

A Generic Acoustics Prediction Model Engine

A Manuscript

Submitted to

the Department of Computer Science

and the Faculty of the

University of Wisconsin-La Crosse

La Crosse, Wisconsin

by

Travis J. Fischer

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering

May, 2010

\

A Generic Acoustics Prediction Model Engine

By Travis J. Fischer

We recommend acceptance of this manuscript in partial fulfillment of this candidate’s

requirements for the degree of Master of Software Engineering in Computer Science. The

candidate has completed the oral examination requirement of the capstone project for the degree.

____________________________________ _______________________
Dr. Kenny Hunt Date
Examination Committee Chairperson

____________________________________ _______________________
Dr. Mark Headington Date
Examination Committee Member

____________________________________ _______________________
Dr. Mao Zheng Date
Examination Committee Member

ii

ABSTRACT

FISCHER, TRAVIS, J., “A Generic Acoustics Prediction Model Engine”, Master of Software
Engineering, 05 2010, Dr. Kenny Hunt.

Trane Company in La Crosse, WI has a continual need for software systems that can calculate

predictions of the acoustic performance for their air conditioning products. A suite of acoustic

prediction software tools has been developed and maintained at Trane over the last 20 years.

Over time these legacy software tools have become cumbersome and expensive to maintain. This

manuscript describes the development of a software system designed to make these acoustics

prediction calculations for various Trane air conditioning products. The software system includes

a software library with a public API that will be used by various Trane software systems in order

to make acoustic calculations. The system also includes a graphical user interface application

that will be deployed to Trane engineers and sales people in order to allow them to more easily

make acoustic calculations.

iii

ACKNOWLEDGEMENTS

I would like to thank my faculty advisor, Dr. Kenny Hunt, for his valuable guidance and insight

on this Capstone project. I would like to thank the UW-L MSE faculty whom I have studied

under, including Dr. Kasi Periyasamy and Dr. Mao Zheng, for skillfully educating me in the

practices of quality software engineering. I would like to sincerely thank all of the tremendously

talented people at Trane Company who have directly supported my work on this project and

allowed me to dedicate an entire year of my internship to the project. I would like to thank Vikas

Patnaik, Engineering Manager for Global Modeling & Analysis, for his sponsorship and

continual support of the project. I would like to thank Steve Lind, Acoustic Engineer

for Climate Solutions, for supporting and guiding this project on a daily basis. I would also like

to thank both the Acoustics and Vibration Engineering group and the Global Modeling and

Analysis group at Trane for their time and support of this project. I would like to thank my

parents for contributing to, supporting and encouraging my education over the last 17 years. I

would like thank my wife, Melissa, for her unwavering support of my academic journey and her

patience with the amount of time and energy I had to give in order to complete this project.

iv

TABLE OF CONTENTS

ABSTRACT ... ii
ACKNOWLEDGEMENTS .. iii
TABLE OF CONTENTS .. iv
LIST OF TABLES/FIGURES .. vi
GLOSSARY.. viii
1. Introduction .. 1

1.1 Background Information ... 1
1.2 Project Goals ... 3
1.3 Software Lifecycle Model ... 4

2 Requirements.. 7
2.1 Functional Requirements... 8
2.2 GUI Requirements... 10

3 Design... 13
3.1 High Level System Architecture ... 14
3.2 Design of the Core Acoustics Library ... 16
3.3 Design of the Acoustics API ... 17
3.4 Design of the CSAA Section of the Acoustics Library ... 20
3.5 Design of the Acoustics Data Store... 28
3.6 Design of the Multiproduct Acoustics Prediction Program GUI .. 30

4 Implementation... 31
5 Testing.. 33
6 Deployment .. 34
7 Limitations ... 35
8 Continuing Work.. 37
9 Conclusion.. 38
10 Bibliography... 39
11 Appendices ... 40

v

Appendix A. Acoustics Library Core Detailed Class Diagrams.. 40
Appendix B. Unit Definition Detailed Class Diagrams.. 42
Appendix C. Acoustics Library Database Design Diagrams.. 45
Appendix D. Final GUI Design Screenshots .. 48

vi

LIST OF FIGURES/TABLES

Figures/Tables Page
Figure 1. CSAA Implementation Use Case Diagram ... 8 

Figure 2. CLCHLw Graphical User Interface Example ... 10 

Figure 3. Intellipak II Graphical User Interface Example .. 11 

Figure 4. New Product Graphical User Interface Example .. 12 

Figure 5. High Level System Architecture View.. 14 

Figure 6. Core Acoustics Library Architecture Class Diagram.. 16 

Figure 7. Multiproduct Acoustics Engine Detailed Class Diagram.. 17 

Figure 8. Architecture for CSAA Unit Definition Classes ... 18 

Figure 9. CalculationResult Detailed Class Diagram ... 19 

Figure 10. FanRegression Class Architecture... 21 

Figure 11. Acoustic Silencer Class Diagram .. 22 

Table 1. SoundAppurtance Classes... 23 

Figure 12. Acoustic Sound Appurtenance Classes ... 23 

Figure 13. IAcousticUnit Interface Class Details ... 25 

Figure 14. DBInterface Class Details ... 27 

Figure 15. Acoustics Library Core Classes... 40 

Figure 16. Unit Definition Detailed Class Diagrams.. 42 

Figure 17.1 Database Design E.R. Diagram ... 45 

Figure 17.2 Database Design E.R. Diagram ... 46 

Figure 17.3 Database Design E.R. Diagram ... 47 

Figure 17.4 Database Design E.R. Diagram ... 48 

Figure 18. Welcome Screen Screenshot ... 49 

Figure 19. Create Acoustic Job Dialog Screenshot .. 50 

vii

Figure 20. Create Acoustic Prediction Dialog Screenshot.. 50 

Figure 21. Initial CSAA Prediction Interface Screenshot... 51 

Figure 22. Supply Fan Only Prediction Interface Screenshot... 52 

Figure 23. Single Fan Unit Fully Configured Screenshot... 53 

Figure 24. Single Fan Unit Calculated 1/3 Octave Lw Screenshot .. 54 

Figure 25. Single Fan Unit Calculated Full Octave Lw Screenshot ... 55 

viii

GLOSSARY

Acoustic Silencer

A device installed in heating and air conditioning systems used to attenuate the sound power

exiting the unit by absorbing some of the sound.

