A Generic Acoustics Prediction Model Engine

A Manuscript
Submitted to
the Department of Computer Science
and the Faculty of the
University of Wisconsin-La Crosse

La Crosse, Wisconsin

by
Travis J. Fischer
in Partial Fulfillment of the
Requirements for the Degree of

Master of Software Engineering

May, 2010

A Generic Acoustics Prediction Model Engine

By Travis J. Fischer

We recommend acceptance of this manuscript in partial fulfillment of this candidate’s
requirements for the degree of Master of Software Engineering in Computer Science. The

candidate has completed the oral examination requirement of the capstone project for the degree.

Dr. Kenny Hunt Date
Examination Committee Chairperson

Dr. Mark Headington Date
Examination Committee Member

Dr. Mao Zheng Date
Examination Committee Member

ABSTRACT

FISCHER, TRAVIS, J., “A Generic Acoustics Prediction Model Engine”, Master of Software
Engineering, 05 2010, Dr. Kenny Hunt.

Trane Company in La Crosse, WI has a continual need for software systems that can calculate
predictions of the acoustic performance for their air conditioning products. A suite of acoustic
prediction software tools has been developed and maintained at Trane over the last 20 years.
Over time these legacy software tools have become cumbersome and expensive to maintain. This
manuscript describes the development of a software system designed to make these acoustics
prediction calculations for various Trane air conditioning products. The software system includes
a software library with a public API that will be used by various Trane software systems in order
to make acoustic calculations. The system also includes a graphical user interface application
that will be deployed to Trane engineers and sales people in order to allow them to more easily

make acoustic calculations.

il

ACKNOWLEDGEMENTS

I would like to thank my faculty advisor, Dr. Kenny Hunt, for his valuable guidance and insight
on this Capstone project. I would like to thank the UW-L MSE faculty whom I have studied
under, including Dr. Kasi Periyasamy and Dr. Mao Zheng, for skillfully educating me in the
practices of quality software engineering. I would like to sincerely thank all of the tremendously
talented people at Trane Company who have directly supported my work on this project and
allowed me to dedicate an entire year of my internship to the project. I would like to thank Vikas
Patnaik, Engineering Manager for Global Modeling & Analysis, for his sponsorship and
continual support of the project. I would like to thank Steve Lind, Acoustic Engineer

for Climate Solutions, for supporting and guiding this project on a daily basis. I would also like
to thank both the Acoustics and Vibration Engineering group and the Global Modeling and
Analysis group at Trane for their time and support of this project. I would like to thank my
parents for contributing to, supporting and encouraging my education over the last 17 years. |
would like thank my wife, Melissa, for her unwavering support of my academic journey and her

patience with the amount of time and energy I had to give in order to complete this project.

il

TABLE OF CONTENTS

ABSTRAGCT ...ttt ettt ettt e s bt et ebe st e e st essasbeeseessenseeseessensesseassensessesseensensansenssensensenns il
ACKNOWLEDGEMENTS ...ttt sttt et ettt et e sseeseensesesseenaensessesneensenns il
TABLE OF CONTENTS ...ttt ettt ettt et et e b e st et e saeeseeneeneeseeeneeneeneas v
LIST OF TABLES/FIGURESc.oiiiiiiiiie ettt sttt et vi
GLOSSARY ...ttt ettt ettt ettt et e st e s e b e e st estesbesesseessesseeseessessenseeseessensesseeseensensesseensensans viii
B 113 (e Ta Lb (o730 s H OO OSSR UROUURURURUOPOP 1
1.1 Background INfOrmationc...ceecuieiiieiiieciieiieicete ettt ere e e e e e e e b e ssseesseesbesssessseennas 1
1.2 PTOJECE GOAIS ...ttt sttt et s b et b e sb ettt et ee s 3
1.3 Software LifecyCle Modelc.ooiiiiiiiieieeee ettt 4
2 REQUITCITIEILS. ... veeeutieeiieeeteesteesteesteeseteesteessseeessseessseessseeassesssseeasseeassesassseessseessseesssesssseesnsesesssesnsseensns 7
2.1 Functional REQUITEIMENLSc.eeciiiiiiiiieieeieeie ettt eie e ete et esssesraeessesssesnsesssesssesnsesssesnsennsas 8
2.2 GUI REQUITEIMENLSeeiiieiiieieeie ettt ettt ettt ettt et e bt e be e bt e bt e bt eteete e be e bt e seebeenseenseenne 10
T D 1< ¥ + FO USRS URRUPRPPRI 13
3.1 High Level System ATCRItECTUIEcccviiieiierierierierte ettt stee e e eesae e e essaesseesseenns 14
3.2 Design of the Core AcOuStICS LADTATYcccevuiririiriiniiieieniereeeeseeeeee e 16
33 Design of the ACOUSLICS APIc.viiiiiieii ettt et e ae e e e eveeevaeeaaaens 17
34 Design of the CSAA Section of the Acoustics Library.........cccceevevvevieniienienienieneeneesieesveenns 20
3.5 Design of the Acoustics Data StOTe.........c.evvveriirieriieiienie et ssee e e ssee s 28
3.6 Design of the Multiproduct Acoustics Prediction Program GUIcccccooiiiiiniiniencinenene 30
T U 110 5330153 4Lz 1510) s WO OSSP UURIUPRRRRPR 31
E T <1 oV RRSRSPR 33
0 DEPLOYIMENL ..ottt b e ettt b ettt s b et sh e bt et be b et e e b 34
T LIMEATIONS «.etteutieiieeie ettt ettt ettt ettt ettt et e et e e bt e bt e a bt ea et eate e bt e bt e beenbeenbe e be e be e bt e beenbeenbeebeenne 35
8 CONtINUING WOTK....coiiiiiiiiiie ettt et e st e et e e e bt eestbeessbeessseessseeensaesnseeensseensseennns 37
L 01011 To] 1513 o) « B OO OSSOSO 38
L 231 0) e 221 o) 1 7SR 39
| B o) 153416 Lo U SUPRUPRPRI 40

v

Appendix A. Acoustics Library Core Detailed Class Diagrams...........ccoeceveeevieecieeesiieeneeeeeeneveeeveeens 40

Appendix B. Unit Definition Detailed Class Diagrams............cceceeverereeieneninieieneeeeee e 42
Appendix C. Acoustics Library Database Design Diagrams...........ccccevevereeeriercienieneeneeseesnesresnesenens 45
Appendix D. Final GUI Design Screenshotscccoiiiiiiiiiiiiiiiiie et 48

LIST OF FIGURES/TABLES

Figures/Tables Page

Figure 1. CSAA Implementation Use Case DIaGramc.cceveeviiiviieiiieiieiieieeieereereeereereesseeveesnessnessnes 8
Figure 2. CLCHLw Graphical User Interface EXamplecccocoviriiiininiiiiniiieeeceecceees 10
Figure 3. Intellipak II Graphical User Interface EXamplec.cccceeveeviiiieiiiniinienie e 11
Figure 4. New Product Graphical User Interface EXampleccccocevininiiiiniininiiinininececncceeees 12
Figure 5. High Level System ATChiteCture VIEW........cccviiviiiiiieeiieiiiesiieeieeeiee e esveeseveesveesreeeveeeaneens 14
Figure 6. Core Acoustics Library Architecture Class Diagramcccooceveevierininiieneninieenenceeeeneae 16
Figure 7. Multiproduct Acoustics Engine Detailed Class Diagram..........ccccceeevieviieniieniieniiesieeeiee e 17
Figure 8. Architecture for CSAA Unit Definition Classesccoccvevierierierierienienieseeseeseeseeseeeseee e 18
Figure 9. CalculationResult Detailed Class Diagramcocceiieriiniiiienieniereeseeseeseeee e 19
Figure 10. FanRegression Class ATCRItECTUIE.........cicueivirierierieriesiesiee e steseeseeesraeseeesteesse e seesseesseesseenns 21
Figure 11. Acoustic Silencer Class DIiagramccceoiiiiiiiiiieiienieeieeeee et 22
Table 1. SOUNAAPPUILANCE CLASSES.....ccviiiiriiiiiiieiieiieste e rterteseeseeesttesseesseesseessaesseesseesseesseesseesseessesnns 23
Figure 12. Acoustic Sound Appurtenance ClasSESccoeveriereririenieneneetenieeie ettt st eee e saeas 23
Figure 13. IAcousticUnit Interface Class DeEtailscccccverviriiiieiieiieiiesieseesiee et sve e ve e sre e 25
Figure 14. DBInterface Class DEetailsccoeeieriiriiiiiieniinieieese ettt st 27
Figure 15. Acoustics Library Core ClasSEs........cuiiiuiiiriieriiieriieeieesreesieeereeesteeessveessseesssesssseesssessssesassesans 40
Figure 16. Unit Definition Detailed Class DIiagrams.............ceceveririenienenieienienieeteiesie e 42
Figure 17.1 Database Design E.R. DIagramccceeciiiiiiiiiieiiie ettt cee et siveesveesveesveeeaneen 45
Figure 17.2 Database Design E.R. DIa@ramcccccueviiiriiriirienienie ettt see e sie e saessaessee e 46
Figure 17.3 Database Design E.R. DIa@ramcccociiriiiiiiiinieiienieseetete ettt 47
Figure 17.4 Database Design E.R. DIa@ramcccccueriiiriiriiniiiieiiesiesteseeseeseesree e stee e ssaessaessaessee s 48
Figure 18. Welcome Screen SCreenshotc.coiiiiiiiiiiiiiiee ettt 49
Figure 19. Create Acoustic Job Dialog Screenshotccoccveriirieiieiiesierieseeree e 50

Vi

Figure 20. Create Acoustic Prediction Dialog Screenshot...........c.eeecvieiiieeciiieiiieie e 50

Figure 21. Initial CSAA Prediction Interface Screenshot..........cccooeviiiiininiiiiniinieeeeeeeee 51
Figure 22. Supply Fan Only Prediction Interface Screenshot............ccocoviiiiiniiiiiniiiniiieeeceeeee 52
Figure 23. Single Fan Unit Fully Configured Screenshot............ccocoeieiiiiiiiienieeeeeee e 53
Figure 24. Single Fan Unit Calculated 1/3 Octave Lw Screenshotccccoviiiiiniiniinienieeceeee 54
Figure 25. Single Fan Unit Calculated Full Octave Lw Screenshotcccceceriiieiienininienenenceieeee 55

vil

GLOSSARY

Acoustic Silencer
A device installed in heating and air conditioning systems used to attenuate the sound power

exiting the unit by absorbing some of the sound.

API

An Application Program Interface (API) is an interface that provides access to an underlying

software system of services.

CLCHLw
A software program created and owned by Trane that allows users to calculate predicted sound

power levels for a group of air handling products.

CSAA

The name of a new Trane product line of air handling units.

Insertion Loss

The sound level reduction at a given location due to the insertion of a noise control device, expressed in

decibels.

Intellipak 11

A product line of Trane rooftop air conditioning units.

Microsoft® .Net Framework

A software framework made by Microsoft that can be installed on computers running the Windows®
operating system. The framework includes a library of code that can be used by developers to solve
common programming problems as well as a virtual machine that manages the execution of programs

written specifically for the framework.

viii

Microsoft® Access®
A relational database management system product from Microsoft that combines the relational Jet

Database Engine with a GUI and a collection of development tools

NDepend
A code analysis and metrics software tool designed to be used with code written for the .Net

Framework.

NUnit
An open source unit testing framework from the xUnit family of unit testing tools. NUnit is designed to

be used with Microsoft .NET and works similar to the popular Java testing tool JUnit.

Regenerated Noise
Noise that is generated on the “quiet” side of sound attenuators which is the result of

concentrated air flow turbulence.

Sound Power Level
A logarithmic measure of sound power in comparison to a specified reference level. A sound power level
is abbreviated as PWL with units dB re 1 pW, which is in contrast to a sound pressure level which is

abbreviated as SPL with units dB re 20 uPa.

SQL

Server Query Language is a standard language used for accessing and modifying databases.

SQL Server CE®

Microsoft’s SQL Server Compact Edition is a compact relational database that is designed to be used with

applications that run on mobile devices and desktops.

X

TOPSS
The Trane Official Product Selection System (TOPSS) is a Windows program that contains

information to select and predict performance of Trane products operating under various conditions.

UML
A standardized general-purpose modeling language created by the Object Management Group and used

extensively in the field of software engineering.

Windows® Forms Framework
A graphical application programming interface that is included as a part of Microsoft's .NET Framework.
The framework provides access to the native Microsoft Windows interface elements by encapsulating the

existing Windows API in managed code.

