CHANGING ALL COMYNICATIONS FROM DESCRIBED MATERIALS TO DESCRIBED FUNCTIONS
\because FIRST IS THE DEVELOPMENT OF THE INFORMATION \because CH WILL WAKE IT POSSIBLE, THEN THE CHANGITEG OF THE THINKING SYSTEIN,OF LISTINGS, OF CAT ALOGUES, FROM MATERIALS AND COST 'TO FUNCTIONS ARD COST.

ALI WANTS AND NEEDS ARE FOR FUNCTIONS - EITHER "USE" OR "AESTHETIC "AIL "BUILDING BLOCKS" EITHER OF PRODUCTS OR SERVICES, ARE FUNCTION ALL COSTS ALE TO PROVIDE FUNCTIONS THE PURCHASER WANTS.

ALL COMPARISONS ARE BASED UPON FUNCTIONS - USE \& AESTHETIC AND COSTS.

ALL DECISIONS ARE BASED UPON FUNCTIONS - USE \& AESTHETIC AND COSTS.

STILL, ALI CATALOGUES, AIL MATERIAL, LISTS, MOST PURCHASE HEQUISITIONS, MOST SALES PROMOTION EFFORTS ARE IN THE LANGUAGE OF MATERIAL, ALTHOUGH IO ONE WANTS A MATERIAL - HE WANTS A FUNCTI

OUR VALUE ENGINEERING TECHNIQUES YAVE TALGHT US THAT FUNCTIONS CAN be identified and priced. the price is the cost of performing them by any specific means. the value then becones the loyest cost to achleve the function. the value is determire by the state ore art and the effectiveness with which the best alternatives wer. sursued. IT IS KNOWN TO BE PRACTICAL WITHIN NARHCN LIMITS TO LIST FUGGTIONS, describe them, list their "Value" (lonest cost way to reliably accOMPLISH THEM), THEN LIST THAT MEANS OF ACCOMPLISHING THEM. DESIGNING thereafter, within that limited product area proceeds rapidly on the basis of function and function value listing.

WHY NOT NO:N MAKE IT UNIVERSAL? WHY NOT "GROM" THIS LISTING OF FUNCTIONS UNTIL DRASTICALLY BETTER ANSWERS ARE SECURED IN MUCH LESS TIME on a broad scale.
yOU
I Aa SURE ALl of/have either asked, or have been asked, many times, "JUST WHAT IS DIFFERENT ABOUT V JE ERGEERING,THOSE GOOD CREATIVE APPROACHES HAVE BEEN USED BY SUCEESSFUL PEOPLE ALYAYS - WHAT IS DIFFERENT ${ }^{\circ}$: THE ANSWER IS THAT IT IS A THOLE SYSTERT OF THOUGYT BASED UPON DESCRIBED AND EVALUATED FUNCTIONS AND GROUPS OF FUNCTIONS INSTEAD DESCRIEED of/materials and groups of materials.
the benefits of listings of described functions, their value and the REANS FOR ACCOMPLISHING THEM ALE MANY. I WILL LIST SOME.

1. AS SPECIFIC FUNCTIONS ARE NEEDED,SELECTION OF MEANS FOR ACCOMPLISHIENT WILL BE DIMECT, RATHER THAN A SEARCH OF PROPERTIES OF VARIOUS COMBINATIONS OF MATERIALS AND THEIR COSTS.
2. LISTINGS OF FUNCTIONS, THEIR DESCRIPTIONS,MEANS FOR ACCOMPLISHING them and the related costs will become readily available. the des igner need only select the lonest cost means, froif prepared data, AND PROCEED TO HIS NEXT TASK,
3. JUST AS NEV MATERIALS, THEIR DESCRIPTIONS AND COSTS ARE NO: ADDED TO LISTIMGS, MEV FUNGTIOMS, THEIR DESCRIPTIONS, THEIR COST and means for accomplishing they for that cost will be added. 4. AS NEWER, BETTER,LOWER COST MEANS FOR ACCOMPLISHLNG FUNCTIONS are found the list of function values will be updated.
4. THE RESUlTS ARE THAT ALl pEOPLE WORKING FROM THIS KNOWLEDGE benefit from the resulit and searches of all people, instead of THE PRESENT SYSTEM IN WHICH EACH DESIGNING GROUP SEARCHES PROPER:ties of materials, and does research which duplicates work of the PAST AND WORK OF OTHERS.
5. COMPETITION wILL STILL EXIST, BUT WILL be working at yore effective levels. AS the listings of functions, their descriptions AND THEIR COSTS GROH: F F OH RESEARCH PROJECT MANAGER WILL START with that knowledge as he researches directly into how to accomPIISH ONE IMPORTANT FUNCTION AT EVEN LOAER COST.
6. It may be conceivable that a developuent group may proceed five to TEN TIMES AS FAST BY USING THIS SYSTEM OF DEALING DIRECTLY VITH FUNCTIONS AND THEIR COSTS.
8.because eemment of cost are intecers ofttre use of the resources of materials and fuels and human energies, and because experience SHOWS THAT LOWER COSTS ARE ACHIEVED BY THIS FUNCTION-COST SYSTEM, VITAL RESOURCES WILL BE CONSERVED.