API

An Application Program Interface (API) is an interface that provides access to an underlying

software system of services.

CLCHLw

A software program created and owned by Trane that allows users to calculate predicted sound

power levels for a group of air handling products.

CSAA

The name of a new Trane product line of air handling units.

Insertion Loss
The sound level reduction at a given location due to the insertion of a noise control device, expressed in

decibels.

Intellipak II

A product line of Trane rooftop air conditioning units.

Microsoft® .Net Framework
A software framework made by Microsoft that can be installed on computers running the Windows®

operating system. The framework includes a library of code that can be used by developers to solve

common programming problems as well as a virtual machine that manages the execution of programs

written specifically for the framework.

ix

Microsoft® Access®
A relational database management system product from Microsoft that combines the relational Jet

Database Engine with a GUI and a collection of development tools

NDepend

A code analysis and metrics software tool designed to be used with code written for the .Net

Framework.

NUnit
An open source unit testing framework from the xUnit family of unit testing tools. NUnit is designed to

be used with Microsoft .NET and works similar to the popular Java testing tool JUnit.

Regenerated Noise

Noise that is generated on the “quiet” side of sound attenuators which is the result of

concentrated air flow turbulence.

Sound Power Level
A logarithmic measure of sound power in comparison to a specified reference level. A sound power level

is abbreviated as PWL with units dB re 1 pW, which is in contrast to a sound pressure level which is

abbreviated as SPL with units dB re 20 µPa.

SQL

Server Query Language is a standard language used for accessing and modifying databases.

SQL Server CE®
Microsoft’s SQL Server Compact Edition is a compact relational database that is designed to be used with

applications that run on mobile devices and desktops.

x

TOPSS

The Trane Official Product Selection System (TOPSS) is a Windows program that contains

information to select and predict performance of Trane products operating under various conditions.

UML
A standardized general-purpose modeling language created by the Object Management Group and used

extensively in the field of software engineering.

Windows® Forms Framework
A graphical application programming interface that is included as a part of Microsoft's .NET Framework.

The framework provides access to the native Microsoft Windows interface elements by encapsulating the

existing Windows API in managed code.

1

1. Introduction

1.1 Background Information

 Trane, a business of Ingersoll Rand, has a continuous business need for the ability to model

the acoustic properties of their air conditioning products. These products come in a multitude of

applications, sizes and configurations. When they are installed and operated in a building they

produce certain levels of sound and vibration which can be either desirable or undesirable

depending on the situation. Each of Trane’s products has certain physical properties which can

be modeled in software in order to determine the sound power levels (Lw) that will be generated

while that equipment is operating.

 Historically these sound power prediction calculations have been done manually by

acoustical engineers using tables of data and well defined formulas. In order to reduce the

amount of time spent on these prediction calculations and the number of errors made during the

manual process, Trane has developed software models which can be used to compute these

predictions automatically. Over the last 20-25 years, engineers and interns at Trane have

developed and maintained eight individual acoustic software models. Each of these software

programs models a specific Trane air conditioning product.

 Each of these software models takes some number of input variables which describe the

physical characteristics of the product, retrieves acoustics test data from a data store and then

executes an algorithm which calculates a set of acoustics related outputs. The key output in each

of these models is a collection of data arrays which contain sound power levels across a twenty-

four frequency band sound spectrum.

 Many of the core equations and algorithms used in these calculations are common among

the various acoustic models. For this reason, many of the programs share common software

components. The software development process that was used while developing these projects

was unorganized, haphazard and did not use good software design principles. Software reuse was

not included as a goal in the development of these acoustic software projects. Because of the

short-sighted design that was used in these systems, efforts towards software re-use and

component sharing have resulted in a very poor collection of highly coupled and un-cohesive

software modules. A lot of the code in these models is replicated multiple times across the

2

various software programs. Clearly defined layers of abstraction were not included in the design

of these legacy systems. Business logic, GUI logic and database logic were inter-mingled

throughout all layers of the software in a haphazard fashion. This has created unnecessarily

complicated dependencies among the various components. All of these issues have resulted in a

moderately large base of source code that has become extremely difficult and expensive to

maintain.

 Another issue with the legacy software is that, while the engineering practices of the

acoustical engineers at Trane has been greatly improved over the last 20 years; the design of the

software models has not kept up. Many pieces of legacy software contain algorithms that are no

longer relevant in Trane's sound modeling practices.

 The ideal acoustics modeling software would have a well designed architecture that would

make efficient use of common logic of acoustic sound models. This system would contain a

robust core library of that would provide the functionalities needed for each of the acoustic

prediction models. This system would make the process of adding models for new products a

simple and low risk task.

3

1.2 Project Goals

 The goal of this project was to design a single core software library for Trane acoustics

modeling while making use of good software engineering practices. This core library was

designed to include all the functionality included in previous Trane acoustic models and also to

make improvements in the design and implementation of the software. This was done in order to

improve the efficiency of program maintenance as well as the overall robustness of the

prediction software. This project also included implementing a product specific extension of the

core acoustics library for one of Trane’s new air handling products.

 In order to create an optimal design for the Trane acoustics software library, the project

required an in-depth analysis of both the legacy acoustic models as well as the long term vision

for Trane acoustics software. One of the project goals was to provide documentation on findings

of this analysis for use in future acoustics software engineering efforts.

 Software quality assurance standards and processes have only been recently implemented in

Trane's software groups. Another goal of this project was to make use of basic testing tools and

frameworks while working with one of Trane's software quality assurance employees to set up a

test plan for unit, integration, system and regression testing.

 The legacy acoustic models relied on product test data that was stored in a Microsoft®

Access® database. This database was built up in an ad-hoc manner as these models were

developed which resulted in an inefficient and poorly designed database structure. Another goal

of this project was to design a well documented database that would improve the maintenance of

the database and simplify maintaining the code that interfaces with this database.