1. Introduction

1.1 Background Information

Trane, a business of Ingersoll Rand, has a continuous business need for the ability to model
the acoustic properties of their air conditioning products. These products come in a multitude of
applications, sizes and configurations. When they are installed and operated in a building they
produce certain levels of sound and vibration which can be either desirable or undesirable
depending on the situation. Each of Trane’s products has certain physical properties which can
be modeled in software in order to determine the sound power levels (Lw) that will be generated
while that equipment is operating.

Historically these sound power prediction calculations have been done manually by
acoustical engineers using tables of data and well defined formulas. In order to reduce the
amount of time spent on these prediction calculations and the number of errors made during the
manual process, Trane has developed software models which can be used to compute these
predictions automatically. Over the last 20-25 years, engineers and interns at Trane have
developed and maintained eight individual acoustic software models. Each of these software
programs models a specific Trane air conditioning product.

Each of these software models takes some number of input variables which describe the
physical characteristics of the product, retrieves acoustics test data from a data store and then
executes an algorithm which calculates a set of acoustics related outputs. The key output in each
of these models is a collection of data arrays which contain sound power levels across a twenty-
four frequency band sound spectrum.

Many of the core equations and algorithms used in these calculations are common among
the various acoustic models. For this reason, many of the programs share common software
components. The software development process that was used while developing these projects
was unorganized, haphazard and did not use good software design principles. Software reuse was
not included as a goal in the development of these acoustic software projects. Because of the
short-sighted design that was used in these systems, efforts towards software re-use and
component sharing have resulted in a very poor collection of highly coupled and un-cohesive

software modules. A lot of the code in these models is replicated multiple times across the

various software programs. Clearly defined layers of abstraction were not included in the design
of these legacy systems. Business logic, GUI logic and database logic were inter-mingled
throughout all layers of the software in a haphazard fashion. This has created unnecessarily
complicated dependencies among the various components. All of these issues have resulted in a
moderately large base of source code that has become extremely difficult and expensive to
maintain.

Another issue with the legacy software is that, while the engineering practices of the
acoustical engineers at Trane has been greatly improved over the last 20 years; the design of the
software models has not kept up. Many pieces of legacy software contain algorithms that are no
longer relevant in Trane's sound modeling practices.

The ideal acoustics modeling software would have a well designed architecture that would
make efficient use of common logic of acoustic sound models. This system would contain a
robust core library of that would provide the functionalities needed for each of the acoustic
prediction models. This system would make the process of adding models for new products a

simple and low risk task.

1.2 Project Goals

The goal of this project was to design a single core software library for Trane acoustics
modeling while making use of good software engineering practices. This core library was
designed to include all the functionality included in previous Trane acoustic models and also to
make improvements in the design and implementation of the software. This was done in order to
improve the efficiency of program maintenance as well as the overall robustness of the
prediction software. This project also included implementing a product specific extension of the
core acoustics library for one of Trane’s new air handling products.

In order to create an optimal design for the Trane acoustics software library, the project
required an in-depth analysis of both the legacy acoustic models as well as the long term vision
for Trane acoustics software. One of the project goals was to provide documentation on findings
of this analysis for use in future acoustics software engineering efforts.

Software quality assurance standards and processes have only been recently implemented in
Trane's software groups. Another goal of this project was to make use of basic testing tools and
frameworks while working with one of Trane's software quality assurance employees to set up a
test plan for unit, integration, system and regression testing.

The legacy acoustic models relied on product test data that was stored in a Microsoft®
Access® database. This database was built up in an ad-hoc manner as these models were
developed which resulted in an inefficient and poorly designed database structure. Another goal
of this project was to design a well documented database that would improve the maintenance of
the database and simplify maintaining the code that interfaces with this database.

The legacy acoustic models were written in the Fortran, Basic and Visual Basic
programming languages. The most heavily used piece of the legacy models was written in Visual
Basic 6 which proved problematic since Microsoft stopped supporting this technology in 2008.
Another goal of this project was to write the acoustics library exploiting the object oriented
aspects of the domain using the C# programming language on the Microsoft® .Net framework.

The final goal of this project was to develop and document a future vision for Trane acoustics

software. This vision would be documented in the form of a set of requirements for future enhancements

to the acoustics library and the supporting software tools.

1.3 Software Lifecycle Model

There are many software lifecycle models that are recorded in software engineering
literature [1] and are currently used in the development of software projects around the world.
Trane does not have a company-wide standard lifecycle model that is used by developers across
all the various software groups. Each individual group uses a unique lifecycle model that they
have adopted through years of development experience. The group that owns the acoustics
software does not have a defined lifecycle model although a hybrid lifecycle model similar to an
iterative model is what is most commonly used.

In order to select a development model that would be used for this project, several lifecycle
models, including waterfall, spiral, iterative and prototyping, where considered and measured
against project objectives and environment. Ultimately, an iterative lifecycle model was selected
for this project as it was found to be the best fit for a variety of reasons.

It is well known at Trane that developing software within the organization requires an
extremely fluid and flexible process. Trane is a very large organization and there are many
players involved in the development of any software project. Every one of these people brings
their own set of requests and requirements to the project. Every software project developed at
Trane is subject to constant change and refinement as the business needs, priorities and personnel
change around it. In the case of the acoustics software models, there are three distinct groups of
internal customers (or users) who each have their own set of requirements. Each of these groups
is also subject to its own set of customers (both internal and external) who impact the
requirements. These factors make a waterfall model impractical as any comprehensive set of
initial requirements would quickly become irrelevant at Trane.

Another factor that impacted the selection of a lifecycle model is the speed at which Trane
products are designed, re-designed and released. Trane's business model dictates that acoustics
modeling software must be available for the release of a new product. This means that the
acoustics software is developed largely in-parallel with the testing and configuration of a new
product. The result is that some of the requirements for a software model are not known until
literally a few months before it must be released. This factor also makes a waterfall model

unusable.

A spiral lifecycle model seems well suited for the acoustics library project due to is iterative
nature and short feedback loop. However, it was determined that the support necessary to
effectively employ a spiral model would not be available for this project at Trane. Continuous
risk analysis is a key component of the spiral model. This risk analysis process requires project
customers and development team leaders to give continual feedback on the risk of continuing the
project. Trane was not able to provide the resources, in terms of internal customer time, to make
a spiral model an effective choice.

In a prototyping lifecycle model, developers create a throw-away prototype of the system in
order to get a better understanding of the system requirements and to help customers define what
their requirements are. The prototyping model was not selected for this project because this
project was based on an existing system. Therefore, it was more time effective to take the
requirements for this project from the existing system rather than to build a throw-away
prototype which would closely mimic the existing system.

An iterative lifecycle model was determined to be ideal for this project because it would
allow continual progression on the project with incremental feedback and change requests from
the various internal customer groups. The iterative lifecycle started by taking the initial system
requirements from the existing system then allowed changes in the system requirements as the
new Trane product was developed. The initial project plan included 4 iterations through the
standard lifecycle phases of requirements, design, implementation and testing [1, 2]. The number
of iterations that took place during the course of the project ended up being approximately seven.
The reason for the increase in the number iterations was due to an increase in number of times
that requirements changed from what was initially envisioned. This change forced the
development loop to be tighter than was anticipated and resulted in a few additional iterations.
Throughout the project there was a continuous flow of requirement changes, which were then
folded into the design and implementation of the project and finally tested. During each cycle,
requirement changes were collected and compiled into a list of requests. Sometimes these
changes were added to the current cycle and sometimes they were added to a future cycle or to a
“wish list” of future development efforts.

The iterative lifecycle proved to be very effective for this project primarily because it

allowed the development of the system to keep up with the rapid change in requirements. It also

provided reoccurring feedback in the testing phases which allowed for many helpful changes in

the system design for future cycles.

2 Requirements

The initial phase of every cycle in the iterative lifecycle model is the requirements gathering
and refining phase. This phase consists of meetings held between the software development team
and customers of the software. During these meetings the required functionalities of the
software are discussed and defined. In a traditional waterfall lifecycle model all of these
meetings take place at the beginning of the software development process so that a well defined
requirements document can be generated as the output of the initial stage. In the iterative model
used for this project, these meetings take place throughout the duration of the development
process.

For this project, the requirements gathering meetings were held beginning in the spring of
2009 and then throughout the development process. Requirements meetings were held with three
distinct groups of internal acoustics software customers as well as with Trane acoustic engineers
and Trane software modeling groups. An initial set of requirements was gathered from an
analysis of the legacy acoustics software systems. These requirements were discussed with the
various customers and refined to include only those functionalities that were determined
necessary in future acoustics systems. The requirements were further discussed and refined with
the TOPSS software development group. This group writes software which interfaces with and
depends on the acoustics software systems. Further requirements were gathered from the teams
involved with the development, testing and release of a new Trane product that was modeled in
the new acoustics calculation library and GUI program.

This initial set of requirements was documented in a formal project requirements document
[3] which was reviewed with project customers and the UW-L faculty advisor for this project.
The approximate scope of the project was taken from these requirements and was determined to
be appropriate for the Capstone project.

During the lifecycle iterations that followed, these requirements were both refined and
expanded on. Due to the scope restrictions of a Capstone project many of these requirement
expansions where added to a list of future requirement requests. Some new requirements were
deemed necessary and were added to the scope of the project. This sometimes required

restriction or cancelation of previously documented requirements.

2.1 Functional Requirements

The functional requirement of the acoustics software library consists of 3 basic use cases for
each product that is modeled in the acoustics library.

These use cases are:

1. Calculate an acoustics prediction.

2. Save an acoustics prediction

3. Load a saved acoustics prediction.

Some products may have a few variations of the first use case if the unit configuration
options for that product are complex and include multiple unit types which need to be modeled.

The use case diagram in Figure 1 below shows the basic use cases and the various “actors”

involved in the initial implementation of the acoustics library for the new CSAA product.

A

Acoustics GUI Program

System %
R
Calcuate 1 Fan CSAA Unit Acoustics

Acoustics Data Store

‘\§<include>> /

//7 T0PSS Software -]

<<|nc|ude>;"*‘--- i > /E i
Model CSAA Acoustic Prediction

External 3rd Party Library

o

Trane Acoustics Software User
% —

==
X [
Microsoft Excel Macro Load Acoustics Prediction Data

User's Computer File System

Figure 1. CSAA Implementation Use Case Diagram

This use case diagram shows the three actors which directly invoke behavior on the
acoustics software system. Each of these actors is an external software system that is used by a
Trane acoustics software user in order to calculate acoustics model predictions. The use cases

and the APIs for each of these actor systems are identical. They are shown as three separate

actors in order to emphasize the need for an API that can support these three independent actors.
The right hand side of the diagram displays the three secondary actors that the acoustics software
library interacts with.

For the new CSAA implementation of this system, there are two “calculate unit acoustics”
use cases that are shown. The first use case calculates a CSAA unit with a single fan, while the
second calculates a CSAA unit with two fans. Both of these use cases include a single inner use
case which calculates the acoustics generically for any CSAA unit and produces the desired
outputs. A very similar use case diagram will exist for each Trane product which eventually gets
implemented with the Trane acoustics library.

While the number of use cases for each product implementation is quite small the
complexity of each use case is very high. This is due to the complexity and number of the inputs

as well as the complexity and number of steps involved in completing each of the use cases.

2.2 GUI Requirements

One requirement of the acoustics software project was to design a graphical user interface
that would allow users to directly access the functionalities of the acoustics library via some
basic input controls and to get a graphical display of the output data that can be easily read and
understood. Previous acoustics modeling projects have included a graphical user interface
program that accomplished this goal.

The acoustics calculation GUI program is a separate piece of software from the acoustics
library. The acoustics library provides all the necessary functionality to do acoustics prediction
calculations and GUI interface is purely a graphical interface which uses the acoustics library
API to calculate acoustic performance data which is then displayed to the user.

A few examples of the previous GUI programs are shown in the Figures 2 and 3 below.

