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Biomagnetism Scales

• Fetal MCG
• Puts requirements on 

magnetometer:
– Sensitivity ~ 10fT/Hz1/2

– Bandwidth ~ 100Hz
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Highly Sensitive Magnetometers

SQUID
Cryogenics
Expensive

Can operate in 
large fields

Sensitivity 
~1 fT/Hz1/2

High bandwidth 
(up to microwave 
frequencies)

Atomic 
Magnetometer

Portable
Inexpensive

Fully sensitive 
when in fields 
<10 nT

Sensitivity 
<1 fT/Hz1/2,
 shot noise limit 
<10aT/Hz1/2

Limited bandwidth
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Optical Pumping
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Optical Pumping

Circularly Polarized light carries +1 
ang. Momentum in propagation (z) 
direction
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Optical Pumping

Circularly Polarized light carries +1 
ang. Momentum in propagation (z) 
direction
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Optical Pumping

Circularly Polarized light carries +1 
ang. Momentum in propagation (z) 
direction

Γ
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Atomic Magnetometer
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Atomic Magnetometer
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Atomic Magnetometer
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Atomic Magnetometer

Faraday rotation of probe 
beam is  
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Atomic Magnetometer

Faraday rotation of probe 
beam is  
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Optically Pumped Magnetometers
 F = I+ S
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Magnetic precession

Spin-Relaxation
Optical Pumping
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Electron Spin
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Sensitivity
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n = density; V = volume
T $ Measurement Time

Spin-Exchange Collisions:   ! = n"
SE

v

Limits on traditional AM sensitivity:

•Traditional AM’s had coherence times that 
were limited by Alkali-Alkali spin-exchange.

•When density is turned up, the rate of these 
collisions increases, and

•Shot noise limit ~10 fT/rt(Hz)
  ! / n " const.

Thursday, September 10, 2009



Spin-Exchange Collisions

Conserves F
but redistributes
between S and I
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Spin-Exchange Collisions

Spin-Exchange Collisions

Conserves F
but redistributes
between S and I
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Spin-Exchange Relaxation Free (SERF) Regime

• Operation in SERF regime allows the magnetometer sensitivity 
to depend on much weaker collisions with other atoms, hence 
several orders of magnitude greater sensitivity
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From Happer and Tam, PRA 16 ,1877 (1977)
  BSERF

<< 1 µT

Depends on alkali 
density
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F = q

!
S   4<q < 6

Rapid spin-exchange compared to the precession 
frequency leads to the spin-temperature distribution. 

Links total spin to electron spin through “slowing 
down” factor.
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SERF Magnetometer

Spin-exchange 
does not contribute 
to Γ! 

Kominis et. al.
Nature 422, 596 (2003)
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Frequency Response
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DC Field Cancellation

SERF limit is about 1 µT, but to get full sensitivity in our (DC) operation mode, 

Residual field in our 4-layer shield is ~10s nT, so this requires further 
cancellation using triaxial Helmholtz coils.  Automation of this process should 
be straightforward.
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Allows easy residual 
field canceling 

Shot-noise limit 20 aT/ Hz 
w/ 100 Hz bandwidth
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Setup

• Rb 87 with N2 (100T) buffer gases
• Circularly polarized pump at 795nm
• Linearly polarized probe at ~780nm
• Cell heated to 180 C
• All lasers fiber coupled

Pump optics

Probe detection tubesProbe 
collimation

Rb cell in 
ceramic and 
Teflon oven

3”

• Apparatus inside 4-layer mu-metal 
shield in lab

• Clinical use is in 3-layer shielded 
room
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Some More Pictures

Tri-axial Helmholtz coils
4-layer mu-metal shield
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Technical Considerations
• Plastic, ceramic, and Teflon parts reduce Johnson noise
• Electric heating: dipole/quadrupole suppressed resistive film 

heater sandwich heats w/ small residual field (~100pT)
• Insulation allows subject to be 1cm away from Rb cell
•  Simple 1-cm baseline gradiometer with pump tube
• Commercial                               vapor cell 1 cm !1 cm ! 6 cm 
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Portability

•Bob Wyllie
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Results

Frequency
Response
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Heart Signals

Average of 4 beats
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Z-Mode

Allows us to run the magnetometer as a 2-
component vector magnetometer

For best sensitivity, z-field Larmor 
frequency~parametric frequency, sets 

  

Future: lock !
z
 to "

z
 to measure 

    changes in z-field

-Z1, Sx signal oscillates at 
-Z2, Sx signal oscillates at

for Bx
for By

Z Li, R T Wakai, and T G Walker, 
Appl. Phys. Lett. 89, 134105 (2006)
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Technical Noise Reduction

Z-
Mode

DC Mode
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Multichannel FMCG

Should be easily miniaturized to a few cm/channel
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Other AM MCG results

Bison et al., OPTICS EXPRESS 11, 904 (2003) 

Shot-noise limited Mx non-SERF magnetometer

Poster 10-33  
Measurement of Biomagnetic Fields in Small Animals by use of an  
Optical Pumping Atomic Magnetometer S. Taue et. al
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 Evoked MEG

XIA et al, APPLIED PHYSICS LETTERS 89, 211104 

10-24  Development of a Wide-coverage Atomic Brain 
Magnetometer System  (K. Kim, H. Xia, S. Lee, M.V. Romalis) 
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Summary

• Atomic magnetometers are performance-competitive with SQUIDs.
• Potentially substantially less expensive to build and operate
• Developed a portable, highly sensitive atomic magnetometer suited 

for fetal MCG measurements.
– Sensitivity ~ 40 fT/Hz1/2

– Bandwidth ~ 40 Hz
• Z-mode technical noise suppression and the ability to 

simultaneously detect two components of the magnetic field 
simultaneously.
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