 The legacy acoustic models were written in the Fortran, Basic and Visual Basic

programming languages. The most heavily used piece of the legacy models was written in Visual

Basic 6 which proved problematic since Microsoft stopped supporting this technology in 2008.

Another goal of this project was to write the acoustics library exploiting the object oriented

aspects of the domain using the C# programming language on the Microsoft® .Net framework.
 The final goal of this project was to develop and document a future vision for Trane acoustics

software. This vision would be documented in the form of a set of requirements for future enhancements

to the acoustics library and the supporting software tools.

4

1.3 Software Lifecycle Model

 There are many software lifecycle models that are recorded in software engineering

literature [1] and are currently used in the development of software projects around the world.

Trane does not have a company-wide standard lifecycle model that is used by developers across

all the various software groups. Each individual group uses a unique lifecycle model that they

have adopted through years of development experience. The group that owns the acoustics

software does not have a defined lifecycle model although a hybrid lifecycle model similar to an

iterative model is what is most commonly used.

 In order to select a development model that would be used for this project, several lifecycle

models, including waterfall, spiral, iterative and prototyping, where considered and measured

against project objectives and environment. Ultimately, an iterative lifecycle model was selected

for this project as it was found to be the best fit for a variety of reasons.

 It is well known at Trane that developing software within the organization requires an

extremely fluid and flexible process. Trane is a very large organization and there are many

players involved in the development of any software project. Every one of these people brings

their own set of requests and requirements to the project. Every software project developed at

Trane is subject to constant change and refinement as the business needs, priorities and personnel

change around it. In the case of the acoustics software models, there are three distinct groups of

internal customers (or users) who each have their own set of requirements. Each of these groups

is also subject to its own set of customers (both internal and external) who impact the

requirements. These factors make a waterfall model impractical as any comprehensive set of

initial requirements would quickly become irrelevant at Trane.

 Another factor that impacted the selection of a lifecycle model is the speed at which Trane

products are designed, re-designed and released. Trane's business model dictates that acoustics

modeling software must be available for the release of a new product. This means that the

acoustics software is developed largely in-parallel with the testing and configuration of a new

product. The result is that some of the requirements for a software model are not known until

literally a few months before it must be released. This factor also makes a waterfall model

unusable.

5

 A spiral lifecycle model seems well suited for the acoustics library project due to is iterative

nature and short feedback loop. However, it was determined that the support necessary to

effectively employ a spiral model would not be available for this project at Trane. Continuous

risk analysis is a key component of the spiral model. This risk analysis process requires project

customers and development team leaders to give continual feedback on the risk of continuing the

project. Trane was not able to provide the resources, in terms of internal customer time, to make

a spiral model an effective choice.

 In a prototyping lifecycle model, developers create a throw-away prototype of the system in

order to get a better understanding of the system requirements and to help customers define what

their requirements are. The prototyping model was not selected for this project because this

project was based on an existing system. Therefore, it was more time effective to take the

requirements for this project from the existing system rather than to build a throw-away

prototype which would closely mimic the existing system.

 An iterative lifecycle model was determined to be ideal for this project because it would

allow continual progression on the project with incremental feedback and change requests from

the various internal customer groups. The iterative lifecycle started by taking the initial system

requirements from the existing system then allowed changes in the system requirements as the

new Trane product was developed. The initial project plan included 4 iterations through the

standard lifecycle phases of requirements, design, implementation and testing [1, 2]. The number

of iterations that took place during the course of the project ended up being approximately seven.

The reason for the increase in the number iterations was due to an increase in number of times

that requirements changed from what was initially envisioned. This change forced the

development loop to be tighter than was anticipated and resulted in a few additional iterations.

Throughout the project there was a continuous flow of requirement changes, which were then

folded into the design and implementation of the project and finally tested. During each cycle,

requirement changes were collected and compiled into a list of requests. Sometimes these

changes were added to the current cycle and sometimes they were added to a future cycle or to a

“wish list” of future development efforts.

 The iterative lifecycle proved to be very effective for this project primarily because it

allowed the development of the system to keep up with the rapid change in requirements. It also

6

provided reoccurring feedback in the testing phases which allowed for many helpful changes in

the system design for future cycles.

7

2 Requirements

 The initial phase of every cycle in the iterative lifecycle model is the requirements gathering

and refining phase. This phase consists of meetings held between the software development team

and customers of the software. During these meetings the required functionalities of the

software are discussed and defined. In a traditional waterfall lifecycle model all of these

meetings take place at the beginning of the software development process so that a well defined

requirements document can be generated as the output of the initial stage. In the iterative model

used for this project, these meetings take place throughout the duration of the development

process.

 For this project, the requirements gathering meetings were held beginning in the spring of

2009 and then throughout the development process. Requirements meetings were held with three

distinct groups of internal acoustics software customers as well as with Trane acoustic engineers

and Trane software modeling groups. An initial set of requirements was gathered from an

analysis of the legacy acoustics software systems. These requirements were discussed with the

various customers and refined to include only those functionalities that were determined

necessary in future acoustics systems. The requirements were further discussed and refined with

the TOPSS software development group. This group writes software which interfaces with and

depends on the acoustics software systems. Further requirements were gathered from the teams

involved with the development, testing and release of a new Trane product that was modeled in

the new acoustics calculation library and GUI program.

 This initial set of requirements was documented in a formal project requirements document

[3] which was reviewed with project customers and the UW-L faculty advisor for this project.

The approximate scope of the project was taken from these requirements and was determined to

be appropriate for the Capstone project.

 During the lifecycle iterations that followed, these requirements were both refined and

expanded on. Due to the scope restrictions of a Capstone project many of these requirement

expansions where added to a list of future requirement requests. Some new requirements were

deemed necessary and were added to the scope of the project. This sometimes required

restriction or cancelation of previously documented requirements.

8

2.1 Functional Requirements

 The functional requirement of the acoustics software library consists of 3 basic use cases for

each product that is modeled in the acoustics library.