= Plenum | M-series 10.8.6 Q@@

Copy Print Form Save Form Inlet Density Exit

Description:l — .
" Belt-Drive % D.D.(flexible motor speed) L
MCC Unit Size: |Y4U (33 in. D.D. Plenum Fan) Ll € Nore f ngle € ¢ ngle [
Unit Configuration: IHorizontaI Discharge Modules Ll Muttizone [~ Bell Mouth on Discharge

@ No O ves |1 ~ r

—Energy Wheel Effect |
@ MNone (" Inlet ¢ Discharge

Large Module Discharge Ratio: [1.5 Large Module Inlet Ratio: |0

Discharge Conﬁguration:IMultiple (hoth front and side, bottomn, or top) Ll L

Front or rear dis. Lw
Inlet + Casing Lw
Ducted Inlet L
Casing Lw

ERliE

Tl

Density Factor
Ho Coil (Inlet), LMIR = 0 .
I —| " Top, Bott r Side
Coil {discharge): |4 or 6 Row Coil on Discharge Side LI : Operating Point
Modules Lining ' Fan CFM: [20000 Clear |
Discharge: |Doublewall solid -
| o Fan TSP: [4 Close |
Fan: IDuubIewaII solid j , C a|cu|ate|_w‘|
Quter Panel Gage: |1 8 Gage or higher {(std.) j
Component
Side discharge Lw

Figure 2. CLCHLw Graphical User Interface Example

10

SE Intellipak Il Acoustic Performance Prediction

Ean Input]
Unit Description
Unit size: |150T v
Heat Options
{* Mo Heat
" Gas r
" Hydronic
" Electric
Blank Section

e Na O 4ft O aft

7 Lining

About I
Qutdoor Sound Options
Condenser fans on: 3 v
CURE Options

(¢ Standard ¢ QCURE (SCURB

Entering &ir State

Drybub(F) | 68
wetbub(F) | 52
Alitude (ft) | 0O
Density factorE

Standard Air |
Calculate

L~ By X 2

SOUND POWER LEVEL (dB re 1pW)

63 [125 [2s0

[soo [1o00 [zo00 [4000 [s000

[Lw, dB [Lwa, dBiLwaT, di

Ducted Discharge
Ducted Inlet
Qutdoor

Version 1.5.2

Figure 3. Intellipak II Graphical User Interface Example

The ideal acoustic calculation GUI program would be designed with enough flexibility that

it could be used for multiple Trane air conditioning products. Each product has a unique number

and type of inputs so this user interface would have to allow for the dynamic adding and

removing of input controls for each product line. In addition to a dynamic control pane for input

controls, there would need to be an output pane that would display sound power values in either

full or one-third octave band sound spectra as well as a grid of performance data for the unit

fans. An example of the graphical user interface that would be required for CSAA model

calculations is shown in the Figure 4 below.

11

il Multi-product Acoustic Engine

File Edit Tools Help

Wiain Menu | Prediction_L | -new |

Product

CSAA Performance Climate Changer

Unit Path Configuration | Supply Fan Only Unit v

cpawheel []

Dischargs Air Component

Ducted Discharge ?

Side/Bottom/Top ?

!

Air OpeningDirection

Fanto Return Air Region

100 50
2 Parf. Solid

in.

<>

Air OpeningSize 75

Supply Fan in Unit
Supply Fan UnitSize | 3

Supply Fan

Outdoor Air Compenent

Ducted Outdoor

II

AirOpeningDirection | Top/Bottom/Side

AirOpeningSize 100 List

o
Fan Configuration
Fan Discharge Section

Return Air Component

Air OpeningDirection

Selected LiningLength 50.00 3 |

Appurt.

Filter Coil
g Sor10- 10w
Type |8 or10=row v

— Air OpeningSize |75 gl [2 Discharge Silancer | 3" Rect. Film v E]
FanSection Lining | No Lining vil2 sripening ¥
Fanto Discharge Air Region D ReturnSiIencerl | ?
CFI
ini 120.00 4 |;
Total LiningLength v | i Multi-Zone | No Multizone v E]
TSP 56 64
No Lining 2 Parf.
Density Factor ? Selected LiningLangth 64.00 & | in.
Appurt. Coil Coil
List 1016 10w I Sor10-1ow IQQ
Type |8 orl0=row v
[catcuiate | [asarform | [copyPrediction | [close |

- w

2|5 (38888

Ducted Discharge Component 61 61 |51 43 43 46 45
Ducted Inlet Component 49 |51 |52|51 50|57 58
Ducted Outdoor Air Component 63 65 66 65 64 71|72
CS Component 103 104 |98 92 88 |90 87

Frequency Band (Hz)

& 4% ooos

78

Operating Point = Supply Fan
CFM 15000

TSP 25

RPM 801

BHP 9.4

X¥O0 708
Efficiency 628

Ready Current Job: JOB_9:55 AM_04/13{2010

Figure 4. New Product Graphical User Interface Example

12

3 Design

The design process for this project was handled according to the iterative lifecycle model
selected for this project. The initial high level design was completed immediately following the
initial requirements phase. This high level design process included defining the high level system
architecture and re-engineering the existing acoustics software design using UML class diagrams
as a tool. The initial high level architecture process revealed three individual architecture layers
that are essential to the acoustics software system. Each of these layers required a significant
amount of additional detailed design work that was completed in iterative phases. As each
iterative phase was tackled the detailed design for the next piece of the acoustics library was
revised. Throughout the duration of the project the design of each section was updated several
times in order to keep the entire design consistent with newly discovered requirements and
design issues.

The foundation for the design of the acoustics library was derived from the design of the
previous acoustics software systems. However, since many of the core problems with the legacy
acoustics software had stemmed directly from poor design decisions, a lot of care was given to
extracting the key logic from the previous designs while re-engineering the design in a way that
would improve the overall quality of the system design. The logic for the generic core of the
acoustics library was already well defined according to an acoustics calculation algorithm
described which is described in internal Trane documentation. However, the design of the system
which translates a unit configuration definition into an abstract and generic model that can be
acoustically evaluated did not exist in previous acoustics software and thus had to be designed
from the ground up for this project.

The design of the acoustics calculation GUI program was also largely a design from scratch
effort rather than a re-engineering effort. While previous acoustics calculation programs were
used as a starting point, many requested features had never been implemented in a Trane
software program and had to therefore be designed from the ground up. No previous acoustics
GUI program was dynamically flexible enough to accommodate the vast array of configuration

options which may apply to a CSAA unit.

13

3.1 High Level System Architecture

The ideal high level architecture for acoustics calculation system consists of three main

layers. A conceptual view of this architecture is shown in Figure 5 below:

High Level System Architecture

User interfaces I TOPSS Program | l Custom Standalone GUI ‘ IExcel Sheetl

[Product A: Engine Interface | [Product B: Engine Interface | | Prod... |

Acoustics Calculation Engine l

I Product A: Custom Rule Layer | I Product B: Custom Rule Layer I IProdA ..]

Generic Acoustic Calculation Core
| Mathematical Equations |

Engine system

SCOpe Calculation Objects
| Data Access Interface l [Exlemal Library Interface |
External Libraries
[Acoustics Database Lw.mdb] (Psych32.dll, operatingPoint dll, COMTraneF anSelect dll)
External

dependencies

Figure 5. High Level System Architecture View

The top layer of the architecture consists of the user interfaces which allow user input and
display of calculated output values. The acoustics calculation library provides functionality to
three separate user interfaces. The first user interface is a widely used Trane product selection
tool known as TOPSS. TOPSS allows users to configure a unit and calculate various technical
details on the performance of that particular unit. One piece of the data reported by TOPSS is
acoustic sound power, which is calculated through the acoustics library. The second user
interface is the custom designed acoustics GUI program which is designed specifically as a front

end to the acoustics calculation library. This GUI is designed for use by acoustics engineers and

14

product engineers who have some knowledge of acoustics. The third user interface which makes
use of the acoustics calculation library is a collection of Microsoft® Excel® macro programs
which are embedded in various custom designed engineering tool workbooks. These tools are
built by Trane engineers and are used for various work tasks.

The most significant layer within the system architecture is the middle layer of the system,
which is the acoustics calculation library or "software engine." This "engine" contains all of the
core functionality needed for performing acoustic prediction calculations. This library provides
an API to the user interface layers which allow them make requests for acoustic prediction
calculations. Each of the various Trane products that are modeled by the acoustics library require
a unique programming interface that is tailored for its unique set of inputs. The product specific
inputs that are passed through these interfaces are processed by parts of the acoustics library,
known as "custom product rule" layers. These product rule layers are designed to handle the
product specific details of acoustics calculations. These layers rely on a generic core “engine” in
the acoustics library which handles the non-product related parts of the calculations, relating to
the physics and mechanics of the acoustics model calculations.

The bottom layer of the acoustics calculation library consists of an acoustics data store and
a few dependencies on external Trane standard libraries which handle tasks like unit conversion,
physics calculations and mathematical calculations. There is a data access layer built into the
acoustics library to handle database requests. There are also several third party library software
wrappers written to allow easy and consistent interfacing from the acoustics library to these

external libraries.

15

3.2 Design of the Core Acoustics Library

The design of the core acoustics library consists of a public facing interface as well as

CalculationResult

MultiproductAcousticEngine

or used as a means of handling the generic parts of the acoustics prediction algorithm. The

foundational structure of this architecture is shown below in the Figure 6.

returns as output

Performs calculation vi

Provides client Facing API. Iﬁ

a
Aed as input into

AcousticEngine

Calculates with generic acoustics model in Form of /

AcousticsCalculationUnit

Forms acoustic calculation structure

1“*

SoundComponent

1

Translates inputs into object which can be evaluated in form of

<<Interface=>>
IAcousticUnit

nit performance validated by

Must be implemented For
specific products.

FanPerformance

1

Provides validation routine

Must be implemented for =
specific products.

Implementation generates

_ | IFanPerformanceMapped

<<Interface>>

Madels an individual Factor in acoustic performance

1 i .*
<<Abstract>> <<Abstract>> <<Abstract>>
SoundSource _l> AcousticContributor Q_ SoundAppurtenance

T
a
v
a

Must be implemented for
specific acoustic elements.

AN

N
'
'

Must be implemented for

specific acoustic elements., [j

Figure 6. Core Acoustics Library Architecture Class Diagram

A list of the detailed class views for each class in this diagram can be found in Appendix A.

several internal core classes which are meant to be either implemented for specific product lines

16

3.3 Design of the Acoustics API

The API for the acoustics library was designed to allow client software to input the
definition of a Trane air conditioning unit and get back a data structure that describes the
acoustic performance of particular air conditioning unit. Each product line has unique set of
variables that effect acoustic performance. Within each product line there are a large number of
these variables, many of which only apply to specific configuration scenarios. Although the
number and type of input variables varies widely, the acoustics API for performing acoustics
calculations was designed to consist of a single generic programming call that ensures
consistency for client software. The MultiproductAcousticsEngine class was designed to serve as
a public facing static programming interface that is used for making acoustics prediction
calculations. A detailed class diagram of the MultiproductAcousticsEngine is shown in Figure 7

below.

[MultiproductAcousticEngine
Static Class

=l Methods
4" CalculateUnitacoustics{CSAAURItDef csaalUnitDef) @ CalculationResult
& CalculateUnitAcoustics(TraneProduct Type productType, string UnitDefXml) : CalculationResult

I
I
I
I
I
I
I
: ¥ CalculateUnitAcoustics{UnitDef unitDef) : CalculationResult

N mmm———

Figure 7. Multiproduct Acoustics Engine Detailed Class Diagram

The acoustics library provides clients with a set of public classes that are designed to define
the configuration of Trane units so that they can be evaluated for acoustic prediction. These unit
definition classes must be implemented for each Trane product line in the acoustic library in
order to allow client code to access all of the options for that product line. A set of these unit
definition classes was defined for the CSAA product line, which was the first product line to be
implemented in the Trane acoustics library. A class architecture diagram for the CSAA unit

definition classes is shown in Figure 8 below.

17

< <abstract>>
UnitDef
<<abstract>>
CSAAUnitDef
CSAASupplyOnlyUnitDef % \
upply nly niDe CSAASupplyReturnUnitDef CSAADualPathUnitDef
CSAAFanRegionDef CSAARegionDef
Defines operating point/
OperatingPointDef

Figure 8. Architecture for CSAA Unit Definition Classes

The UnitDef class is the public abstract parent class of all unit definition classes which are
accessible to client code. Any future product implementation will require the developer to write a
subclass of the UnitDef class. The CSAAUnitDef class is the abstract child class that defines all
Trane units in the CSAA product line. This class was made concrete through being sub classed
by three other CSAA specific classes that define the three unique configurations that CSAA units
are offered in. Detailed class diagrams for each of these classes can be found in Appendix B.

The requirements of the acoustics library specify that the output of an acoustics prediction
must include a collection of sound power value spectra, a collection of operating point values
and some textual information that is associated with the sound power data. This associated
information includes descriptions of any industry standards that are used in calculating acoustic
performance, the type of unit components that are being evaluated and a description of the

frequency bands used for the acoustic data produced by the acoustics calculation. The

18

CalculationResult class was created to serve as this type of general purpose return structure. A

detailed class diagram for CalculationResult can be seen in Figure 9 below.