I Speak with such confidence because of the benefits I have seen IN THE LIMITED APPLICATION OF THIS SYSTEM. ONE ENGINEERING MANAGER, well trained in ve function study technology, told his marketing peo- Ple, - "I REQUIRE WHAT YOU BELIEVE yOUR CUSTOMERS WANT, AND WHAT YOU WANT TO PROVIDE THEM, ENTIRELY IN FUNCTION TERUS - FINCTINNS ANT THETD
toid his sub-managers and designers "I want all listirgs and comparISONS FOR YOUR WORK AUD TO PRESEMT AND DISCUSS WITH ME, TO BE WNE WITHOUT ANY MATERIAL, OR PART NA:XES, BUT EXCLUSIVELY FUNCTIONS, FUNCTION DESCRIPTIONS, AND COSTS". HE SECURED A CONSULTANT WHO WAS SKILLED IN THE VE SYSTEM OF identifying, NAMins, DESCRIBIMG and EVALUATEING FUNCTIONS AND GROUPS OF FUNCTIONS, FOR THREE WEERS; TO WORK WITH THE MEN.

THE PRODUCT BECARE MARKETABLE AND PROFITABLE, BASICALEY BY THREE TyPES OF CHANGES:

1. COSTS WERE FOUND FOR FUNCTIONS WHICH MADE NO CONTRIBUTION, and were eliminated.
2. SOME FUNCTION COSTS WERE FOUND WHICH WERE MUCH HIGHER THAA their value. Changes kept quality, and secured these functions FOR THEIR VALUE.
3. the value of some functions was seen to be lover than their COST because of the possibility of combining them with another function. changes reduced the total cost of the two.

Finaliy, i believe that Ctavging from the "material" to the "FUNCTION" SYSTEM NOW WILL bE PROFITABLE, PRACTICAL AND TIMELY - AND the task not beyond capabilities of growing infommation handling systems.

AS I BOUGHT AN AIR CONDITIONER LAST NONTH, THE DEALER PRESSED A BUTTON aND SAID, "we have 10 in the wahehouse, 7 are soed, 3 are available, 8 are in transit from the factory to the warehouse". INSTANT, ACCURATE USEFUL KNOWLEDGE.
as another example of todays man-made information handling. i, LIKE MANY OF yOU, GOT A DIGITAL WATCH. ON THIS Tiny incredible
"WITH SOME MONTHS 30 DAYS, SOME 31 AND OHE 28, I'LL HAVE TO ADEUST at the end of most months". but not so: at one minute until minnight we were playing bridge, i said "Now weill bake a crucial test".
 because of such skills in information handling, in now feel that THE TIME HAS COME FOR"FUNCTION"LANGUAGE.

Continueing Mr ESSEMTIAL THOUGYTS FOH VA \& VE

USE VA TECHIIQUES TO PURCHASE FOR PROFIT
before learnirg "hog" to becore a better prorit marer, there are five DECISTONS FOR THE BUYER TO WAKE. HE MJT DECIDE:

1. THAT he is the "GOALIE" (AS IN hOCkEy OR SOCCER). THAT IT IS HIS job to see that no money goes out unless value comes in, no matter WHAT. THAT HE DOESNT COMPETE WITH HIS TEAMMATES, NOH FAULT THEM FOR THEIR MISTAUES, BUT HE DOES HAVE A JOB TO DO. WHEN THE PUCK OR EALL SLIPS THHU, HE STOPS IT. IF IT GETS BY HIM TOO ITS A LOSS, AND COMPETITION WINS.
2. THAT HE WILL NOT JUST CATCH THE BALL AND QUICKLY THRON IT ON. HE WILL KUN IT A MEANINGFUL DISTANCE TONARD THE GOAL BEFORE HE THRCWS it HE WILL NET JUST GET A REQUISITION, AND HANDLE IT CLERICALLY. HE WILL CONTRIBUTE.
3. THAT, AS IN A GAME, HE WILL HAVE glockers and Stoppers which he MUST OVERCOME. HE MUST EXPECT TYIS, bE pREPARED FOR IT AND DO IT. THAT
4./HE MUST TEACH HIS TEAMATES THAT HE IS COMETENT TO RUN THE BALL

A MEANINGFUL DISTANCE, AND THAT HE WANTS AND EXPECTS TO DO IT. TH.
5./HE WILL TEACH HIS VENDORS TO HELP HIM.

IT IS BY NO MEANS SUGGESTED THAT THE VA BUYING TECRNIQUES WHICH FOLLOW WILL ALLOW THE INEXPERIENCED PERSON TO BUY PROFITABLY, BUT RATHER THAT THEY ARE ADDED TECHNIQUES FOR THE USE OF THE EXPERT BUYER. THEY ARE FOR THE "COACHING OF CHANPIONS". SPECIFIC "ONE-ATOAOTIME" VA BUYING TECHNIQUES, SOME WITH BRIEF DESCRIPTIONS OF EXAMPLES,FOLLON. THE READER WHO WISHES MORE DEPTH OF INFORMATION ABOUT ANY EXAMPLE WILI FIND it by Refering to the page in parenthesis ie (57), IN the miles BCOK,SECOND EDITION, MCGRAM-HILL BOOK CO.

THE BUYER WILL LEARN FUNCTION, KNON FUNCTION, AND IN SO FAR AS HE CAN WILL PAY OUT NO MONEY WHICH LOES NOT BRING IN AN IDENTIFIED AND WANTED FUMCTION. SOME APPRONCHES FOLLOM:
1."PURCHASED PAKT FUNCTIOM ANALYSIS. "THE BUYER LEARTS THE FUNCTION

OF THE PARTS HE BUYS. HE ASKS QUESTIONS. HE LEARNS. HE UNDERSTANDS. LITTLE, OR
IF THE PART SEEMS TO CONTRIBUTE/NOTHING, HE ADVISES THE REQUISITIONER, AND ASKS HIM if he wishes to reconsider, to cancel oh change the REQUISITION.

Example (100)"Dust.Cover"used inside another enclosure on electronic equipment. It cost $\$ 5.00$. Buyer saw no function, questioned it. Engineering said "Marketing Require it". Marketing said,"No function, take it off.Only one customer wants it. I'll charge him extra and put it on his.
2. "PURCHASING 'PARTICLE' FUNCTION ANALYSIS". THE BUYER CREATIVELY

AND IMAGINATIVELY EXAMINES EACH PARTICLE OF THE ITEM HE BUYS.IS TYAT
PARTICLE WORKING? ARE ALL PARTICLES WORKING APYROXIUATELY TO THEIR CAPACITY, OR APE SOME PARTICLES DOING NOTHING BUT ADDING wEIGHT AND VOLUME AND COST? WHEN HE FINDS NON-WORKING PARTICLES WHICH HE KNOUS HE MUST PAY FOR, HE RAISES THE QUESTION "CAN SOME OF THTS" NON WORKIN MATERIAL BE ELIMINATED, OR PUT TO WORK"?