 These use cases are:

1. Calculate an acoustics prediction.

2. Save an acoustics prediction

3. Load a saved acoustics prediction.

 Some products may have a few variations of the first use case if the unit configuration

options for that product are complex and include multiple unit types which need to be modeled.

The use case diagram in Figure 1 below shows the basic use cases and the various “actors”

involved in the initial implementation of the acoustics library for the new CSAA product.

Figure 1. CSAA Implementation Use Case Diagram

 This use case diagram shows the three actors which directly invoke behavior on the

acoustics software system. Each of these actors is an external software system that is used by a

Trane acoustics software user in order to calculate acoustics model predictions. The use cases

and the APIs for each of these actor systems are identical. They are shown as three separate

9

actors in order to emphasize the need for an API that can support these three independent actors.

The right hand side of the diagram displays the three secondary actors that the acoustics software

library interacts with.

 For the new CSAA implementation of this system, there are two “calculate unit acoustics”

use cases that are shown. The first use case calculates a CSAA unit with a single fan, while the

second calculates a CSAA unit with two fans. Both of these use cases include a single inner use

case which calculates the acoustics generically for any CSAA unit and produces the desired

outputs. A very similar use case diagram will exist for each Trane product which eventually gets

implemented with the Trane acoustics library.

 While the number of use cases for each product implementation is quite small the

complexity of each use case is very high. This is due to the complexity and number of the inputs

as well as the complexity and number of steps involved in completing each of the use cases.

10

2.2 GUI Requirements

 One requirement of the acoustics software project was to design a graphical user interface

that would allow users to directly access the functionalities of the acoustics library via some

basic input controls and to get a graphical display of the output data that can be easily read and

understood. Previous acoustics modeling projects have included a graphical user interface

program that accomplished this goal.

 The acoustics calculation GUI program is a separate piece of software from the acoustics

library. The acoustics library provides all the necessary functionality to do acoustics prediction

calculations and GUI interface is purely a graphical interface which uses the acoustics library

API to calculate acoustic performance data which is then displayed to the user.

 A few examples of the previous GUI programs are shown in the Figures 2 and 3 below.

Figure 2. CLCHLw Graphical User Interface Example

11

Figure 3. Intellipak II Graphical User Interface Example

 The ideal acoustic calculation GUI program would be designed with enough flexibility that

it could be used for multiple Trane air conditioning products. Each product has a unique number

and type of inputs so this user interface would have to allow for the dynamic adding and

removing of input controls for each product line. In addition to a dynamic control pane for input

controls, there would need to be an output pane that would display sound power values in either

full or one-third octave band sound spectra as well as a grid of performance data for the unit

fans. An example of the graphical user interface that would be required for CSAA model

calculations is shown in the Figure 4 below.

12

Figure 4. New Product Graphical User Interface Example

13

3 Design

 The design process for this project was handled according to the iterative lifecycle model

selected for this project. The initial high level design was completed immediately following the

initial requirements phase. This high level design process included defining the high level system

architecture and re-engineering the existing acoustics software design using UML class diagrams

as a tool. The initial high level architecture process revealed three individual architecture layers

that are essential to the acoustics software system. Each of these layers required a significant

amount of additional detailed design work that was completed in iterative phases. As each

iterative phase was tackled the detailed design for the next piece of the acoustics library was

revised. Throughout the duration of the project the design of each section was updated several

times in order to keep the entire design consistent with newly discovered requirements and

design issues.

 The foundation for the design of the acoustics library was derived from the design of the

previous acoustics software systems. However, since many of the core problems with the legacy

acoustics software had stemmed directly from poor design decisions, a lot of care was given to

extracting the key logic from the previous designs while re-engineering the design in a way that

would improve the overall quality of the system design. The logic for the generic core of the

acoustics library was already well defined according to an acoustics calculation algorithm

described which is described in internal Trane documentation. However, the design of the system

which translates a unit configuration definition into an abstract and generic model that can be

acoustically evaluated did not exist in previous acoustics software and thus had to be designed

from the ground up for this project.

 The design of the acoustics calculation GUI program was also largely a design from scratch

effort rather than a re-engineering effort. While previous acoustics calculation programs were

used as a starting point, many requested features had never been implemented in a Trane

software program and had to therefore be designed from the ground up. No previous acoustics

GUI program was dynamically flexible enough to accommodate the vast array of configuration

options which may apply to a CSAA unit.

14

3.1 High Level System Architecture

 The ideal high level architecture for acoustics calculation system consists of three main

layers. A conceptual view of this architecture is shown in Figure 5 below:

Figure 5. High Level System Architecture View

 The top layer of the architecture consists of the user interfaces which allow user input and

display of calculated output values. The acoustics calculation library provides functionality to

three separate user interfaces. The first user interface is a widely used Trane product selection

tool known as TOPSS. TOPSS allows users to configure a unit and calculate various technical

details on the performance of that particular unit. One piece of the data reported by TOPSS is

acoustic sound power, which is calculated through the acoustics library. The second user

interface is the custom designed acoustics GUI program which is designed specifically as a front

end to the acoustics calculation library. This GUI is designed for use by acoustics engineers and

15

product engineers who have some knowledge of acoustics. The third user interface which makes

use of the acoustics calculation library is a collection of Microsoft® Excel® macro programs

which are embedded in various custom designed engineering tool workbooks. These tools are

built by Trane engineers and are used for various work tasks.

 The most significant layer within the system architecture is the middle layer of the system,

which is the acoustics calculation library or "software engine." This "engine" contains all of the

core functionality needed for performing acoustic prediction calculations. This library provides

an API to the user interface layers which allow them make requests for acoustic prediction

calculations. Each of the various Trane products that are modeled by the acoustics library require

a unique programming interface that is tailored for its unique set of inputs. The product specific

inputs that are passed through these interfaces are processed by parts of the acoustics library,

known as "custom product rule" layers. These product rule layers are designed to handle the

product specific details of acoustics calculations. These layers rely on a generic core “engine” in

the acoustics library which handles the non-product related parts of the calculations, relating to

the physics and mechanics of the acoustics model calculations.