»)

| CalculationResult
Class

[= Fields
47 calcResult : CalcResults
47 calculationDescription : string
9" calculationMotes : string
47 debugDescription : string
47 operatingPoints : List <FanOperatingPoint >
9" resultDescription : string
47 soundvalues : List<SoundSpectrum>
(=] Properties
'j? CalcResult : CalcResults
7 CalculationDescription : string
7 CalculationMotes : string
¢ DebugDescription : string
f LwYalues : List<SoundSpectrum:=
f OperatingPoints : List<FanOperatingPoint >
i‘f ResultDescription : string
= Methods
Vv CalculationResult()

»|

| FanOperatingPoint
Class

[= Fields
47 airDensityFactor : double
47 airflow_CFM : long
47 brakeHorsePower : double
47 efficiency : double
47 percentWideOpen : double
47 speed_RPM: long
47 staticPressure_inwg @ double
(=] Properties
'j? AirDensityFactor : double
% CFM @ long
' Efficiency : double
:”j‘ HP : double
%1 perwo : double
j" RPM : long
1 T5P : double
= Methods
¥ FanOperatingPoint{) (+ 2 overloads)

| SoundSpectrum

»)

Class

=l Fields
47 frequencyBandSize : FREQ_BAND_SIZE
47 soundPowerValues : double[]
47 spectrumDescription : string
=l Properties
f FrequencyBandSize : FREQ_BAND_SIZE
’f? SpectrumDescription : string
’j‘ this : double
=l Methods
¥ getFullOctaveSpectrum() : SoundSpectrum
v getIntegerSpectrumCopy() : int[]
v getlwvalueAtBand() : double
Vv getlwyalueatIndex() : double
¥ getOneThirdOctaveSpectrum() : SoundSpectrum
@ getSpectrumCopy() : double[]
¥ numberOfBands() : int
Vv setlwvalueAtBand() : void
Vv setlwvalueAtIndex() : void
¥ SoundSpectrum() (+ 2 overloads)

Figure 9. CalculationResult Detailed Class Diagram

The CalculationResult objects that are output from the acoustics library are used by client

software in order to access all the data that is produced while making an acoustic prediction.

They are also used by client code in order to store useful information in debug and error files that

are used for maintenance of the acoustics library.

19

3.4 Design of the CSAA Section of the Acoustics Library

In order to actually calculate acoustic predictions for a Trane unit, a set of classes must be
implemented within the acoustics library that can model the various options available for that
product and calculate the impact that those options have on the overall unit acoustics. The design
of the acoustics library allows these internal product specific classes to be implemented by
simply sub classing one of the existing generic AcousticContributor classes which were designed
for efficient, generic handling of acoustic calculations. This is exactly what was done for the
CSAA implementation of the acoustics library.

The most complex component of any air conditioning unit acoustic calculation is the fan.
The fan is the primary source of sound within the unit and the sound levels that it produces varies
greatly depending on a large number of factors. In order to accurately model a fan operating in a
unit, a class called FanRegression was created as a subclass of the abstract SoundSource class.
Because many Trane products have fans with similar characteristics, the FanRegression class
was designed to be product neutral. It however, contains components that are product specific
and must be implemented for each product that is implemented in the acoustics library. The class

architecture of the FanRegression class and its components is shown below in Figure 10 below.

20

<<Abstract>>
SoundSource

FanRegression

AcousticData

Provides validation routine <<Abstract>>
FanInUnit
<<Interface>> _4_’}*"" FanOperatingPoint
IFanPerformanceMapped
CSAAFanInUnit
1
FanAndMotor Calculated and created by

1

FanPerformanceCalculator

Used in performance calculation

AirState

FanPerformance

Fan

Used to calc performance by

FanPerformanceCurve

Figure 10. FanRegression Class Architecture

Another interesting part of the acoustic library design is the modeling of acoustic silencers.
Acoustic silencers are devices that may be installed inside an air conditioning unit in order to
help control and shape the acoustic performance of a unit. Silencers have the unique property of
both reducing and creating sound at the same time. An installed silencer will reduce the sound
that enters it. This effect is known as "insertion loss." At the same time the silencer disturbs the
air in a way that creates additional noise known as "regenerated noise." In order to model this
dual effect, it was necessary to create two separate classes to represent silencer effects. A
subclass of SoundSource was created and called SilencerRegen. A subclass of
SoundAppurtenance was created and called SilenecerInsertionLoss. Because the calculation of

these two effects is complex and inter-related, a third general Silencer class was created to model

21

the actual physical properties of a silencer. The Silencer class is used as a component of both the

SilencerInsertionLoss and the SilnecerRegen classes. The class structure of this design can be

seen in Figure 11 below.

<<Abstract>>
SoundSource

S

<<Abstract>>
SoundAppurtenance

A

SilencerRegen

SilencerInsertionLoss

N 7
\ /

Silencer

Figure 11. Acoustic Silencer Class Diagram

The other type of component that has an effect on acoustic performance is called a sound

appurtenance. The CSAA unit options include a large number of sound appurtenance effects.

These effects are modeled as subclasses of the abstract Sound Appurtenance class. Each of these

CSAA specific appurtenance classes encapsulates the logic for calculating the acoustic effect that

it has on the unit. All of the CSAA related SoundAppurtenance classes are listed in Table 1

below.

DischargeOpeningSizeEffect

The effect produced by the size of the

unit’s disch

arge air opening.

Any Trane unit.

Return OpeningSizeEffect

Discdoseop virieteSutelliftéct

ExhaustOpeningSizeEffect

CSAAFanDischargeConfigEffect

The effect produced by the size of the

unit’s return air opening.

The effeet produced by the dizecstomel
onieniasindovraimdperdisgharge air
The effect produced by the size of the

unit’s exhaust air opening.

ThentAdonbdnuudl byetiercoifonanatign

Any Trane unit.

Any Trane unit.that includes an outdoor
air opening.
Any Trane unit that includes an exhaust
air opening.

Any Trane CSAA unit.

OutdoorAirDirectionEffect

ExhaustAirDirectionEffect

The effect produced by the directional

orientation of a unit’s outdoor air

opening.

The effect produced by the directional

orientation of a nnit’s exhanst air

Any Trane unit that includes an outdoor

air opening. 22

Any Trane unit that includes an exhaust

air onening

CSAAFanDischargeConfigEffect The effect produced by the configuration =~ Any Trane CSAA unit.
of the fan discharge.

CoilEffect The effect produced by a heating or Any Trane unit.
cooling coil in the airflow path.

FilterEffect The effect produced by an air filter in the ~Any Trane CSAA unit.
airflow path.

CDQWheelEffect The effect produced by a CDQ wheel in ~ Any Trane CSAA unit.
the unit’s airflow path.

CSAALining The effect produced by lining a CSAA Any Trane CSAA unit.
unit with a specific type of panel lining.

EnergyWheelEffect The effect that exists in unit Any Trane CSAA unit.
configurations which include energy
wheels.

CSAADiffuserEffect The effect produced when a diffuser is Any Trane unit.

installed on the fan.
MultiZoneEffect The effect that is produced when a unit Any Trane unit.
has multiple air discharge paths.
InletCasingDischargeConfigEffect The effect that is produced in the inlet + Any Trane unit.

casing acoustic component by the

Table 1. SoundAppurtance Classes

The class relationship of the appurtenance classes can be seen in Figure 12 below.

<<Abstract>>
SoundAppurtenance
DischargeDirectionEffect CoilEffect MultizoneEffect CDQWheelEffect || CSAALining

Figure 12. Acoustic Sound Appurtenance Classes

23

For products that are complex like the CSAA units, there are many business logic rules that
are required in order to decide which of all the AcousticContributors apply for a given
configuration. This logic should be stored in a CSAA-specific implementation class. In order to
allow for the product specific business logic that is needed for acoustic predictions, the acoustics
library provides the [AcousticUnit interface which is meant to be implemented by product
specific classes. The IAcousticUnit interface exposes three functions that are needed for
transforming the definition of an acoustic unit into a generic AcousticCalculationUnit object.
The AcousticCalculationUnit object is the generic abstracted representation of an air
conditioning unit that can be acoustically evaluated. For CSAA acoustic predictions the
CSAAAcousticUnit class was implemented to fulfill this need. This is a heavy weight class
which contains all of the business logic for transforming the complex CSAA unit configurations
into the AcousticsCalculationUnit objects which can be acoustically evaluated. A detailed view
of the [AcousticUnit interface and its CSAA specific implementation can be seen in Figure 13

below.

24

(IAcousticUnit
Interface

= Methods
W BuldCalcuiationting(} » AcousticCalcuiationting
W GetPerformanceMapsAndPomnts(} ; List<FanPerformance>
Y UnitConfigurationisValicl} » CalcuiationResuf

»)

() TacousticUnit

(csanAcousticUnit
Class

= Fields
&7 db: DBInterface
47 dischairSilencer : Silencer
47 exhaustdirsilencer : Silencer
&7 inputUnit : CSAAUNItDef
&7 outdoorairSilencer : Silencer
47 returndirSilencer : Silencer
47 returnExhaustFanInUnit : CSAAFanInUnit
&7 returnExhaustOperatingPoint : FanOperatingPoint
&7 supplyFanInUnit : CSAAFanInUnit
&7 supplyOperatingPoint : FanOperatingPoint

[= Methods
W BuildCalculationUnit() : AcousticCalculationUnit
2" buildCSComponent{CSAADualPathUnitDef inputUnit) : SoundComponent
2" buildCSComponent{CSAASUpplyExhaustUnitDef inputUnit) : SoundComponent
2" buildCSComponent{CSAASUpplyOnlyUnitDef inputUnit) : SoundComponent
2" buildCSComponent{CSAASUpplyReturnUnitDef inputUnit) : SoundComponent
2" buildDD2Component(CSAADUaIPathURitDef inputUnit) : SoundComponent
2" buildDD2Component(CSAASupplyExhaustUnitDef inputUnit) @ SoundComponent
2" buildDD2Component(CSAASUpplyOnlyUnitDef inputUnit) @ SoundComponent
2" buildDD2Component(CSAASupplyReturnUnitDef inputUnit) @ SoundComponent
4" buildbDComponent({CSAADualPathUnitDef inputUnit) : SoundComponent
2" buildDDComponent(CSAASUpplyExhaustUnitDef inputUnit) @ SoundComponent
2" buildDDComponent(CSAASUpplyOnlyUnitDef inputUnit) @ SoundComponent
2" buildbDComponent(CSAASUpplyReturnUnitDef inputUnit) @ SoundComponent
2" buildDEAComponent(CSAADUalPathURitDef inputUnit) @ SoundComponent
2" buildDEAComponent(CSAASUpplyExhaustUnitDef inputUnit) : SoundComponent
2" buildDEAComponent(CSAASUpplyReturnUnitDef inputUnit) : SoundComponent
2" buildDIComponent(CSAADUalPathURitDef inputUnit) @ SoundComponent
2" buildDIComponent(CSAASUpplyExhaustUnitDef inputUnit) : SoundComponent
4" buildDIComponent{CSAASupplyOnlyUnitDef inputUnit) : SoundComponent
4" builddIComponent(CSAASUpplyReturnUnitDef inputUnit) @ SoundComponent

(Figure 13 continued on next page)

Figure 13. IAcousticUnit Interface Class Details

»]|

25

4" buildDOAComponent{CSAADualPathUNitDef inputUnit) : SoundComponent

¥ buildDOAComponent{CSAASupplyExhaustUnitDef inputUnit) : SoundComponent
4" buildDOAComponent{CSAASUpplyOnlyUnitDef inputUnit) : SoundComponent
4" buildDOAComponent({CSAASUpplyReturnUnitDef inputUnit) : SoundComponent
4 BuildDualPathComponents{AcousticCalculationUnit calcUnit) : void

4" buildICComponent{CSAADualPathUnitDef inputUnit) : SoundComponent

4 buildICComponent({CSAASupplyExhaustUnitDef inputUnit) : SoundComponent
4" buildICComponent(CSAASupplyOnlyUnitDef inputUnit) : SoundComponent

¥ buildICComponent{CSAASupplyReturnUnitDef inputUnit) @ SoundComponent
4" BuildSingleSupplyExhaustComponents{AcousticCalculationUnit calcUnit) @ void
¥ BuildSingleSupplyOnlyComponents{acousticCalculationUnit calcUnit) @ void

4" BuildSingleSupplyReturnComponents{AcousticCalculationUnit calcUnit) : void
4" buildUEAComponent(CSAADualPathUnitDef inputUnit) : SoundComponent

