C CHECK WHETHER CHI**2 WILL DECREASE BY STEPPING ALONG H VECTO 

DY=0
HNRM=O.  
GNRM=O.  

C CALCULATE THE DIRECTIONAL DERIVATIVE AND THE TEST VALUES FOR

R.

t THE
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C DIRECTION VECTOR H AND THE GRADIENT VECTOR G.  
DO 10 Jz1,N 
HNjM=HNRM+AbS(H(J)) 
GNRM=GNRM+ABS(G(J)) 

10 DY=DY+H(J)*G(J) 
C REPEAT THE SEARCH IN THE DIRECTION OF STEEPEST DESCENT IF THE 
C DIRECTIONAL DERIVATIVE IS POSITIVE OR ZERO.  

IF(DY)11e51v51 
C REPEAT THE SEARCH IN THE DIRECTION OF THE STEEPEST DESCENT IF THE 
C DIRECTION VECTOR H IS SMALL COMPARED TO THE GRADIENT VECTOR Go 
11 IF(HNRM/GNRM-EPS)51#51#12 
C SEARCH ALONG H FOR THE POSITIVE DIRECTIONAL DERIVATIVE.  
12 FY=F 

ALFA=2,*(EST-F)/DY 
AMBDA=1.  

C USE THE ESTIMATE FOR THE STEPSIZE ONLY IF IT IS POSITIVE AND LESS 
C THAN UNITY. OTHERWISEP USE 1.0 AS THE STEPSIZE.  

IF(ALFA)15p15e13 
13 IF(ALFA-AMBDA)14plSl15 
14 AMBDA=ALFA 
15 ALFA=O.  
C SAVE CHI**2 AND THE DERIVATIVES FOR THE OLD PARAMETER VECTOR.  
16 FX=FY, 

DX=DY 
C STEP THE PARAMETER VECTOR ALONG H.  
119 CONTINUE 

DO 17 I=1N 
PEXP(I) X(I) + AMBDA*H(I) 
IF(PEXP(I) .GE. -1.E-6) GO TO 17 
AMBDA = -X(I)/H(I) 
GO TO 119 

17 CONTINUE 
DO 118 I=lN 

118 X(I) = PEXP(I) 
C COMPUTE CHI**2 AND THE GRADIENT VECTOR FOR THE NEW PARAMETERS.  

CALL FUNCT( XPFPG) 
FY=F 

C COMPUTE THE DIRECTIONAL DERIVATIVE DY FOR THE NEW PARAMETERS.  
C TERMINATE THE SEARCH IF DY IS POSITIVE. IF DY IS ZERO# THE 
C MINIMUM OF THE PARAMETER SPACE HAS BEEN FOUND.  

DY=O.  
DO 18 I=IPN 

18 DY=DY+G(I)*H(I) 
IF(DY)19'36'22 

C TERMINATE SEARCH IF THE CHI**2 VALUE INDICATES THAT THE MINIMUM 
C HAS BEEN FOUND.  
19 IF(FY-FX)20p22#22 
C DOUBLE THE STEPSIZE AND REPEAT THE SEARCH.  
20 AMBDA=AMBDA+ALFA 

ALFA=AMBDA 
C END OF THE SEARCH LOOP. TERMINATE IF THE CHANGE IN CHI**2 IS 
C VERY LARGE.  

IF(HNRM*AMbDA-I.E1O)16,16,21 
C LINEAR SEARCH INDICATES THAT NO MINIMUM EXISTS.  
21 IER=2 

RETURN 
C INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED BY THE SEARCH TO
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C FIND THE BEST PARAMETER VECTOR.  
22 T=0.  
23 IF(AMBDA)2436p2 
24 Z=3**(FX-FY)/AMBDA+DY+DX 

ALFA=AMAX1(ABS(Z)PABS(DX) ABS(DY)) 
DALFA=Z/ALFA 
DALFA=DALFA*DALFA-DX/ALFA*DY/ALFA 
IF(DALFA)51p25,25 

25 W=ALFA*SQRT(DALFA) 
ALFA=DY-DX+W+W 
IF (ALFA) 250#251P250 

250 ALFA=(DY-Z+W)/ALFA 
GO TO 252 

251 ALFA=(Z+DY-W)/(Z+DX+Z+DY) 
252 ALFA=ALFA*AMBDA 
120 CONTINUE 

DO 26 I-1PN 
PEXP(I) - X(I) + (T-ALFA)*H(I) 
IF(PEXP(I) .GE. -1.E-06) GO TO 26 
ALFA = T + X(I)/H(I) 
GO TO 120 

2b CONTINUE 
DO 121 I-lN 

121 X(I) - PEXP(I) 
C COMPUTE CHI**2 AND THE GRADIENT VECTOR AT THE NEW-PARAMETERS.  

CALL FUNCT( XFG) 
C TERMINATE IF CHI**2 IS LESS THAN CHI**2 VALUES AT THE END OF THE 
C INTERVAL. OTHERWISE# REDUCE THE INTERVAL BY SETTING ONE END POINT 
C EQUAL TO THE COMPUTED PARAMETER VECTOR AND REPEAT THE 
C INTERPOLATION. THE CHOICE OF WHICH END POINT TO USE DEPENDS ON 
C THE CHI**2 VALUE AND ITS GRADIENT AT THE OLD PARAMETER VALUES.  