 The bottom layer of the acoustics calculation library consists of an acoustics data store and

a few dependencies on external Trane standard libraries which handle tasks like unit conversion,

physics calculations and mathematical calculations. There is a data access layer built into the

acoustics library to handle database requests. There are also several third party library software

wrappers written to allow easy and consistent interfacing from the acoustics library to these

external libraries.

16

3.2 Design of the Core Acoustics Library

 The design of the core acoustics library consists of a public facing interface as well as

several internal core classes which are meant to be either implemented for specific product lines

or used as a means of handling the generic parts of the acoustics prediction algorithm. The

foundational structure of this architecture is shown below in the Figure 6.

Figure 6. Core Acoustics Library Architecture Class Diagram

A list of the detailed class views for each class in this diagram can be found in Appendix A.

17

3.3 Design of the Acoustics API

 The API for the acoustics library was designed to allow client software to input the

definition of a Trane air conditioning unit and get back a data structure that describes the

acoustic performance of particular air conditioning unit. Each product line has unique set of

variables that effect acoustic performance. Within each product line there are a large number of

these variables, many of which only apply to specific configuration scenarios. Although the

number and type of input variables varies widely, the acoustics API for performing acoustics

calculations was designed to consist of a single generic programming call that ensures

consistency for client software. The MultiproductAcousticsEngine class was designed to serve as

a public facing static programming interface that is used for making acoustics prediction

calculations. A detailed class diagram of the MultiproductAcousticsEngine is shown in Figure 7

below.

Figure 7. Multiproduct Acoustics Engine Detailed Class Diagram

 The acoustics library provides clients with a set of public classes that are designed to define

the configuration of Trane units so that they can be evaluated for acoustic prediction. These unit

definition classes must be implemented for each Trane product line in the acoustic library in

order to allow client code to access all of the options for that product line. A set of these unit

definition classes was defined for the CSAA product line, which was the first product line to be

implemented in the Trane acoustics library. A class architecture diagram for the CSAA unit

definition classes is shown in Figure 8 below.

18

Figure 8. Architecture for CSAA Unit Definition Classes

 The UnitDef class is the public abstract parent class of all unit definition classes which are

accessible to client code. Any future product implementation will require the developer to write a

subclass of the UnitDef class. The CSAAUnitDef class is the abstract child class that defines all

Trane units in the CSAA product line. This class was made concrete through being sub classed

by three other CSAA specific classes that define the three unique configurations that CSAA units

are offered in. Detailed class diagrams for each of these classes can be found in Appendix B.

 The requirements of the acoustics library specify that the output of an acoustics prediction

must include a collection of sound power value spectra, a collection of operating point values

and some textual information that is associated with the sound power data. This associated

information includes descriptions of any industry standards that are used in calculating acoustic

performance, the type of unit components that are being evaluated and a description of the

frequency bands used for the acoustic data produced by the acoustics calculation. The

19

CalculationResult class was created to serve as this type of general purpose return structure. A

detailed class diagram for CalculationResult can be seen in Figure 9 below.

Figure 9. CalculationResult Detailed Class Diagram

 The CalculationResult objects that are output from the acoustics library are used by client

software in order to access all the data that is produced while making an acoustic prediction.

They are also used by client code in order to store useful information in debug and error files that

are used for maintenance of the acoustics library.

20

3.4 Design of the CSAA Section of the Acoustics Library

 In order to actually calculate acoustic predictions for a Trane unit, a set of classes must be

implemented within the acoustics library that can model the various options available for that

product and calculate the impact that those options have on the overall unit acoustics. The design

of the acoustics library allows these internal product specific classes to be implemented by

simply sub classing one of the existing generic AcousticContributor classes which were designed

for efficient, generic handling of acoustic calculations. This is exactly what was done for the

CSAA implementation of the acoustics library.

 The most complex component of any air conditioning unit acoustic calculation is the fan.

The fan is the primary source of sound within the unit and the sound levels that it produces varies

greatly depending on a large number of factors. In order to accurately model a fan operating in a

unit, a class called FanRegression was created as a subclass of the abstract SoundSource class.

Because many Trane products have fans with similar characteristics, the FanRegression class

was designed to be product neutral. It however, contains components that are product specific

and must be implemented for each product that is implemented in the acoustics library. The class

architecture of the FanRegression class and its components is shown below in Figure 10 below.

21

Figure 10. FanRegression Class Architecture

 Another interesting part of the acoustic library design is the modeling of acoustic silencers.

Acoustic silencers are devices that may be installed inside an air conditioning unit in order to

help control and shape the acoustic performance of a unit. Silencers have the unique property of

both reducing and creating sound at the same time. An installed silencer will reduce the sound

that enters it. This effect is known as "insertion loss." At the same time the silencer disturbs the

air in a way that creates additional noise known as "regenerated noise." In order to model this

dual effect, it was necessary to create two separate classes to represent silencer effects. A

subclass of SoundSource was created and called SilencerRegen. A subclass of

SoundAppurtenance was created and called SilenecerInsertionLoss. Because the calculation of

these two effects is complex and inter-related, a third general Silencer class was created to model

22

the actual physical properties of a silencer. The Silencer class is used as a component of both the

SilencerInsertionLoss and the SilnecerRegen classes. The class structure of this design can be

seen in Figure 11 below.

Figure 11. Acoustic Silencer Class Diagram

 The other type of component that has an effect on acoustic performance is called a sound

appurtenance. The CSAA unit options include a large number of sound appurtenance effects.

These effects are modeled as subclasses of the abstract SoundAppurtenance class. Each of these

CSAA specific appurtenance classes encapsulates the logic for calculating the acoustic effect that

it has on the unit. All of the CSAA related SoundAppurtenance classes are listed in Table 1

below.

Class Name Effect it Models Effect Applies To

SilencerInsertionLoss The insertion loss of an acoustic silencer. Any Trane unit with a silencer.

DischargeDirectionEffect The effect produced by the directional

orientation of a unit’s discharge air

opening.

Any Trane unit.

ReturnAirDirectionEffect The effect produced by the directional

orientation of a unit’s return air opening.

Any Trane unit.