4 buildUEAComponent{CSAASupplyExhaustUnitDef inputUnit) : SoundComponent
4" buildUEAComponent(CSAASupplyReturnUnitDef inputUnit) : SoundComponent
4 builduOAComponent(CSAADualPathUnitDef inputUnit) : SoundComponent

4" builduoAComponent{CSAASupplyExhaustUnitDef inputUnit) : SoundComponent
¥ builduOAComponent{CSAASupplyOnlyUnitDef inputUnit) @ SoundComponent
4" buildUOAComponent{CSAASUpplyReturnUnitDef inputUnit) : SoundComponent
Vv CSaaAcousticUnit{CSAAUNItDef inputUnit)

v CSaaacousticUnit{string inputUnitXml)

¥ GetCSAAReturnExhaustFanInUnit{CSAAFanRegionDef returnExhaustFanUnit) : CSAAFanInUnit
47 GetCSAASupplyFanInUnit(CSAAFanRegionDef supplyFanUnit) : CSAAFanInUnit
4% GetInputUnitFromiml(string xmiDefinition) : CSAAUnitDef

4¥ GetOperatingPoints() : List <FanOperatingPoint >

¥ GetPerformanceMapsandPoints() : List <FanPerformance >

¥ SetupDualPathUnit{CSAADualPathUnitDef inputUnit) : void

4 SetupSupplyExhaustFanUnit{CSAASUpplyExhaustUnitDef inputUnit) : void

4" SetupSupplyFanOnlyUnit{CSAASUpplyOnlyUnitDef inputUnit) : void

4" SetupSupplyReturnFanUnit{CSAASUpplyReturnUnitDef inputUnit) : void

¥ UnitConfigurationIsvalid{) : CalculationResult

4 validateDualPathUnit() : CalculationResult

v validateSupplyExhaustUnit() : CalculationResult

¥ validateSupplyOnlyUnit() : CalculationResult

47 validateSupplyReturnUnit() : CalculationResult

Figure 13. IAcousticUnit Interface Class Details

Most of the product specific classes including the CSAAAcousticUnit class need access to a
database which contains actual test data for the units. This data is used to make the acoustics
prediction calculations. Access to this data is provided using the data access object design
pattern. The DBInterface class serves as the interface layer between the acoustics library and the

acoustics data store. A detailed view of the DBInterface class can be seen in Figure 14 below.

26

ploa & (Juonpauucduado
<<32GPUN Buss ARdanieadan=1s1 ¢ (adAL3onpoidaueiy adA]ONpoidaur])IanpoldiodsazISIunIan
[Jeignop : {(dwodbau Juanyyjaoducissaibay)ieliguia] JJ20Ds52106a4aARP0PAY 113D
Jui : {Buuuasuaps Buuaiua)s Iojedlpulbal) JUIPIEIUS)ISIa
suoisuawigianua)s ¢ {(azisun 22130 ‘Yibua) YIBuaiadua|IS)SUDISUBLIQIaIUS|ISIET
<<JaQIRIUB|ISYYSD BULS> IRdanRAASN> ST | (WYSDA04RIRQ)RQIRIUS|ISIED
Buo : {p1 BuopunuIuediodpIdnoisuoissaiBayan
[Jaignop : {Ayojaa2ey a)gnop ‘Yibuaieuuou agnop ‘priaaus)s Jusanieaasionpaielauabayias
3AINDEIURUIOEdURS ¢ (PIaJuRwIDIad BUOPIYIAMEAINDSIUBWIDIS1ES
<<Blyuodyiediun Buiss iedanieaday=3s ¢ (adA13onpoidauely adi]1anpoldaue.])3anpoldiuniogsbiyuodyedias
<<uonraagbuadoy ‘Bunss aedanieadan=3s ¢ (Byuodabieyisiquey Byuodabieyisiquey ‘Byucouey Byuoduey ‘adilue) adAjgnsued ‘uopesotbuuadode uoneloibuuadoay ‘Byuodbuiadole BiyuodBuuadOlY)YYSII0dRIRqUOIRBgEuLEdOID
Buys ¢ (p1j2pow Buo|)plio4awen|3polIeD
Jaunypenuepued © (pIiapow Buo|)PIEpoWI048IN1IR NueIas
<<adiBuun ‘Buniss sedaneaian=1s ¢ (adA13anpoidausiy adA|3anpoidauei])anpoldiogsada) buiuias
[Jeignop : (Aynoj@a23ey ajgnop ‘Yibuaieuioy agnop ‘PraIua|s JUISaN|eASSOTUOISSUNIRS
[Jaignop : (dwoobas uanlyjaoduoissaibay)ieiiguia] §30055316243A30(N419D
3ZIS~ANYT O3uL ¢ (dwodpunos adA|jusuodwodpunos ‘prdnoissaibal Buojjuoissaibayiodazicpuegiiuanbaidias
<<dayd ‘Buniss Hedaneaian>1s ¢ (3dA130npoidauely adA 139Npoldauel] 1onpoidiodsadi | 1ag)41e0
ued : (pl BuopIyImuedID
adAued : (p1 Buo)prepoliodadi uedias
adiygnsued ! (p! Buojipriapolyiodadi |gnsuedias
ddo Juiogbuneiadouey ‘unuIue) JunUIURd)IUNUIURJioduoissalbayuedas
< 4030puyURd=1s ¢ (pIue) BuopIuE404sBUODI0I0WURIES
Joj0ppuyued | (praojopuey Buoprio4biuodioiopueL3as
adAaauqued : (pl BUO]PLIOOWURLI0adA | BAIQUE 1SS
<<Jaquedyys) ‘Buss edanieadan>1si | (32SUN B2SIUN)BZISIUNYYSII0SjaaURLIED
ued : (qyblaHAegURy UL ‘YIpIARLIGURY U “OIEYYIPIMIUEnIad Sjgnop ‘oeyieaweIgiuaniad S|gnop ‘Sape|gO4aquny Ul YIplaEuILol S|gnop “isjawelgieuiuou aignop ‘adAlgncue) adAignsued fIsinidejnueljuey Jainiejnuejued ‘SUENSPOLWUEY [SpolUed)uedian
[Jeignop : (yibuaieuonaieiap 2|gnop ‘asnyyigseHuey (0oq ‘dnossaziciun Jul ‘adeys adeygiaaua)s ‘uoidap UOIIBAQYRRY3e0ul)s ‘adAue) adAjgncued)sanieaaieiagien
JUNUIUEdyYSD ¢ (|[2g38|uIAiepuodas [ooq ‘asnyjiquey jooq ‘Byuodabieydsique) Byuodabieydsiqued ‘ams uopaagUIMsy ‘Biyuod Biyuoduey ‘Bzisun az153UN ‘PAOIOKWUR BuoIUNUIUEJYYSDIED
Buis @ ()bunycaiejguodauundyeb
23e35u0NI3uL0D | (Jajejsuoniauundyab
<<Blyuodpod ‘Buss dedanieadan=1s ¢ (adA]npoidaueiy adi]1npoidauei])3anpoldiodsblyuoojionias
[“Jeignop : {spuegwnu Jul ‘nsayyeodbal <juanlyyeoduoIssaibay > a|geiawnuI ARy 200199
<<adi)aoueuaynddy ‘Buiss dedanieadan=1s ¢ (adAlonpoidaue adA]onpoidaued |)pnpoldiodsada | aoueuapnddyian
[Jx<Byuodbuadoay ‘Bulyssaedaneaiay=3s ¢ (adALipnpoidauely adA |3onpolgauel])3anpoldiodsbiuodbuuadoagias
Buo| : (prdnosnssaibal Buo|)pIIUNUILEPaIRYIRSN0IYIaD
e1eq@ansnody : {juauodwod adi)juauodwodpunos ‘prdnossuoissalbal Buo))prdnoiniodeiegasnoiyias
(Jaaeyiequ1aq
ploA & {(Juoipauuodaso)y
SPOYIBn =
U0IIBUUEDEDS t uuoDgp A5
£IEQIRSN0IY | BIRQIISNOIL L

Spied B

uoissaibayued : {dwoopunos ad4]juauodwodpunos

2222202222222 22022222202222 2022202020202 0020209% 02

sse|D
2ley3uiga |

Figure 14. DBInterface Class Details

27

3.5 Design of the Acoustics Data Store

The process of calculation acoustic predictions for an air conditioning product depends on
using data from actual laboratory tests in order to model the acoustic effect of each component in
the unit. Several different types of data must be stored in a database including fan performance
data, sound regression data, acoustic appurtenance effect data, unit dimension data and unit
configuration data.

The previous Trane acoustic software engines relied on a single acoustics database. All of
the data for acoustic predictions was stored in a Microsoft® Access® file which was accessed by
the acoustics engine through a data provider. The data in this file was input haphazardly with
very little attention to any kind of database design principles. Data was added as needed often by
just adding a new table which would serve simply as a lookup table. Database logic was
unnecessarily duplicated across many similar tables. Many tables in the old acoustics database
have become obsolete and serve to bloat the database file which gets deployed with the old
acoustics library.

One goal of this project was to improve the database design for the acoustics library by
creating a well designed relational database that can easily be expanded for future acoustics
software projects. The ideal database design leverages the logic that is shared between the
various products and their data storage needs. The design for the database was updated as the
various project phases where completed. An E.R diagram for the database can be found in
Appendix C.

The old database was analyzed in order to find places where the database logic was
redundant. For instance, there were multiple Fan tables within the previous database. Each of
these tables supported one of the various acoustic programs that needed fan data. However, most
of the properties of a fan are not related to a specific product line and there are instances in
which having a single fan table would be beneficial. The new database was designed by
extracting the general properties of all fans and created a single Fan table where all the fans used
in Trane products can be found. If additional product related information is a needed for a given
fan this data will be stored in a product specific table which might have a foreign key

relationship with the primary fan table.

28

Another way that the database design was improved was by using proper relationships
between tables in order to avoid unnecessary data duplication. For instance, rather than
duplicating fan information in the Unit table which needs some information about fans, the data
would be stored in the fan table and a foreign key relationship would be used in the Unit table to
access it when needed. Another example of refactoring that was done is with the regression data
which is now stored in a single regression data table rather than several program specific tables.
The various product lines may have a product specific UnitConfiguration table which allows
some number of unit configuration properties to be used as a composite key for identifying a
unique regression data set. These product specific unit configuration tables have a reference to
the regression data table through a foreign key relationship. In a similar manner the unit
configuration tables have a foreign key relationship with fan performance tables.

The CSAAFanInUnit table is the single product specific unit configuration table for the
CSAA implementation of the acoustics library. The rows of this table uniquely identify a CSAA
unit in a specific configuration that is offered by Trane. Each of these configurations is

associated with a set of regression data and a set of performance data.

29

3.6 Design of the Multiproduct Acoustics Prediction Program GUI

A basic GUI program was designed as a front end to the acoustics calculation library in
order to allow users to graphically configure units and then calculate and view the acoustic
performance data. The GUI design was based largely off of previous Trane acoustics GUI
programs and was designed with input from several different groups of customers in order to
allow for easy user friendly acoustic calculations to be performed.

The goal of the GUI design was to create a GUI program that would work for all future

Trane products which need an acoustic prediction program. In order to fulfill this need a generic

two panel layout was designed, where the upper panel contains a flexible grid of user controls

pertinent to the product being predicted and the lower panel contains output display controls

which are used to display the output and give the user feedback on the acoustic prediction.
The GUI design also provides a menu in order to allow users to load and save acoustic

predictions. Images of the final GUI design can be seen in Appendix D.

30

4 Implementation

The acoustics library and acoustics prediction GUI were implemented in iterative steps
according to the selected iterative life cycle model. These iterative implementation steps were
completed during the time period from August 2009 - April 2010.

The initial phase of implementation included building the core library classes which serve
as the generic engine of the library. A large amount of time was spent carefully implementing
these core classes since they are the "moving parts" of the acoustics library and any bugs in the
core classes could have a major consequence throughout the entire acoustics library.

After building the core classes of the acoustics library, a small test implementation was built
for a simple fictional Trane product. This was done as a "proof of concept" in order to test the
design of the core library with an actual product implementation. A set of unit tests was designed
and documented using this test implementation and was used to prove the correctness of the core
library’s design.

After finishing the core library and determining that it was correctly designed and
implemented, the third phase of implementation for the CSAA product acoustics components
was begun. These components were built in several phases beginning with the complex fan
regression classes and then moving onto the simpler acoustic appurtenances.