Example (57) The buyer bought $11 \notin$ worth of steel 3 inches wide x $1 / 8$ inch thick from which stampings were made for a shift lever bracket on an appliance. He evaluated the function at $3 \notin$. He saw that the bracket was $2 \frac{1}{2}$, not $3^{\prime \prime}$ wide and that $\frac{11}{4}$ oí steel scrap along each side resulied from punching.This was non functioning steel he was paying for. He saw that there was waste steel all Gthe way around. Why? Why not get the right width of steel and just cut it off? He questioned it. The result pleased him greatly The shape of the back end did'nt matter, so the designer made it th reverse of the front shape, so thatinstead of punching out each par with scrap all around, now it was just a cut-off operation, so that by advancing the materlal two lengths for each stroke, one was cut off and the other punched off. The result was no scrap, $\frac{1}{2}$ the punchi cost, and no scrap handiling.
3. "SPECIFICATION FUNCTION ANALYSIS". EACH ITEN OF the Specification WHICH ADDS COST, is FOR THE PURPOSE OF BRIfGING SORE FUNCTION. SURFACE: GoComer than homal, clearances tighter than yomma, perpemplolarmess MORE EXACT THAN NORMAL. EACH ARE FOR SOME FUNCTIONING PURPOSE. THE bUYER CHECKS EACH OTHER-THAN-NORRAL SPECIFICATION, TO LEARN WHICH ARE adding cost, how much, and what function they provide. he often finds that some are not adding function. he then develops the amout of COST benefits which vould result if those specifications vere not included. he phovides that knomledge to his appropriate teammates so that proper action may be taken.

Example (12б) A small, very precise steel part, resembiling the top half of a shingle nall was being purchased in quantities of 700,000 per year. They cost 68 each, $\$ 42,000$ per year. The buyer questioned their function. They were"valves" in the gas system of a refrigerato They acted as a check valve. They were always mounted in an upright position and were positioned in \because the top of a tube so that any gas flow from below only had to lift thelr weight to proceed, but any gas trying to return was stopped. To shorten this interesting and valuable story, all of the tolerances other than on the underneath of the head added nothing to function and were made normal. Surprisingi the cost was lovered to $1 / 10$ cert. $\$ 700$. per year instead of $\$ 42,00$
4. "PURCHASING AESTHETIC FUNCTION ANALYSIS". AESTHETIC FUNCTIUN IS
important. no need to make it if it doesmt please the custoner so
THAT HE WILL BUY IT."AESTHETIC"FUNCTION IS BOUGHT THE SAME AS"USE"
FUnCtion, excepting, the buyer canmot use as moch of his omn mborenent
in selecting what is "artful", he mst leave that entirely/fis talente teammate. he does however often develop costs for alternatives which MIGHT PROVIDE THE SARE, OR BETTER AESTHETIC VALIJES, AT LOWER COST. THIS kionledge greatly aids the artful decis ion maker in selecting best "aESTHETICS" at LOMEST COST.

Example (2) A small pointed triangular shaped piece of very thin aluminiun was used on the knob of an appliance. It served two funct. ions. It covered the screw which mounted the knob to a shaft and it served as a pointer indlcating the adjustment. It contained a

nine

The buyer asked a supplier of tiny starnings to quote to the same drawing, but make it of pre-polished stalnless steel. He quoted S5, O00 for a years supply of interchangeable parts. The style designer said, "buy it, I like it better, and we add 515000 o to earnings.
5. "ADDITIONAL COST FUNCTION ANALYSIS". IS THE PART CR PatERIAL

READY TO USE, AS RECEIVED? IF NOT, WHAT IS IMAEDIATELY DONE TO IT? WHAT IS THAT COSTING NOOT COULD WE BUY IT READY-TO-USE? HOW MUCH MORE WOULD THAT COST?

I paUse a monent here to point out that none of the decision mainers
IN THE SYSTEM HAVE THAT INFORNATION - UNLESS AND UNTIL THE BUYER GETS
IT. MUCH OF THE ADDED CONTRIBUTION YHICH THE BUYER CAN BAKE IS FROA
THE FACT THAT HE HAS SOURCES OF INFORJATION, WHICH IN FACT NEEDED, BUT
WHICH IS NOT DEVELOPED, EXCEPTING BY HIS ACTION.
Example. (232) For $2 \frac{2}{2}$ each the buyer bought thin strip sieel 2 inches wide which was used in pieces 8 inches long, more than i,000,000 per year. Pursuing the "Additional Cost Function Analysis" app-
 making holes, but much for grinding, rounding and smoothing one edge. He then proposed that he buy "mill edge strip, by paying a small price "extra", securing the smooth rounded edge, as received. This lowered the "as used" cost to $4 \frac{1}{2} \neq$, adding $\$ 60$,000 per million per year to earnings.
6."SUPPLIER MANUFACTURING COST FUNOTION AHALYSIS". ON LAKGE VOLUME COMPETITIVE ITENS IT IS OFTEN IMPORTANT FOR THE BUYER TO KNOW MUCH ABOUT THE MANUFACTURING PRACTICES AND PROCESS OF TEE SUPPLIER. WEAT WORK IS HE DOING, AND WHAT COST IS HE INCURRING WHICH DO NOT ADD TO THE FUNCTIONS THE BUYER WANTS? THE SKILLED BUYER, IN THE PROPER FRAUEWORK OF BUYER-SUPPLIER CONFIDENCE CAN RELATE APPROXIMATE COSTS TO FUNCTIONS IN THE SUPPLIERS OPERATIONS. HE OFTEN FINDS OPPORTUNITY TO END COSTS WHICH DO NOT FUNCTION, ENDS THEN AND BRINGS BENEFITS TO BOTH THE SUPPLIER AND THE BUYER.