OutdoorAirDirectionEffect The effect produced by the directional

orientation of a unit’s outdoor air

opening.

Any Trane unit that includes an outdoor

air opening.

ExhaustAirDirectionEffect The effect produced by the directional

orientation of a unit’s exhaust air

opening.

Any Trane unit that includes an exhaust

air opening.

DischargeOpeningSizeEffect The effect produced by the size of the

unit’s discharge air opening.

Any Trane unit.

Return OpeningSizeEffect The effect produced by the size of the

unit’s return air opening.

Any Trane unit.

OutdoorOpeningSizeEffect The effect produced by the size of the

unit’s outdoor air opening.

Any Trane unit that includes an outdoor

air opening.

ExhaustOpeningSizeEffect The effect produced by the size of the

unit’s exhaust air opening.

Any Trane unit that includes an exhaust

air opening.

CSAAFanDischargeConfigEffect The effect produced by the configuration Any Trane CSAA unit.

23

Table 1. SoundAppurtance Classes

The class relationship of the appurtenance classes can be seen in Figure 12 below.

Figure 12. Acoustic Sound Appurtenance Classes

CSAAFanDischargeConfigEffect The effect produced by the configuration

of the fan discharge.

Any Trane CSAA unit.

CoilEffect The effect produced by a heating or

cooling coil in the airflow path.

Any Trane unit.

FilterEffect The effect produced by an air filter in the

airflow path.

Any Trane CSAA unit.

CDQWheelEffect The effect produced by a CDQ wheel in

the unit’s airflow path.

Any Trane CSAA unit.

CSAALining The effect produced by lining a CSAA

unit with a specific type of panel lining.

Any Trane CSAA unit.

EnergyWheelEffect The effect that exists in unit

configurations which include energy

wheels.

Any Trane CSAA unit.

CSAADiffuserEffect The effect produced when a diffuser is

installed on the fan.

Any Trane unit.

MultiZoneEffect The effect that is produced when a unit

has multiple air discharge paths.

Any Trane unit.

InletCasingDischargeConfigEffect The effect that is produced in the inlet +

casing acoustic component by the

configuration of the fan discharge.

Any Trane unit.

24

 For products that are complex like the CSAA units, there are many business logic rules that

are required in order to decide which of all the AcousticContributors apply for a given

configuration. This logic should be stored in a CSAA-specific implementation class. In order to

allow for the product specific business logic that is needed for acoustic predictions, the acoustics

library provides the IAcousticUnit interface which is meant to be implemented by product

specific classes. The IAcousticUnit interface exposes three functions that are needed for

transforming the definition of an acoustic unit into a generic AcousticCalculationUnit object.

The AcousticCalculationUnit object is the generic abstracted representation of an air

conditioning unit that can be acoustically evaluated. For CSAA acoustic predictions the

CSAAAcousticUnit class was implemented to fulfill this need. This is a heavy weight class

which contains all of the business logic for transforming the complex CSAA unit configurations

into the AcousticsCalculationUnit objects which can be acoustically evaluated. A detailed view

of the IAcousticUnit interface and its CSAA specific implementation can be seen in Figure 13

below.

25

(Figure 13 continued on next page)

Figure 13. IAcousticUnit Interface Class Details

26

Figure 13. IAcousticUnit Interface Class Details

 Most of the product specific classes including the CSAAAcousticUnit class need access to a

database which contains actual test data for the units. This data is used to make the acoustics

prediction calculations. Access to this data is provided using the data access object design

pattern. The DBInterface class serves as the interface layer between the acoustics library and the

acoustics data store. A detailed view of the DBInterface class can be seen in Figure 14 below.

27

Figure 14. DBInterface Class Details

28

3.5 Design of the Acoustics Data Store

 The process of calculation acoustic predictions for an air conditioning product depends on

using data from actual laboratory tests in order to model the acoustic effect of each component in

the unit. Several different types of data must be stored in a database including fan performance

data, sound regression data, acoustic appurtenance effect data, unit dimension data and unit

configuration data.

 The previous Trane acoustic software engines relied on a single acoustics database. All of

the data for acoustic predictions was stored in a Microsoft® Access® file which was accessed by

the acoustics engine through a data provider. The data in this file was input haphazardly with

very little attention to any kind of database design principles. Data was added as needed often by

just adding a new table which would serve simply as a lookup table. Database logic was

unnecessarily duplicated across many similar tables. Many tables in the old acoustics database

have become obsolete and serve to bloat the database file which gets deployed with the old

acoustics library.

 One goal of this project was to improve the database design for the acoustics library by

creating a well designed relational database that can easily be expanded for future acoustics

software projects. The ideal database design leverages the logic that is shared between the

various products and their data storage needs. The design for the database was updated as the

various project phases where completed. An E.R diagram for the database can be found in

Appendix C.

 The old database was analyzed in order to find places where the database logic was

redundant. For instance, there were multiple Fan tables within the previous database. Each of

these tables supported one of the various acoustic programs that needed fan data. However, most

of the properties of a fan are not related to a specific product line and there are instances in

which having a single fan table would be beneficial. The new database was designed by

extracting the general properties of all fans and created a single Fan table where all the fans used

in Trane products can be found. If additional product related information is a needed for a given

fan this data will be stored in a product specific table which might have a foreign key

relationship with the primary fan table.

29

 Another way that the database design was improved was by using proper relationships

between tables in order to avoid unnecessary data duplication. For instance, rather than

duplicating fan information in the Unit table which needs some information about fans, the data

would be stored in the fan table and a foreign key relationship would be used in the Unit table to

access it when needed. Another example of refactoring that was done is with the regression data

which is now stored in a single regression data table rather than several program specific tables.

The various product lines may have a product specific UnitConfiguration table which allows

some number of unit configuration properties to be used as a composite key for identifying a

unique regression data set. These product specific unit configuration tables have a reference to

the regression data table through a foreign key relationship. In a similar manner the unit

configuration tables have a foreign key relationship with fan performance tables.