IF(F-FX)27p27,28 
27 IF(F-FY)36,36,28 
28 DALFA=O.  

DO 29 I=IN 
29 DALFA=DALFA+G(I)*H(I) 

IF(DALFA)30,33,33 
30 IF(F-FX)32,31e33 
31 IF(DX-DALFA)32t36,32 
32 FX=F 

DX=DALFA 
T=ALFA 
AMBDA=ALFA 
GO TO 23 

33 IF(FY-F)35p34,35 
34 IF(DY-DALFA)35,36,35 
35 FY=F 

DY=DALFA 
AMBDA=AMBDA-ALFA 
GO TO 22 

C TERMINATE IF CHI**2 HAS NOT DECREASED DURING THE LAST ITERATION.  
36 IF(OLDF-F+EPS)51,38,38 
C COMPUTE THI DIFFERENCE VECTORS OF THE PARAMETER AND GRADIENT 
C VECTORS FROM TWO CONSECUTIVE ITERATIONS.  
38 DO 37 J1IPN 

K=N+J 
H(K)=G(J)-H(K)""
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K=N+K 
37 H(K)=X(J)-H(K) 

IER=O 
C IF AT LEAST 3 ITERATIONS HAVE BEEN COMPUTED, TEST THE LENGTH OF 
C THE PARAMETER VECTOR AND THE DIRECTION VECTOR.  

IF(KOUNT-N)42p39p39 
39 T=O.  

Z=0.  
DO 40 J=IpN 
K=N+J 
W=H(K) 
K=K+N 
T=T+ABS(H(K)) 

40 Z=Z+W*H(K) 
IF(HNRM-EPS)41p41e42 

41 IF(T-EPS)56p56p42 
C TERMINATE IF THE NUMBER OF ITERATIONS WOULD EXCEED LIMIT.  
42 IF(KOUNT-LIMIT)43,50,50 
C PREPARE TO UPDATE THE H MATRIX.  
43 ALFA=O.  

DO 47 J=lN 
K=J+N3 
W=o, 
DO 46 L=ltN 
KL=N+L 
W=W+H(KL)*H(K) 
IF(L-J)44,45,45 

44 K=K+N-L 
GO TO 46 

45 K=K+l 
46 CONTINUE 

K=N+J 
ALFA=ALFA+W*H(K) 

47 H(J)=W 
C REPEAT THE SEARCH IN THE DIRECTION OF STEEPEST DESCENT IF THE 
C RESULTS ARE NOT SATISFACTORY.  

IF(Z*ALFA)48,1t48 
C UPDATE THE H MATRIX.  
48 K=N31 

DO 49 L=lpN 
KL=N2+L 
DO 49 J=LPN 
NJ=N2+J 
H(K)=H(K)+H(KL)*H(NJ)/Z-H(L)*H(J)/ALFA 

49 K=K+l 
C END OF THE ITERATION LOOP.  

GO TO 5 
C NO CONVERGENCE AFTER SPECIFIED NUMBER OF ITERATIONS.  
50 IER=l 

RETURN 
C RESTORE THE OLD CHI**2 VALUE AND PARAMETER VALUES.  
51 DO 52 J=lpN 

K=N2+J 
52 X(J)=H(K) 

CALL FUNCT( XeF#G) 
C REPEAT SEARCH IN THE DIRECTION OF THE STEEPEST DESCENT IF THE 
C DERIVATIVL FAILS TO BE SUFFICIENTLY SMALL.
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IF(GNRM-EPS)55p55p
5 3 

C TEST FOR REPEATED FAILURE OF ITERATION, 

53 IF(IER)56#54#5
4 

54 IER=-1 
GOTO 1 

55 IER=O 
56 RETURN 

END



Appendix 4 

A E[VTRAN IV program for converting analog charts digitized 

with a mechanical digitizer to digital output equally spaced in time 

(or space) is listed in this appendix. The program smooths data points 

by using the trapezoidal rule for numerical integration to obtain an 

average value for each equally spaced data point output. As output, the 

program prints both the X and Y coordinates but punches only the Y 

coordinates since the X's are equally spaced. The format of the input 

is documented below with the type of data, i.e., real, integer or alpha, 

in parentheses.  