The implementation of the acoustics database and the database interface layer were
completed in parallel with the CSAA components. When data was needed to the test the CSAA
component implementation it was added to the database and the proper functionality was added
to the data object access layer. The new database was implemented as a Microsoft® SQL Server
CE® database file which is a lightweight relational database solution. Part of implementing the
acoustics database included designing and implementing a Microsoft® Excel® based tool that is
used by the acoustics engineers to enter laboratory test data. This tool uses the data entered by
acoustics engineers in order to generate a SQL build script for the acoustics library database.

Implementation of the acoustics prediction GUI program was completed as the final phase
of the project. The GUI was implemented using the Microsoft® .Net Windows Forms library.
Saving this portion of the project for last didn't allow for as much time as was desired for
implementing the GUI. While the basic required functionality was fully implemented, many of

the requested features ("bells and whistles") could not be implemented due to time restriction.

31

Version 1.0 of the acoustics library was analyzed using the NDepend code metrics and
analysis tool. The core acoustics library contains 7308 lines of code across 73 classes containing
770 methods. The GUI program contains 6504 lines of code across 15 classes containing 770
methods. The initial version of the database contains 25 tables. The database interface class
contains 35 database access methods. This project was implemented in a little under a year from

July 2009 to May 2010.

32

5 Testing

Like many software projects the acoustics library is a complex system that requires robust
testing on various levels and at various different stages in the development cycle. Rigorous
testing throughout the duration of the development process prevents major bugs from being built
into foundational parts of the system. Such bugs can have cascading effects that become very
expensive to update.

Unit testing was done on each part of the acoustics library as it was implemented. The NUnit
testing framework was utilized in order build a unit testing test suite that could be run as each
requirement was implemented. Over 100 unit tests were written for testing the core library
functionality. Integration testing was also done at end of each major phase in which the newly
implemented features would be combined with the existing code. Several test cases were created
which were designed to test the functionalities describe in the use case requirements. No formal
coverage calculations were employed for the integration testing process as not enough time was
available to be dedicated to the meticulous design of an integration test plan. Some initial system
testing was completed by the developer during the last couple months of the project. A small set
of system tests were set up using the NUnit framework in order test the system-wide
functionality of the acoustics library. Additional system testing was done through the acoustics
prediction GUI program.

Formal system testing and regression testing will be completed by other members of the
Trane global modeling team. A dedicated quality assurance team exists within the group and has
been assigned to develop and execute a formal test plan for the acoustics library software. End
user testing is routinely used at Trane by rolling out new builds of software systems to selected
groups of expert users who have certain real life use cases that they perform on the software.

This method will also be used for future testing of the acoustics library.

33

6 Deployment

Initially the Trane acoustics library will support and be deployed with two applications. The
first is the acoustics prediction GUI program that was developed as a part of this project. This
program will be tested and deployed through a Trane engineering tools intranet website that
contains similar internal libraries and software tools used by Trane engineers. Trane engineers
will be able to download a Windows® installation package for the GUI program that will allow
them to install and run the program. This deployment will happen a few months after the
conclusion of the project development and testing phases.

Currently, the Trane acoustics prediction GUI program is being deployed over a LAN to a
small group of users for GUI user testing.

The second application that the Trane acoustics library will support is the TOPSS
application. The acoustics library will be deployed with TOPSS on an integral application server.
The deployment of the acoustics library in TOPSS will be done in parallel with the deployment
of the acoustics prediction GUI program.

After these two deployments are complete in early summer of 2010, the acoustics library
will be used around 10,000 times a month by software that serves Trane engineers and sales
people who depend on the functionality provided by the acoustics library for their daily work
tasks.

34

7 Limitations

All of the requirements outline in the project proposal and initial requirements document
where implemented in the project. However, there were many feature requests made during the
lifetime of the software development cycle that were outside of the scope this project but that
would greatly improve the Trane acoustics library and prediction GUI program and will be
implemented in the future.

During the course of the project, the data deliverable schedule slipped several times due to
competing requests for the Trane engineers who are responsible for producing the data used by
the acoustics library. Because of these changes not every size/option originally planned for the
CSAA prediction library is currently available in the library. These sizes/options will be rolled
into future versions of the acoustics library as the data is made available.

Many basic feature requests were made for the acoustics prediction GUI program which did
not fit into the scope of this project and have not yet been implemented. Some of these requests

include the following:

Saving prediction data to a user’s hard-drive in a format that can later be loaded back into

the program for analysis.

Making predictions for multiple fan units while removing the acoustic effect of one of the
fans. This is a technique that is sometimes used to model the acoustic effect of certain
custom unit configurations which cannot be modeled with the standard configuration

options.

Designing a graphical output for the GUI which displays a diagram of the physical layout
of the unit being predicted. This provides less knowledgeable users with a sanity check
that the unit inputs they have selected actually describe the unit configuration that is

desired.

35

Setting up the system to handle "batch" runs where a file containing a list of acoustics
predictions would be loaded and processed, producing a file listing the acoustic results

for all of the units in the batch run file.

Building a robust help system that gives descriptions of each of the input options and
instructions on how to decide which option to select. This would greatly improve the
learning curve for performing acoustic predictions which is an often confusing and error

prone task for beginners.

36

8 Continuing Work

The acoustics prediction library and acoustics prediction GUI program will be an ongoing
project on Trane for years to come as it serves an important and immediate business need. The
next stage of development will include adding the remaining data for all sizes/options of the
CSAA units. This will be done as data becomes available from the acoustic engineers.

The GUI features requests described in the limitations section will also be implemented in
future versions of the acoustics prediction GUI program. The ability to save and load predictions
will be high priority as well as the addition of a help system.

The acoustics library was designed with both re-use and extensibility in mind. Requests
have already been made to add several additional Trane products to the acoustics library and
GUI program. The design of the acoustics library should make this a very straight-forward, low
risk task.

In addition to expanding the number and types of acoustic predictions that can be done with
the acoustics library, future work will include continued development towards the bigger picture
goal of developing an acoustics software system that has the capability to automate the addition
of new products and data without the need for a programmer to update the software. This project
made significant steps towards that goal by creating an acoustics prediction core library that can
be applied to any product with a minimal amount of software development work. However, in
order to achieve this bigger goal several tools will need to be developed which automate the

process of adding new products to the existing system.

37

9 Conclusion

This manuscript described in detail the development of a software system designed to allow
users to calculate the acoustic performance of a Trane air conditioning product. This system was
based on existing Trane acoustics software systems but has many significant improvements over
the existing systems which were made through a rigorous re-engineering effort which applied
quality software engineering principles [4]. This re-engineering effort resulted in a system that is
more flexible, easier to extend and cheaper to maintain. The design of new acoustics library will
allow for new Trane products to be implemented in a well defined manner by building on top of
the existing core acoustics library. This should reduce development time and decrease the
number of defects in new versions of the software. In addition the Acoustics Calculation
Algorithm was documented in a paper that describes the vision for the generic acoustics library.
This paper defines the model that was implemented in the acoustics prediction library.

The end result of this software development effort is a new Trane acoustics prediction
library and GUI program which have the capability of accurately calculating acoustic predictions
based on acoustic lab data for the Trane CSAA product line. This software system will be
deployed and actively used by over 100 Trane engineers and sales people in order to help
customers with acoustic issues, give acoustic consultation to clients and make sales for
acoustically sensitive projects. The acoustics library software will be run over 10,000 times a
month at Trane.

In addition to meeting the immediate needs of providing a means of getting acoustic
performance predictions for the CSAA unit, this software library lays the foundational
framework for a robust, flexible and generic acoustics software system that will be much easier,

faster and cheaper to maintain than the current existing acoustics software.

38

10 Bibliography

th
[1] I. Sommerville, Software Engineering 6 Ed., Addison Wesley, 2001
[2] A.M. Davis, Software Requirements Analysis and Specification, Prentice Hall, 1990.

[3] Computer Society/Software and Systems Engineering Standards Committee, “Recommended
Practice for Software Requirements Specifications”, Std. 830-1998, IEEE Standards Association,
Piscataway, NJ, September 16, 1997

[4] Hans van Vliet, Software Engineering: Principles and Practice, John Wiley & Sons, Ltd., 2000

[5] Microsoft, C# Reference, msdn.microsoft.com, http://msdn.microsoft.com/en-
us/library/618ayhy6.aspx, 2010.

[6] Andrew Troelsen, Pro C# 2008 and the .NET 3.5 Platform 4" Edition, Apress, 2007

[7] Charles Petzold, Programming Microsoft Windows Forms (Pro Developer), Microsoft Press,
2005

[8] ASHRAE Research Group, 2004 ASHRAE Handbook: HVAC Systems and Equipment, American

Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004

[9] Travis Fischer, The Acoustic Calculation Algorithm, June 30" 2009, Revision 1

39

11 Appendices

Appendix A. Acoustics Library Core Detailed Class Diagrams

Figure 15. Acoustics Library Core Classes

|’ MultiproductAcousticEngine
| Static Class

=) Members

¥ CalculateUnitacoustics{CSAAUNtDef csaaUnitDef) : CalculationResult
Vv CalculateUnitacoustics{string csaalnitDefxml) : CalculationResult

R ———

(R S ——

- - - - - - - - - - - - - - -

(calculationResult
Class

(=) Members
47 calcResult : CalcResults
5 CalcResult { get; set; } : CalcResults
¥ calculationDescription @ string
5 CalculationDescription { get; set; } : string
9% calculationMotes : string
2 Calculationhotes { get; set; } : string
Vv CalculationResult()
47 debugDescription : string
'_‘? DebugDescription { get; set; } : string
7 Lwvalues { get; set; } : List<SoundSpectrum:>
47 operatingPoints : List <FanOperatingPoint >
f OperatingPoints { get; set; } : List<FanOperatingPoint >
9% resultDescription : string
5 ResultDescription { get; set; } : string
47 soundValues : List<SoundSpectrum>

»)

’ = =
| AcousticsEngine
| Static Class

: = Members
I ¥ CalculateUnitacoustics{IAcousticUnit acousticUnit) : CalculationResult
\ 4" ValidateOperatingConditions{IAcousticUnit acousticUnit) : CalculationResult

(P S —

- - - - - - - - - - - - - - - - -

| IAcousticUnit
Interface

(= Members
W BuldCalcwiationting(} AcousticCalcuiationtmit
W GetPerformanceMapsAndPoints(} : List<FanPerformance>
Vv Uni¥ConfigurationfsValicl) : CalcuwlationResult

»)

[FanPerformance
Class

(=) Members
W FanPerformance(IFanPerformanceMapped performanceMapper, FanOperatingPoint opPoint)
47 opPoint : FanOperatingPoint
47 performanceMapper : IFanPerformanceMapped
@ PerformancePointIsyalid() : CalculationResult

»)

(IFanPerformanceMapped
Interface

(=) Members
W IsFanQperatingPointValiciFanOperatingPoint operatingPoint) : CalculationResult

»)

40

Figure 15. Acoustics Library Core Classes

| AcousticCalculationUnit A
Class

=) Members

¥ AcousticCalculationUnit)
Vv AcousticCalculationUnit{Dictionary <SoundComponentType, SoundComponent> lwComponents, List<FanOperatingPoint> fanOpPaint)
Vv AddSoundComponentwithKey(SoundComponent value, SoundComponentType key) @ void
Vv CalculatePredictiond) : CalculationResult
4¥ fanOperatingPoints : List <FanOperatingPoint >
j} FanOperatingPoints { get; set; } : List<FanOperatingPoint >
Vv GetSoundComponentForKey{SoundComponentType key) : SoundComponent
¥ soundComponents : Dictionary <SoundComponentType, SoundComponent
j} SoundComponents { get; set; } : Dictionary <SoundComponentType, SoundComponent =
47 unitCalculationDescription : string
j} UnitCalculationDescription { get; } i string

| SoundComponent A
Class

=) Members
¥ CalculateComponent() : List <SoundSpectrum>=

¥ description : string
Description { get; set; } : string
EvaluateAcousticContributor{AcousticContributor contributor, SoundSpectrum sound¥alues) : List<SoundSpectrum=
evaluationSummary : string
frequencyBandSize : FREQ_BAND_SIZE
GetStringDescriptionOf Component() : string
rootContributors : List <AcousticContributor >
RootContributors { get; set; } : List<AcousticContributor =
SoundComponent{FREQ_BAND_SIZE freqBandSize, string description)
SoundComponent(List <AcousticContributor > rootContributors, FREQ_BAND_SIZE freqBandSize, string description)