 The CSAAFanInUnit table is the single product specific unit configuration table for the

CSAA implementation of the acoustics library. The rows of this table uniquely identify a CSAA

unit in a specific configuration that is offered by Trane. Each of these configurations is

associated with a set of regression data and a set of performance data.

30

3.6 Design of the Multiproduct Acoustics Prediction Program GUI

 A basic GUI program was designed as a front end to the acoustics calculation library in

order to allow users to graphically configure units and then calculate and view the acoustic

performance data. The GUI design was based largely off of previous Trane acoustics GUI

programs and was designed with input from several different groups of customers in order to

allow for easy user friendly acoustic calculations to be performed.

 The goal of the GUI design was to create a GUI program that would work for all future

Trane products which need an acoustic prediction program. In order to fulfill this need a generic

two panel layout was designed, where the upper panel contains a flexible grid of user controls

pertinent to the product being predicted and the lower panel contains output display controls

which are used to display the output and give the user feedback on the acoustic prediction.

 The GUI design also provides a menu in order to allow users to load and save acoustic

predictions. Images of the final GUI design can be seen in Appendix D.

31

4 Implementation

 The acoustics library and acoustics prediction GUI were implemented in iterative steps

according to the selected iterative life cycle model. These iterative implementation steps were

completed during the time period from August 2009 - April 2010.

 The initial phase of implementation included building the core library classes which serve

as the generic engine of the library. A large amount of time was spent carefully implementing

these core classes since they are the "moving parts" of the acoustics library and any bugs in the

core classes could have a major consequence throughout the entire acoustics library.

 After building the core classes of the acoustics library, a small test implementation was built

for a simple fictional Trane product. This was done as a "proof of concept" in order to test the

design of the core library with an actual product implementation. A set of unit tests was designed

and documented using this test implementation and was used to prove the correctness of the core

library’s design.

 After finishing the core library and determining that it was correctly designed and

implemented, the third phase of implementation for the CSAA product acoustics components

was begun. These components were built in several phases beginning with the complex fan

regression classes and then moving onto the simpler acoustic appurtenances.

 The implementation of the acoustics database and the database interface layer were

completed in parallel with the CSAA components. When data was needed to the test the CSAA

component implementation it was added to the database and the proper functionality was added

to the data object access layer. The new database was implemented as a Microsoft® SQL Server

CE® database file which is a lightweight relational database solution. Part of implementing the

acoustics database included designing and implementing a Microsoft® Excel® based tool that is

used by the acoustics engineers to enter laboratory test data. This tool uses the data entered by

acoustics engineers in order to generate a SQL build script for the acoustics library database.

 Implementation of the acoustics prediction GUI program was completed as the final phase

of the project. The GUI was implemented using the Microsoft® .Net Windows Forms library.

Saving this portion of the project for last didn't allow for as much time as was desired for

implementing the GUI. While the basic required functionality was fully implemented, many of

the requested features ("bells and whistles") could not be implemented due to time restriction.

32

 Version 1.0 of the acoustics library was analyzed using the NDepend code metrics and

analysis tool. The core acoustics library contains 7308 lines of code across 73 classes containing

770 methods. The GUI program contains 6504 lines of code across 15 classes containing 770

methods. The initial version of the database contains 25 tables. The database interface class

contains 35 database access methods. This project was implemented in a little under a year from

July 2009 to May 2010.

33

5 Testing

 Like many software projects the acoustics library is a complex system that requires robust

testing on various levels and at various different stages in the development cycle. Rigorous

testing throughout the duration of the development process prevents major bugs from being built

into foundational parts of the system. Such bugs can have cascading effects that become very

expensive to update.

 Unit testing was done on each part of the acoustics library as it was implemented. The NUnit

testing framework was utilized in order build a unit testing test suite that could be run as each

requirement was implemented. Over 100 unit tests were written for testing the core library

functionality. Integration testing was also done at end of each major phase in which the newly

implemented features would be combined with the existing code. Several test cases were created

which were designed to test the functionalities describe in the use case requirements. No formal

coverage calculations were employed for the integration testing process as not enough time was

available to be dedicated to the meticulous design of an integration test plan. Some initial system

testing was completed by the developer during the last couple months of the project. A small set

of system tests were set up using the NUnit framework in order test the system-wide

functionality of the acoustics library. Additional system testing was done through the acoustics

prediction GUI program.

 Formal system testing and regression testing will be completed by other members of the

Trane global modeling team. A dedicated quality assurance team exists within the group and has

been assigned to develop and execute a formal test plan for the acoustics library software. End

user testing is routinely used at Trane by rolling out new builds of software systems to selected

groups of expert users who have certain real life use cases that they perform on the software.

This method will also be used for future testing of the acoustics library.

34

6 Deployment

 Initially the Trane acoustics library will support and be deployed with two applications. The

first is the acoustics prediction GUI program that was developed as a part of this project. This

program will be tested and deployed through a Trane engineering tools intranet website that

contains similar internal libraries and software tools used by Trane engineers. Trane engineers

will be able to download a Windows® installation package for the GUI program that will allow

them to install and run the program. This deployment will happen a few months after the

conclusion of the project development and testing phases.

 Currently, the Trane acoustics prediction GUI program is being deployed over a LAN to a

small group of users for GUI user testing.

 The second application that the Trane acoustics library will support is the TOPSS

application. The acoustics library will be deployed with TOPSS on an integral application server.

The deployment of the acoustics library in TOPSS will be done in parallel with the deployment

of the acoustics prediction GUI program.

 After these two deployments are complete in early summer of 2010, the acoustics library

will be used around 10,000 times a month by software that serves Trane engineers and sales

people who depend on the functionality provided by the acoustics library for their daily work

tasks.

35

7 Limitations

 All of the requirements outline in the project proposal and initial requirements document

where implemented in the project. However, there were many feature requests made during the

lifetime of the software development cycle that were outside of the scope this project but that

would greatly improve the Trane acoustics library and prediction GUI program and will be

implemented in the future.

 During the course of the project, the data deliverable schedule slipped several times due to

competing requests for the Trane engineers who are responsible for producing the data used by

the acoustics library. Because of these changes not every size/option originally planned for the

CSAA prediction library is currently available in the library. These sizes/options will be rolled

into future versions of the acoustics library as the data is made available.