ten

and each operation which added cost, together with the function provided by that cost. The results were most gratifying. Among other non-functioning costs the buyer found that the wire bought was so large that it required 3 centerless grinding passes to bilng it to the right siae and finish. The quantity was so latge that wire the exact slze wanted could be bought, at no premiun, and given one centeriess grinding pass. The supplier had set his own manufacturing tolerances at half those of the customer, and threw away those between $\frac{1}{2}$ and full allowable tolerance. Of course they were included in his costs。 Changes were made in inspecilon and handiling. Cost became 51.90 per thousand. The same changes made on a similar additional part brout the added earnings per year to over $\$ 100.000$. ijh
7. "FUNCTIONING PRODUCT ANALYSIS". OFTEN REQUISITIONS CALI FOR PRODUCTS WHICH THE BUYER BUYS. LEARNING WHAT THE FUNCTION NEEDED FROM THE PHODUCT IS, THEN SECURING PROPOSAIS FROX: SUPPLIERS WHO NIGHT PROVIDE THAT FUNCTION, BUT BY A DIFFERENT APPHOACH, IS EXTREMELY PROFITABLE. THE BUYER THEN SUBMITS THE PROPOSAL TOGETHER WITH ITS COSTS TO THE REQUISITIONER FOR HIS STUDY, AND OPTEN, HIS APPROVAL. Example (33n-19,339-19) 3000 arching horns per year, made of bronze parts formed and brazed cost $\$ 6.50$ eacin. They were 15 inches long and about $2 x^{2}$ inches. The function was to absorb the heat of the arc when the contacts were opened, so that the arc would extinguisn. With this configuration and function in mind the buyer submitted it to a supplier of shell-moldings. He suggested a shell-molded casting of the same size, shape, and heat-absorbing properiles. With this knowledge and the quotation of $\$ 2.25$ each plus 634 each for the first year, the buyer submitted the proposal to the production people. This new knowledge allowed them to lower costs 510,000 to 512,000 per year.
8."SUPPLIER MANUFACTURING PKOCESS FUNCTIOR ANALYSIS" THIS IS QUITE SIMULAR TO \#B, bUT DIFFERENT. FUNCTION BUYING IS A NEVER-ENDING PROCESS THE BUYER CONSTANTLY LEARNS THE FUNCTIONS WHICH ARE BEING PERFORBED BY THE MATERIALS HE BUYS. HE USES HIS KNOWLEEGE AND SKILL TO MATCH UP THE FUNCTION NEED WITH SPECIALTY SUPPLIERS CAPABILITIES. HE TRIES DIfFERING APPROACHES. HIS BATTING AVERAGE BECOEES PRETTY GOOD.

Example (147, R18) 800,000 J-bolts per year were being purchased for $11 \frac{2}{2} t$ each. They vere 8 inches long, made from $3 / 16$ inch dia. steel rod. Three of them supported the heavy wagit of the TV tube and the surrounding coils and apparatus. They had a $\frac{1}{2}$ inch radius
> evaluated their function by several comparisons and decided that 2 or $3 \notin$ was the maximum possible value of the function. In that quantity, he wouldnt pay more tran 3 or 4 cents for a bolt that length and size, Certalnly the J-bolt sinould be made by a supplieq who used roll threading and automatic bending and cut-off equipment. He asked one for a ruotation. The vendor replied that the dravag calls for cut threads, which puts it on the slow screw machins equipment. As conirasted, ne would make it with rolled tinead wilch would be interchangeable. He quoted lite The engineer examined the suitability of roll threads vs cut threads. He found that roll threads Here a little stronger because the metal is woried a little. He changed. Purchase cost became $1 \frac{1}{2} \neq i n s t e a d$ of $11 \frac{1}{2} t$, adding $\$ 80,000$ of earnings.
9. "NON-WORKING COST FUNCTION ANALYSIS". EACH PURCHASE COST IS TO