& ¢lif% &% %

" Acoustictontributor)
Abstract Class

=) Members

AcousticContributor(FREQ_BAND_SIZE freqBandSize)
AcousticContributor(FREQ_BAND_SIZE freqBandSize, List <AcousticContributor> children)
AddChild{AcousticContributor child) : void
ApplyContribution{SoundSpectrum soundSpectrum) List<SoundSpectrum>
childrenContributors : List <AcousticContributor >

frequencyBandSize : FREQ_BAND_SIZE

FrequencyBandSize { get; set; } : FREQ_BAND_SIZE

GetChildatIndex{int i) : AcousticContributor

GetStringDescriptionOftffect(} : string

HasChildrend) : bool

MumberOfBands() : int

MumberOFChildren() : int

SetChildatIndex{AcousticContributor child, int i) : void

66660 6%% ¢ 66 ¢

! SoundAppurtenance 2
Abstract Class
- AcousticContributor

=l Members

5% ApplyAppurtenance(SoundSpectrum IwSpectrum) : List <SoundSpectrum>

Vv ApplyContribution{SoundSpectrum lwSpectrum) : List<SoundSpectrum>

& canGetAppurtenanceSpectraf} . bool

Y getAppurtenanceSpectraf} ; List<SoundSpectrum>

Vv GetStringDescriptionOfEffect() : string

¥ SoundAppurtenance{FREQ_BAND_SIZE freqBandSize)

¥ SoundAppurtenance(FREQ_BAND_SIZE freqBandSize, List <AcousticContributor> children)

. SoundSource A
Abstract Class
- AcousticContributce

=l Members
Vv ApplyContribution{SoundSpectrum IwSpectrum) : List<SoundSpectrum>
" ApplySource{SoundSpectrum inSpectrum) : List<SoundSpectrum >
canGetSourceSpectrum(} : ool
getSourceSpectrum(} : SoundSpectrum
GetStringDescriptionOFEFfect() : string
SoundSource{FREQ_BAND_SIZE freqBandSize)
SoundSource{FREQ_BAND_SIZE freqBandSize, List<acousticContributor> children)

LR SR o o ¢

Appendix B. Unit Definition Detailed Class Diagrams

Figure 16. Unit Definition Detailed Class Diagrams

{ Unitbef @
Abstract Class

= Fields
47 unitProductType : TraneProductType
= Properties
“5F UnitProductType { get; set; } : TraneProductType
(= Methods
© GetUnitDefAsXmiString(} : string
¥ UnitDef(TraneProductType product)

LSAAUNItDef
Abstract Class
b UnitDef

= Fields
¥ dischargeairDef : Dischargeair
47 energyWheelConfig : Energy'WheelConfig
27 exhaustAirDef : Exhaustair
47 hasCDQ : bool
4% multizone : int
47 outdoorairDef : Outdoorair
7 returnirDef : Returnair
¥ secondaryDischargeairDef : Dischargedir
47 unitPathConfig : UnitPathConfig
(= Properties
5 DischargeAirDef { get; set; } : Dischargedir
5 EnergyWheelConfig { get; set; } : EnergyWheelConfig
57 ExhaustAirDef { get; set; } : Exhaustair
' HasCDQ { get; set; } : bool
“F Multizone { get; set; } tint
57 OutdoorairDef { get; set; } : Outdoorair
7' ReturnairDef { get; set; } : Returnair
' SecondaryDischargedirDef { get; set; } : Dischargedir
5 UnitPathConfig { get; set; } : UnitPathConfig
(= Methods
& CSAAUNitDef(UnitPathConfig unitPathConfig)
@ CSAAUNItDef{UnitPathConfig unitPathConfig, EnergyWheelConfig energyWheelConfig, bool hasCDQ, int multiZone, Returnir returnairDef, Exhaustair exhaustairDef, OutdoorAir outdoorAirDef, Dischargedir dischargeirDef)
@ IUnitComplete(} : CalculationResult

| CSAASupplyReturnUnitDef
Class
= CSAAUNItDS

= Fields

outdoorairToSupplyFan : CSAARegionDef
returnairToReturnFan : CSAARegionDef
returnFanToExhaustair : CSAARegionDef
returnFanUnit : CSAAFanRegionDef
supplyFanToDischargeair : CSAARegionDef
supplyFanUnit : CSAAFanRegionDef

3 RN

i

perties
? OutdoorairToSupplyFan { get; set; } : CSAARegionDef
:“? ReturnairToReturnFan { get; set; } : CSAARegionDef
:“F ReturnFanToExhaustair { get; set; } : CSAARegionDef
:“F ReturnFanUnit { get; set; } : CSAAFanRegionDef
:“F SupplyFanToDischargeair { get; set; } : CSAARegionDef
5 SupplyFanUnit { get; set; } : CSAAFanRegionDef
= Methods
Vv CSAASupplyReturnUnitDef()
¥ CSAASupplyReturnUnitDef(bool hasCDQ, int multiZone, CSAAFanRegionDef supplyFanUnit, CSAAFanRegionDef returnFanUnit, CSAARegionDef returnairToReturnFan,
Vv GetUnitDefAasxmiString() : string
W IsUnitComplete() : CalculationResult

42

(csAASupplyExhaustUnitDef
Class
=+ CSasURitDe

=) Fields
exhaustFanToExhaustair : CSAARegionDef
exhaustFanUnit : CSAAFanRegionDef
outdoorairToSupplyFan : CSAARegionDef
returnAirToExhaustFan : CSAARegionDef
supplyFanToDischargedir : CSAARegionDef
supplyFanUnit : CSAAFanRegionDef
Properties
' ExhaustFanToExhaustair { get; set; } : CSAARegionDef
7 outdoorairToSupplyFan { get; set; + : CSAARegionDef
7 ReturnairToExhaustFan { get; set; + : CSAARegionDef
5 ReturnFanUnit { get; set; } : CSAAFanRegionDef
“F SupplyFanToDischargedir { get; set; } : CSAARegionDef
ﬁ SupplyFanUnit { get; set; } : CSAAFanRegionDef
(=l Methods
V¥ CSaASupplyExhaustUnitDef()
Vv CSaaSupplyExhaustUnitDef(bool hasCDQ, int multiZone, CSAAFanRegionDef supplyFanUnit, CSAAFanRegionDef exhaustFanUnit, CSAARegionDef inletAirToExhaustFan,
¥ GetUnitDefasxmiString() : string
© IsUnitComplete() : CalculationResult

L%

0]

| CSAASupplyOnlyUnitDef
Class
= CSAAUNItDeF

=) Fields
47 returnAirToSupplyFan : CSAARegionDef
47 supplyFanToDischargeair : CSAARegionDef
»:59 supplyFanUnitDef : CSAAFanRegionDef
Properties
“F ReturnairToSupplyFan { get; set; } : CSAARegionDef
“F SupplyFanToDischargedir { get; set; } : CSAARegionDef
“F supplyFanUnit { get; set; } : CSAAFanRegionDef
(= Methods
¥ CSAASupplyOnlyUnitDef()
¥ CS5AASupplyOnlyUnitDef(bool hasCDQ, int multiZone, CSAAFanRegionDef supplyFanUnit, CSAARegionDef returndirToSupplyFan, CSAARegionDef supplyFanToDischargeair, F
© GetUnitDefasXmlString() : string
@ IsUnitComplete() : CalculationResult

]

43

(csaaFanRegionDef
Class

[= Fields
47 Fan: CSAAFanDef
4? FanConfig : FanConfig
47 FanDiffuser : bool
47 FfanDischargeConfig : FanDischargeConfig
& Fanlining : LiningType
47 operatingPoint : OperatingPointDef
47 secondarylnletBell : bool
4? swirlDirection : AirSwirlDirection
47 unitSize : UnitSize
Properties
ﬁ Fan { get; set; } : CSAAFanDef
' FanConfig { get; set; } : FanConfig
ﬁ FanDiffuser { get; set; } : bool
f FanDischargeConfig { get; set; } : FanDischargeConfig
2 FanLining { get; set; } : LiningType
%7 OperatingPoint { get; set; } : OperatingPointDef
%7 SecondaryInletBell { get; set; } : bool
7 SwirlDirection { get; set; } : AirSwirlDirection
1 UnitSize { get; set; } : UnitSize
= Methods
¥ CSAAFanRegionDef()

[

¥ CSAAFanRegionDef(UnitSize unitSize, CSAAFanDef fan, OperatingPointDef operatingPoint, FanConfig fFanConfig, AirSwirlDirection swirlDirection, |

»)

(csaARegionDef
Class

= Fields
47 coils : List<CoilConfig
2 filters : List<Filter>
2 liningSections : List<LiningDef >
sectionLocation : RegionLocation
47 silencer : CSAASilencerDef
47 totallength : double
Properties
2 Coils { get; set; } : List<CoilConfig>
5 Filters { get; set; } : List<Filter>
7 LiningSections { get; set; } : List<LiningDef>
' SectionLocation { get; set; } : RegionLocation
7 Silencer { get; set; } : CSAASilencerDef
7 Totallength { get; set; } : double
(= Methods
¥ addCoil{CailConfig config) : void
AddFilter{Filter filterType) : void
AddLiningSection{double length, LiningType liningType) : void
CSAARegionDef{)
CSAARegionDef{LiningDef[] liningSections, CoilConfig[] coils, Filter[] filters, CSAASilencerDef silencer)
CSAARegionDef{RegionLocation sectionLocation)

ol

L SR S O R ¢

44

Appendix C. Acoustics Library Database Design Diagrams

Diagram

Figure 17. Database Design E.R.

Figure 17.1 Database Design E.R. Diagram

PerformanceCurve
1d
PerformanceValue g :
@ Performancecurveld FK__Performan__Perfo__21A0F6C4 NumberOFfPoints
ConstantRPM a
? Point onstan! FK__Fan__BareF:
airflow Description
HorsePower
StaticPressure
PercentWWideOpen
Description
RegressionLimit
9 RegressionSourceld
MaxRPM
MinRPM FK__FanPerfor__Petfo__247D636F
MaxBHP
MinBHP
MaxWo
MinWo
MaxCFM
FK__CSAAFanIn_PerfC__369C13AA MinCFM @
MaxTSP FanPerformanceLimit K
MinTSP @ PerformanceCurveld
MaxRPM
MaxHP
MinPerO
CSAAFanInUnit
1d
¢ FanMotorConfigld
) ko=
§ Unitsize FK__CSAAFanin_FanMo_ 35A7EF71
@ AspectRatio o FK_
¢ FanUnitConfig FanMotorConfig
9 SwirlDirection d
9 SecondarylnletBell @ Fanld
HasTestedPerfData @ Motortd
PerfCurveld @ DriveType oo
HasAcousticData
i Description
escription
oo
FK__CSAAFanInUni_Id__34B3CB38
4 FK_FanRegres_IIn__3E3D3572
FanInUnit
? RegressionGroup FK__FanRegres_Regre
Product % d
Description RatedFaninUnitld
MaxRPM
FK_ Regressio_Rated__3A6CA48E o
MinRPM
RatedFanDiameter
RatedFanLining
Description

FK__Reqressio__Reqgre__4.