 Many basic feature requests were made for the acoustics prediction GUI program which did

not fit into the scope of this project and have not yet been implemented. Some of these requests

include the following:

Saving prediction data to a user’s hard-drive in a format that can later be loaded back into

the program for analysis.

Making predictions for multiple fan units while removing the acoustic effect of one of the

fans. This is a technique that is sometimes used to model the acoustic effect of certain

custom unit configurations which cannot be modeled with the standard configuration

options.

Designing a graphical output for the GUI which displays a diagram of the physical layout

of the unit being predicted. This provides less knowledgeable users with a sanity check

that the unit inputs they have selected actually describe the unit configuration that is

desired.

36

Setting up the system to handle "batch" runs where a file containing a list of acoustics

predictions would be loaded and processed, producing a file listing the acoustic results

for all of the units in the batch run file.

Building a robust help system that gives descriptions of each of the input options and

instructions on how to decide which option to select. This would greatly improve the

learning curve for performing acoustic predictions which is an often confusing and error

prone task for beginners.

37

8 Continuing Work

 The acoustics prediction library and acoustics prediction GUI program will be an ongoing

project on Trane for years to come as it serves an important and immediate business need. The

next stage of development will include adding the remaining data for all sizes/options of the

CSAA units. This will be done as data becomes available from the acoustic engineers.

 The GUI features requests described in the limitations section will also be implemented in

future versions of the acoustics prediction GUI program. The ability to save and load predictions

will be high priority as well as the addition of a help system.

 The acoustics library was designed with both re-use and extensibility in mind. Requests

have already been made to add several additional Trane products to the acoustics library and

GUI program. The design of the acoustics library should make this a very straight-forward, low

risk task.

 In addition to expanding the number and types of acoustic predictions that can be done with

the acoustics library, future work will include continued development towards the bigger picture

goal of developing an acoustics software system that has the capability to automate the addition

of new products and data without the need for a programmer to update the software. This project

made significant steps towards that goal by creating an acoustics prediction core library that can

be applied to any product with a minimal amount of software development work. However, in

order to achieve this bigger goal several tools will need to be developed which automate the

process of adding new products to the existing system.

38

9 Conclusion

 This manuscript described in detail the development of a software system designed to allow

users to calculate the acoustic performance of a Trane air conditioning product. This system was

based on existing Trane acoustics software systems but has many significant improvements over

the existing systems which were made through a rigorous re-engineering effort which applied

quality software engineering principles [4]. This re-engineering effort resulted in a system that is

more flexible, easier to extend and cheaper to maintain. The design of new acoustics library will

allow for new Trane products to be implemented in a well defined manner by building on top of

the existing core acoustics library. This should reduce development time and decrease the

number of defects in new versions of the software. In addition the Acoustics Calculation

Algorithm was documented in a paper that describes the vision for the generic acoustics library.

This paper defines the model that was implemented in the acoustics prediction library.

 The end result of this software development effort is a new Trane acoustics prediction

library and GUI program which have the capability of accurately calculating acoustic predictions

based on acoustic lab data for the Trane CSAA product line. This software system will be

deployed and actively used by over 100 Trane engineers and sales people in order to help

customers with acoustic issues, give acoustic consultation to clients and make sales for

acoustically sensitive projects. The acoustics library software will be run over 10,000 times a

month at Trane.

 In addition to meeting the immediate needs of providing a means of getting acoustic

performance predictions for the CSAA unit, this software library lays the foundational

framework for a robust, flexible and generic acoustics software system that will be much easier,

faster and cheaper to maintain than the current existing acoustics software.

39

10 Bibliography

[1] I. Sommerville, Software Engineering 6
th

Ed., Addison Wesley, 2001

[2] A.M. Davis, Software Requirements Analysis and Specification, Prentice Hall, 1990.

[3] Computer Society/Software and Systems Engineering Standards Committee, “Recommended
Practice for Software Requirements Specifications”, Std. 830-1998, IEEE Standards Association,
Piscataway, NJ, September 16, 1997

[4] Hans van Vliet, Software Engineering: Principles and Practice, John Wiley & Sons, Ltd., 2000

[5] Microsoft, C# Reference, msdn.microsoft.com, http://msdn.microsoft.com/en-
us/library/618ayhy6.aspx, 2010.

[6] Andrew Troelsen, Pro C# 2008 and the .NET 3.5 Platform 4th

Edition, Apress, 2007

[7] Charles Petzold, Programming Microsoft Windows Forms (Pro Developer), Microsoft Press,
2005

[8] ASHRAE Research Group, 2004 ASHRAE Handbook: HVAC Systems and Equipment, American
Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004

[9] Travis Fischer, The Acoustic Calculation Algorithm, June 30th, 2009, Revision 1

40

11 Appendices

Appendix A. Acoustics Library Core Detailed Class Diagrams

Figure 15. Acoustics Library Core Classes

41

Figure 15. Acoustics Library Core Classes

42

Appendix B. Unit Definition Detailed Class Diagrams

Figure 16. Unit Definition Detailed Class Diagrams

43

44

45

Appendix C. Acoustics Library Database Design Diagrams

Figure 17. Database Design E.R.
Diagram

Figure 17.1 Database Design E.R. Diagram

46

Figure 17.2 Database Design E.R. Diagram

47

Figure 17.3 Database Design E.R. Diagram

48

Figure 17.4 Database Design E.R. Diagram

Appendix D. Final GUI Design Screenshots

49

Figure 18. Welcome Screen Screenshot

50

Figure 19. Create Acoustic Job Dialog Screenshot

Figure 20. Create Acoustic Prediction Dialog Screenshot

51

Figure 21. Initial CSAA Prediction Interface Screenshot

52

Figure 22. Supply Fan Only Prediction Interface Screenshot

53

Figure 23. Single Fan Unit Fully Configured Screenshot

54

Figure 24. Single Fan Unit Calculated 1/3 Octave Lw Screenshot

55

Figure 25. Single Fan Unit Calculated Full Octave Lw Screenshot