Card #1: 

Col. 1-10: The number of units desired between successive 

abscissa values (real).  

Col. 11-20: The scale factor for converting digitizer units to 

actual ordinate units (real). This is the number of 

digitizer units that equals one unit of the physical 

quantity being digitized.  

Col. 21-30: The maximum allowable difference between successive 

ordinates in the input data (real). This is used to 

insure that changes are not too abrupt and that the 

machine did not make a mechanical error (e.g., drop 

a digit).  

Card #2: 

Col. 1-4: Right justified, the number of data points in the deck 

of cards that represents the digitized chart (integer).  

This may not exceed 5000 unless the DIMENSION 
statements are altered.  

Card #3: 

Col. 1-5: The number of abscissa units spanned by the digitized 

record (real).

38
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Card #3 (continued): 

Col. 6-80: Any series of symbols that can be used to identify 

this data set (alpha). It will be used to label the 

output.  

Card #4 and following, as necessary: 

The digitized record, each point consists of an X and a Y coor 

dinate (integer). Each part takes up 4 columns and there are no 

decimal points or blanks. There are 10 coordinates per card.  

Cards 2 through 4 are repeated for as many data sets as desired. The 

total number of data points output (which equals 1 plus the total time span 

of the record divided by the increment between successive data points) 

may not exceed 1000.
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C ** A PROGRAM FOR SMOTHING AND INTERPOLATING DIGITIZED DATA. E. J. FEE.  
DIMENSION X(5000)eY(5000)PZX(1000),ZY(1000), IALPHA(37) 

33 FORMAT(13F6.2) 
92 READ(5p91pEND=41) AINCR#AKPALIMIT 

91 FORMAT(3FI0o2) 
C**** AINCR IS THE STEP DESIRED BETWEEN SUCCESSIVE ABSCISSA VALUES.  
C**** AK IS THE SCALING FACTOR FOR THE ORDINATESP I.E.: 
C AK = ABSOLUTE VERTICAL AMPLITUDE/RELATIVE VERTICAL AMPLITUDE 
C**** ALIMIT IS THE MAXIMUM ALLOWABLE DIFFERENCE IN ORDINATE VALUES.  

BINCR = 1.0/AINCR 
2 READ(5r4tEND=41) N 
4 FORMAT (14) 
READ 3#DPIALPHA 

C**** N IS THE NUMBER OF DIGITIZED DATA POINTS TO BE INPUT.  
C**** D IS THE NUMBER OF ABSCISSA UNITS COVERED BY THE DIGITIZED RECORD, 
C THAT ISe IT IS THE SPAN OF TIME OR LENGTH FROM THE FIRST POINT 
C TO THE LAST POINT IN THE INPUT DECK.  
C**** IALPHA IS ANY SERIES OF 74 CHARACTERS; IT IS USED TO LABEL THE 
C OUTPUT.  

3 FORMAT(F5.2p 37A2) 
READ (5r6) (X(I)rY(I)pI=veN) 

C**** X AND Y ARE THE DIGITIZED COORDINATES.  
6 FORMAT(20F4.O) 

IERRI = 0 
IERR2 = 0 

C**** MAKE SURE THE ENDS ARE IN ORDER.  
IF(X(l)-X(2)) 101P11#0 

100 T=X(I) 
X(1)=X(2) 
X(2)=T 
T=Y(1) 
Y(I)=Y(2) 
Y(2)=T 

101 IF(X(N)-X(N-1)) 103PI04P105 
104 N=N-1 

GO TO 101 
103 T=X(N) 

X(N)=X(N-1) 
X(N-1)=T 
T=Y(N) 
Y (N)=Y (N-i) 
Y(N-1)=T 

105 AL D/(X(N) - X(1)) 
E = X(1) 
F Y(1) 

C**** TRANSFORM THE DATA FROM DIGITIZER UNITS TO ABSOLUTE UNITS 
DO 7 I=PN 
X(I) = AL*(X(I) - E) 

7 YCI) =(Y() - F)/AK 
X(N) = D 
LBJ = N-i 

C**** MAKE SURE THAT THE ABSCISSAS ARE IN ORDER 
DO 9 I=2eLBJ 
IF(X(I)-X(I-1))8e99,99 

C**** THE DIGITIZER DOUBLED BACK SO AVERAGE OUT THE POINT 
8 XCI) C= X(I-1) + X(I+1))*0.5 

Y(I) =CYCI-1) + Y(I+1))*0.5
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C**** TALLY THE NUMBER OF ERRORS IN THE ABSCISSA VALUES 
IERRI = IERR1 + 1 

C**** CHECK TO MAKE SURE THE ORDINATES ARE OK 
99 G = Y(I)-Y(I-1 ) 