45

Fan
PerformanceCurve -
d Description
W d
MNumberOfPoints
o> ConstantRPM ¢ FanModelld FK__Fan__FanModel
[FO— FK__Fan__BareFanPerf __2942188C PhysicalDiameter [
Description "
¥ MominalDiameter
Physicalwidth
P % Nominalwidth
¥ NumberOfBlades
@ PercentDiameterRatio
% PercentWwidthRatio
it @ FanArrayWidth
d ¥ FanarrayHeight
HasTestedData
FK__FanPerfor__Perfo__247D636F BareFanPerfCurveld
TestedBareFanId
BareFanLimitsId
. . O e
FanPerformanceLimit FK__Fan__BareFanLim__2A363CCS
® PerformanceCurveld
MaxRPM
MaxHP
MinPerwo
anMo__35A7EF71
0 FK__FanMotorC__Fanld__2E06CDAY
FanMotorConfig
d
¥ Fanld
? Motorld
@ DriveType o
Description
FK__Reqgressio__Array__46D278"
e+ FanRegressionSource
FK__FanRegres__IIn__3E3D3572 1d
® FanInUnitld
RegressionGroupld
(1 Description
RegressionGroup FK_FanReares_Regre_3F3159AB P
%
RatedFanInUnitld
=
e MaxRPM
MinRPM
RatedFanDiameter -
Rated RegressionDataSet
te Li
atedrantining RegressionGroupld o
Description
Component
?
FK__Regressio__Reagre__43F60ECE NumberOfBands
Description

Figure 17.2

Database Design E.R. Diagram

46

Fan
Description
d

<@

FanModelld FK__Fan__FanModelld__284DF453
o

FanModel

d

Name
Manufacturer

2188C PhysicalDiameter [

«a

NominalDiameter
Physicalwidth
Norminalwidth
NumberOfBlades
PercentDiameterRatio
PercentWidthRatio
FanArrayWidth
FanarrayHeight
HasTestedData
BareFanPerfCurveld
TestedBareFanld

D0 DD 0D

BareFanLimitsId

FanLimi__2A363CCS

_Fanld__2E06CDAS

FK__Regressio__Array__46D27B73

—e+ FanRegressionSource
1d

® FanInUnitld
RegressionGroupld

—g Description

RegressionDataSet
— RegressionGroupld

Type
SubType

—d

Component
%
NumberOfgands

Description

RegressionCoefficients

@ Arrayld

® RegressionTerm
FreqS0Hz
Freq63Hz
Freq80Hz
Freq100Hz
Freq12SHz
Freq160Hz
Freq200Hz
Freq2S0Hz
Freq315Hz
Freq400Hz
FreqS00Hz
Freq630Hz
Freq800Hz
Freq1000Hz
Freq1250Hz
Freq1600Hz
Freq2000Hz
Freq2S00Hz
Freq3150Hz
Freq4000Hz
FreqS000Hz
Freq6300Hz
Freq8000Hz
Freq10000Hz

Figure 17.3 Database Design E.R. Diagram

47

SilencerId

? Id
RectSilRegeneratedNoise F_RectSiRo_Slen._542C7691 FrequencyNumber Rscst'lSi |I'ILSEI‘“0"L055
z zi:;:idength Lining FK_Rectsiln_Slen_S15009€5 | o Nljr:;:mngth
@ Facevelocity @ Facevelocity
Freq63Hz Freq63Hz
Freq125Hz Freql25Hz
Freq250Hz Freq2S0Hz
FreqS00Hz FreqS00Hz
Freq1000Hz Freq1000Hz
Freq2000Hz Freq2000Hz
Freq4000Hz Freq4000Hz
Freq8000Hz Freq8000Hz
UnitPathConfig ProductLiningType AppurtenanceEffectValues ||DerateValues
@ TraneProductType @ TraneProductType % Id ® Derateld
® Config @ LiningType Product FanType
UnitPathDescription LiningTypeDescription MNumberOfBands Direction
ComboOrder ComboOrder FreqS0Hz Shape
InterfaceDisplayGroup Freq63Hz UnitSizeGroup
SilencerDimensions Freq8Hiz Nominall ength
® Unitsize AirOpeningOption Freql00Hz Diffuser
Width @ TraneProductType Freq125Hz Freqé3Hz
Height % AirOpeninglocation Freq160Hz Freql25Hz
LengthForThreeFoot § FanConfiguration Freq200Hz Freq2soHz
LengthForFiveFoot @ FanDischargeCanfig FreqzstHz FreqS0oHz
@ AirOpeningType Freq315Hz Freq1000Hz
TypeComboOrder Freq400Hz Freq2000Hz
ProductUnitSize TypeDescription FreqS00Hz Freq4000Hz
@ TraneProductType @ Direction Freq630Hz Freqs000Hz
® UnitSize Description Freq800Hz Description
UnitSizeDescription NumberOfOpenings Freq1000Hz
ComboOrder DirectionComboOrder Freql250Hz
InterfaceDisplayGroup Freq1600Hz
Freq2000Hz
7 ProductAppurtenanceType Freqzs00Hz
ProductSilencerType 9 TraneProductType Freq3150Hz
@ TraneProductType @ AppurtenanceType Freqd000Hz
1 F.anSubtype % AppurtenanceOptionl FreqS000Hz
ff§ SlencerType AppurtenanceOption2 Freq6300Hz
%, SlencerShape AppurtenanceDescription Freq8000Hz
% SilencerLining ComboOrder Freql0000Hz
% SiencerLengthInches InterfaceDisplayGroup Description
Description
ComboOrder

Figure 17.4 Database Design E.R. Diagram

Appendix D. Final GUI Design Screenshots

48

il Multi-product Acoustic Engine

File Edit Product Tools Help

Main Menu | =New ‘

Welcome to the Trane Multi-product Acoustic Engine Prediction Program.

Begin an acoustic prediction task by taking one of the following actions:

Create a New Acoustics Job.
An acoustic job is a collection of prediction calculations.

B

Open an Existing Acoustics Job.

Create a New Acoustic Prediction Calculation.
An acoustic prediction calculation allows you to calculate the sound power generated by a Trane product.

[

} Open an Existing Acoustic Prediction Calculation.

% TRANE'

Ready Current Job: none

Figure 18. Welcome Screen Screenshot

49

EEX

s Create a New Acoustics Job

LR 108_o:55 AM_04/13/2010 |

Author: ’Anonymous User

Description:

[Create] [Cancel]

Figure 19. Create Acoustic Job Dialog Screenshot

EBEX

lily New Prediction Calculation

Instructions. instructions. instructions, instructions...

Trane Product: ’CSAA

Prediction Title: IPrediction_l
Author: |

Description:

[Create] [Cancel]

Figure 20. Create Acoustic Prediction Dialog Screenshot

50

iy Multi-product Acoustic Engine

File Edit Product Tools Help

| MainMenu; Prediction_L ‘~New |

CSAA Performance Climate Changer

T

Unit Path Configuration I

[Calculate

] [Clear Form] [(opvPredlmon] [

Close

130ctave ||Fuldctave || & R/ 8 3 R 2 8 & 2 &8 & &8
e o« o e o v o e o

Frequency Band (Hz)

0szZ1

00SZ

0sie

§

00£9

AoL

Operating Point
CFM

TSP

RPM

BHP

X¥WO0

Efficiency

Ready Current Job: JOB_9:55 AM_04/13/2010

Figure 21. Initial CSAA Prediction Interface Screenshot

51

il Multi-product Acoustic Engine

B

File Edit Product Tools Help
| Main Menu] Prediction_1 |~New
CSAA Performance Climate Changer Dischargekircamponeml I 2 |0 Dis(hargesilencerl | ?
Unit Path Configuration [sl.pp.‘;anomvum. v‘ OutduurAirCnmpnneml VI > o Returnsilencer:
Al I I ? IMulti-Ze Il‘l IMultiz VI ?
CDQ Wheel D Return Air Component v Multi-Zone o Multizone ? I
Supply Fan in Unit
Fanto Return Air Region
FanSection LiningI vI ? Appurt.
List "
Density Factor ?
l Calculate] [Clear Form][CopvPredlaion] [Close J
ol - o W R W a o e Operating Point
glale|z|nlz|2 Blelele glglep 288 st 88 8 s

S|®|e|8|8|8[=|8|=|8|88(2|8|8|8|2(5(28|8|8|82 5| [crm

TSP

RPM

BHP

Frequency Band (Hz) X¥0

Efficiency

Ready Current Job: JOB_9:55 AM_04/13/2010

Figure 22. Supply Fan Only Prediction Interface Screenshot

52

iy Mult

File

roduct Acoustic Engine

Edit Product Tools Help

Main Menu | Prediction_L | -ew |

CSAA Performance Climate Changer

Unit Path Configuration |Supply Fan Only Unit v

2 Fanto Return Air Region

cpawheel []

100
2 Parf.

50
Solid

Supply Fan in Unit

Supply Fan UnitSize | 3

I

Supply Fan

Outdoor Air Component

Air OpeningDirection

Air OpeningSize

v

Fan Discharge Section | HorizontalSection

FanSection Lining | Mo Lining v

Return Air Component
Air OpeningDirection

Air OpeningSize 75 3

Appurt. Fitter Coil
? List Bag Sorl0-row
2 Appurtenance | Coil N
Type |8 orl0=row v

Selected LiningLength 50.00 | in.
?

Discharge Silencer

I

[] piffuser

CF1

L

Density Factor

Fanto Discharge Air Region

ReturnSiIencerl

Total LiningLength

56
No

ng

Selected LiningLength

64.00 & | in.

Multi-Zone I Mo Multizone

~=)]

Appurt. Coil Coil
List do16 10w Sorl0-row
[Calculate] I Clear Form l [Copy Prediction] [Close

ale| el =] =] =|m|mn
2 R 2 3 a
S|l®|®S(a|8|8[&

2
a

28 8 8
S W 98
&| 8|88

$

0001
0sZ1
0091
0002
00SZ
0sie
000S
00£9
0008

Frequency Band (Hz)

oL

Operating Point
CFM

TSP

RPM

BHP

X¥WO0

Ready Current Job: JOB_9:55 AM_04/13{2010

Figure 23. Single Fan Unit Fully Configured Screenshot

53

by Multi-product Acoustic Engine

File Edit Product Tools Help
Main Menu | Prediction 1 | -new |
CSAA Performance Climate Changer Dischargs Air Component | Ductzd Dischargs v Fanto Return Air Region
. o — Total LiningLength 150.00 3 |in.
Unit Path Configuration Air OpeningDirection |Side/Bottom/Top v — =
2 Pert. I Solid
EOUNE R D Selected LiningLength ‘
Supply Fan in Unit Selected LiningType ‘Solid v
. o . Appurt. Fittar I Coil
S | £ i Openingsis 2| e sorior
O |)
FanSection Lining | No Lining v . siropeningsize|7S 3l | &
Fanto Discharge Air Region ReturnSilencer
I [biffuser O | |
. .
Total Lining Length 120.00 3 |in. Mum_z‘meIl-lomulti:one VIE]
ER 51
No Lining I 2 Pert T Q
Density Factor Selectad LiningLength £4.00 3 | in.
Appurt. Coil Coil
List do16 0w I Sorl0-row IQG
Calculate l [Clear Form] [CopvPredimon] [Close]
alalla Ia fe [=imilmile 9 o @ 3 R 3 BB L A 4 @ 8 = | Operating Point Supply Fan
g38/3g 5 88588888823 3:z88288: oo
Ducted Discharge Component |60 |52 47 S0 |55 60|44 45 45 47 40 42 42 44 42 42 41 42 |39 42 39 32 29 |28 1gp 25
Ducted Inlet Component 45 44 45 48 46 (44 45 45|49 49 42 45 45 47 33 42 |56 52 |52 54 52 |49 44 38 RPM 301
Ducted Outdoor Air Component |59 53 |59 |62 |60 |58 62 59 63 63 56 59 59 61 47 56 70 66 66 68 66 63 58 52
CS Component 9695101102 [100 |93 [94 [93 93 |88 |83 |89 [85 |85 |72 |68 |88 |85 84 (83 |80 |75 74 69| | BHP S,
Frequency Band (Hz) XW0 708
Efficiency 628
Ready Current Job: JOB_9:55 AM_04/13/2010

Figure 24. Single Fan Unit Calculated 1/3 Octave Lw Screenshot

54

by Multi-product Acoustic Engine

File Edit Product Tools Help

Main Menu | Prediction_L | -New |

CSAA Performance Climate Changer

Unit Path Configuration | Supply Fan Only Unit v

cpawheel []

Discharge Air Component

Air OpeningDirection

AirOpeningSize

Ducted Discharge

Side/Bottom/Top

!

Fanto Return Air Region

Total LiningLength 150.00 3 |in.

Supply Fan in Unit

Supply Fan v @

Outdoor Air Component

Air OpeningDirection

Air OpeningSize

Pt secion [omtsecin——](7]

Return Air Component

Air OpeningDirection

Air OpeningSize

Ducted Inlet ?

II

Top/Bottom/Side

100 I 50
2 Parf. So lid
Selected LiningLength ‘ 50.00 Z | in.
Ducted Qutdoor vl 2
Selected LiningType ‘Solid v
Top/Bottom,Side v ?
Appurt. Filter Coil

75

I

DischargeSilencer | 3" Rect. Film v

[Calculate

] [Clear Form] [CopvPredimon] [

FanSection Lining | Mo Lining v
- G s Fanto Discharge Air Region O RelumSilencerl |
Totallininglength | 12000 3 [jn, Wutti-zans [o tauttizone v |E]
lleslsil;ing I ZG;erf O
Selected LiningLength 64.00 % | in.
Selected LiningType
S R -
Close]

2 :"“,,. § § -§' g é g Operating Point = Supply Fan
CFM 15000
Ducted Discharge Component |61 |61 |51 439 48 |46 45 35 | 1gp 25
Ducted Inlet Component 49 |51 |52 |51 50|57 5851 RPM 901
Ducted Outdoor Air Component 63 65 66 65 64 71 72 65
CS Component 103 104 98 92 |88 90|87 78| |BHP L
Frequency Band (Hz) xwo 708
Efficiency 62.8

Ready Current Job: JOB_9:55 AM_04/13/2010

Figure 25. Single Fan Unit Calculated Full Octave Lw Screenshot

55