SECURE SOME WANTED FUNCTION. THE DUYER WILE LEARN WHAT THAT FUNCTION
IS. OFTEN HE CAN IDENTIFY, IN THE PRODUCT, THE PART OR PARTS WHICH
PERFORM THAT WANTED FUNCTION. HE WILL ALSO FIND SUPPORTING ITEMS, NOT
PERFOMMING THE MAIN FUNCTION, WHICH ARE ADDING MUCH TO COST. HIS SUPP-
LIERS MAY SUGGEST LESS COSTLY MEANS TO PROVIDE THIS SUPPORT。VA TECH-
NIQUES CALL THESE "SECONDARY"FUNCTIONS. PROPER CHANGE IN THEM DOES
NOT EFFECT THE WANTED FUNCTION FROM THE DEVICE. IT'S THE BUYERS JOB
TO DEVELOP THIS KNOWLEDGE AND KEFER IT TO APPROPRLATE SUPPLIERS FOR
THEIR PROBABLE CONTRIBUTION.
Example (108) Large quantities of a tiny radio frequency transformer about twice as large as a grain of rice, cost $39 \&$ each. The buyer reasoned, "where is the cost? only a small amount of two tiny wires, held close together, perform the function. He discussed it with the supplier. The wires were wound on a tiny spool. 4 holes were drilled in the spool ends and working by microscope the wires were threaded through those holes. It was very siow and costly. Clearly, the principal costs in the purchased ltem added no function. The laboratory was asked for an adhesive whlch would not react with the insulation on the wires and which would have long life. It was provided. The wires vere wound on a support tab, touched with a spot of adhesive, and the transformer was functional and interchangeable. Cost became 194.Earnings were increased 840,000 per year.
10. COMBINING TWO VA PURCHASING TECHYIQUES - "COESINATION OF PURCHASING

SPECIFICATION FUNCTION ANALYSIS AND PARTICLE FUNCTION ANALYSIS". SINCE
EACH TECHNICUE HAS BEEN PRESENTED (TEOHIQUES $2 \& 3$) IT IS ENOUGH TO
here show the hemarkable benefit of using the two in combination.
THE BUYER WILL LEARN TO USE SEVERAL SIMULTANEOUSLY, OFTEN WIMH MUH RESU

Example (127) 2,000,000 per year of small iron screw machine parts cost $3 \frac{1}{2}$ each, $\$ 70,000$. They were $\frac{1}{2}$ inch diameter $x \frac{1}{2}$ inch long, with a slightly larger flange at one end. Tolerances and finishes were very exact overall. what was the function? They were "pole pleces". Their function was to carry electromagnetic flux up from the flanged end out through the cylindrical sidess in radio and television speakens. The small end of the speake cone mounted a light cylindrical coll mach "rloated" closely around them without touching. Spaced closely outside of the fioating coll was the electromagnet.

To function properly, the flang-end surface must be real smooth and flat, so that un-wanted air-gan does not exist. The sides must be very perpendicular to this surface so that the floating speaker coll which surrounds them can have close dimensions, still not touch The buyer questioned, "What is the function of the flange?" It is for convenient mounting. "Does the top of the pole piece whis in air In the cone have any function? No. It was seen that since the useful flux goes out through the sides, a conical shap of material in the top was not functioning.

The buyer called in a supplier of "colned" steel parts. Told him: 1. We need 2,000,000 per year. 2.Smooth and flat surface on the bottom. 3. Close tolerance and close perpendicular tolerance on the sides. 4. Flange can vary normal amounts in thickness and diameter. 5. Exactness of lengtris not important, in fact some material might be removed from the inside top.

The supplier quoted $1 \frac{1}{2} d$ on coined "buttons" of iron. He could cut of the slugs on a high speed shear, (which produces a little varlati in their lenth. He would coln them in a closed die with mirror smooth surfaces. Any slight variations would come in the flange or top end. The change was made. Identical perrormance and $\$ 40,000$ additional earnings were the result.