IF(ABS(G) - ALIMIT) 9.p10 
C**** THERE WAS TOO MUCH OF A CHANGE BETWEEN SUCCESSIVE POINTS SO 
C**** AVERAGE THE POINT OUT 

10 Y(I) = Y(I-1)+((Y(I+I)-Y(I-1))*(X(I)-XII-I)))/IX(I+1)-X(I-1)) 

C**** COUNT THE NUMBER OF ERRORS IN THE ORDINATE VALUES 
IERR2 = IERR2 + 1 

9 CONTINUE 
C**** HOW MANY EQUALLY-SPACED TIME VALUES ARE TO BE COMPUTED...  

K = D/AINCR + 1.0 
ZX(1) = 0.0 

C**** INTEGRATE THE RECORD TO AVERAGE OUT HIGH FREQUENCIES.  
I1 

J=1 
75 I=I+l 
7o J=J+l 

SUM=O.0 
IF(J-K) 77#77r78 

77 ZX(J)=ZX(J-1) + AINCR 
74 IF( X(I)-ZX(J)) 717273 
71 SUM=SUM+ O.5*(Y(I)+Y(I-1))*(X(I)-X(l-1)) 

I=1+1 
GO TO 74 

72 ZY(J) = BINCR*(SUM+O.5*(Y(I)+Y(I-1))*(X(I)-X(I-1))) 
GO TO 75 

73 SLOPE=(Y(I)-Y(I-1))/(X(I)-X(I-1)) 
AINTER=Y(I) - SLOPE*X(I) 
YI=SLOPE*ZX(J) + AINTER 
ZY(J)=BINCR*(SUM+O.5*(YI+Y(I-1))*(ZX(J)-X(I-1))) 
X(I-1)=ZX(J) 

Y(I-1)=YI 
GO TO 76 

78 CONTINUE 
DO 80 I=1.K 
IF(ZY(I)) 81P80#80 

81 ZY(I) :=0.  
80 CONTINUE 

PRINT 20p IALPHAIERRIIERR2,(ZX(I),ZY(I),I=IK) 
20 FORMAT(1HOP 37A2/5XPI3.lXp49HVALUES OF 

1 THE TIME VARIABLE WERE OUT OF SEQUENCE./5X.13lXp 33HD 
IATA POINTS WERE OUT OF SEQUENCE./(12F103)) 
PUNCH 933. IALPHAPK 

933 FORMAT(37A2#16) 
PUNCH 33. (ZY(NIXON),NIXONl1K) 
GO TO 2 

41 STOP 
END 

A DATA SET THAT MAY BE USED TO TEST THE PROGRAM IS: 

10.0 1260.97 1000.0 
163 

94O.OMILWAUKEE SOLARIMETER. JUNE 25. 1970. UNITS ARE LY/MIN (CORRECTED).
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15541038164510331726105217791069187011121944114719541124197711612004114920431224 
21421242215313122193129922161321224913212270127822981340231013382357136924831455 
2b231523270015652779161027851585283816412900166929531679300516973054171231091000 
31891796323518073257180633541877342018343436184735111816355118713567185236041912 
36301743364418703664185936751895368418133692188737121662375218053756167837761822 
3d011759381119143840183838711659389419583903190239371949397218823992186440251962 
40611856408116074094178241011850410517974118191141301862414519044153188441651894 
41731866417919084202190942091926425419274284192542911855432619294354192943741640 
43881880440418504408188644141796442218874432192044471803446316284476167244871848 
45141697453117504552164045671896459816524603161146141715463015814634164146471505 
46521716466616124677162946811581468616784715139747321377474415574755186347811962 
48191830484414544857164948731651488315424895138949141397492515614933141549541414 
49771764497916084987172549951503500316045016144750411322506013225069138350791331 
5091142250951399511417085120168051251746515116725201162652,913815213159552221568 
52321596526914155282152752861491529814895322133153421393535412865388133154121265 
54341252544313085464128954741327551312175556117456001171574011055847107959541075 
607210756163104662841044 

THE CORRECT ANSWERS ARE: 

.00 .00 .00 .00 .01 .03 °04 .06 °08 .09 .13 .15 .17 
• e21 .22 922 .25 .28 .30 .33 .35 .37 .39 .41 .43 .45 
.47 .50 .51 .52 .52 018 .21 .55 .61 .63 *66 *65 964 
.62 .65 .67 .63 .61 .56 .62 .61 .65 .70 ,68 *68 .58 
.67 .69 .70 .68 .67 .62 .59 .57 .56 .53 .46 .39 .50 
.68 .45 .4 .36 *41 .24 .39 .51 .44 .37 .32 .23 .20 
.20 .17 .11 .10 .08 .07 905 .04 ,03 .03 .03 903 .03 
o02 .01 o01 .01






