
Using a Web Services Architecture with Me,
Myself and I

Introduction

It seems counterintuitive to write code that provides web services that will only ever run
across localhost connections on a single server. However, using an internal service-
oriented architecture for our Library Course Pages (LCP) application provided an
extensible application structure for one of the larger locally-developed code bases at the
UW-Madison Libraries. Our LCP application delivers electronic reserves materials and
custom library instruction web pages targeted at specific courses. It represents one of
the core applications that the UW-Madison Libraries uses to support the teaching mission
of the university.

Background

The original Library Course Page system grew out of the work of talented developers
within one of the UW-Madison branch libraries. After the application proved to be highly
successful, and when the primary developer moved into an IT management position
within the Law School, there was a push to move the application support to our central
library IT department. While preparing to move application support and evaluating
pending enhancements we decided to work on a complete overhaul of the code base.
Since we knew that the business rules and application workflows were solid, we chose to
focus on cleaning up the underlying application architecture.

Reviewing the LCP application code we ascertained that there were three distinct
components in play:

1. File storage
2. Hooks into campus course metadata
3. User interfaces for managing and accessing content

While tackling the re-architecture, we decided to take a web services approach: breaking
the application into three distinct applications, each designed to solve a single piece of
the entire LCP system. Where the original LCP system ran on a monolithic PHP code base
our re-designed system runs on a combination of a Fedora-based repository, a custom
XML service for course metadata using the Restlet Java framework, and a traditional
user interface web application written to use the Ruby on Rails framework. Using three
applications to work together to do a single job provided several advantages:

• Process isolation - each component is able to excel at one job and one job only
• Technology choice optimization - each component uses the technology best

suited to its needs
• Data model-based design - the data models for each component are distinct and

therefore clean

Dividing Up the Application

The choices that we made in picking the separate services were based on the kinds of
data being managed. The primary questions we posed to different data elements
included: how long will it last? what exactly does it do? where does it originate? and who
or what uses it? Knowing how the application should function due to the success and
maturity of the original system, we used these questions to determine the three
categories of data in the Library Course Page application:

1. Files that needed to be stored and retrieved by patrons (primarily for reserves);
2. Course information so we would know which reserves and instruction web pages

corresponded to which courses
3. The structure and content to build human readable web pages

Storing Files

The original LCP system stored files on disk using PHP and Apache to manage the file
storage and access. With our rewrite we wanted to use something slightly more
sophisticated to make the management of disk resources easier. File storage is part of
the core functionality of most computer systems and we were not interested in
reinventing wheels for this component of our system. Therefore we looked for an
existing solution to storing files. The LCP application stores files that are used for library
reserves or library instruction sections. These will typically include reserves readings or
the kinds of handouts library staff create when they teach bibliographic instruction
sessions.

The requirements for the system started with a well-defined API. Additionally, since
sharing data and making it more widely available than originally intended is a growing
trend in IT, and at the core of the web services philosophy, we wanted to leave open the
possibility that the instructional digital learning objects in the system could be retrieved
in ways unknown to us at the present time. Our instruction librarians contribute learning
resources to the curriculum at our university. They have created various digital learning
objects, which may be as simple as HTML code snippets that can be re-used in different
contexts. Some of the more complex resources combine multiple simple objects (images,
videos, help and assistance web pages) into tutorials that are integrated into campus
curriculum. As instruction staff at the library create course pages we wanted to make
sure that these digital learning objecs, large and small, could be used within the LCP
application and potentially in other places on our library website or other campus
websites.

We chose to provide a stable store for files and to maintain a high degree of control over
their use via a Fedora repository. Fedora has a well documented API and a stable
community of developers. For this project we have a separate installation of Fedora that
is not used by non-LCP applications. The data modeling and business rules governing
persistence and versioning of this data are dramatically different from those that govern
our digital collections or institutional repository. Consequently, we chose to keep this
Fedora instance distinct from other uses of Fedora at the UW-Madison Libraries.

At the present time, this use of the repository is simple: librarians put things in and
patrons get them out. In our application setup, Fedora only listens to localhost
connections for requests to create new objects or retrieve files (specifically, datastreams
in Fedora lingo). Those requests come from an interface component described in the
section "Data for Presentation & Interaction" below. The interface component
coordinates authorization for adding to the repository and determines who has
permission to retrieve items from it.

Course Info

The second major kind of data used by our application is campus course information. By
working with our university’s central IT department we can automatically deliver
individual library course pages to students enrolled in the corresponding courses through
our campus portal. There are three high-level stages that make this happen:

1. First we pull a local copy of course metadata from our university's central IT
department

2. Next the we expose the metadata pulled from step 1 to the application that
creates library course pages

3. And finally we provide a metadata feed back to our campus portal about our
library course pages

Delivering our data feed back to the central campus portal is important because it is
already serving essential course related content to students. The libraries can work
easily with campus systems because we all share common metadata elements that
originate within the campus timetable and enrollment system.

It is key to understand that the libraries do not control the data elements, their
organization, or semantics. These are determined by our local campus registrar. We use
remote ODBC database connections to pull a feed of the relevant course metadata from
the central IT department, and cache a local copy of timetable course offerings for fast
use by LCP processes. We then make this data available via a web service to the
application used by librarians to build a course page. The aim of this course metadata
service is to make information available to people working on library reserves or course-
focused instruction at the point of need. We rebuild our cache daily due to the volatile
nature of our university's course offerings; we maintain local data only for the current
semester and the next semester.

Because of this highly localized data model, we chose to write our own custom data
service for this piece of the LCP application. We wrote code for this component that pulls
a fresh feed from campus IT servers daily, stores the information in a local database
optimized for point of need exposure in the form of XML, and which responds to requests
using a simple URL structure based on the campus metadata model. What we identified
as particular to this component is the manner in which we wanted to expose it: by
translating the elements that the UW-Madison campus uses to identify courses into
resources that can be accessed via RESTful URL structures.

We chose to use the Restlet framework to write this part of the application. Restlet is a
lightweight Java-based framework for writing Web applications according to the
REpresentational State Transfer (REST)-style architecture. It excels at mapping a URL
path into parameters that can then be easily accessed by application code. For example,
in order to identify Lecture 1 of the Computer Science course Introduction to
Programming, offered during the Spring 2009 semester, our campus uses 5 pieces of
metadata:

• the term (semester) code,
• the session code, e.g., the standard 15 week session for spring and fall

semesters,
• the campus subject (department) code,
• the course number,
• and the section number.

We access the local cache of the XML metadata for this course by visiting the following
URL pattern:

http://localhost/terms/<TERM_CODE>/<SESSION_CODE>/<SUBJECT_CODE>/
<COURSE>/<SECTION>

The URL for the Comp Sci course in question is:

http://localhost/terms/1094/A1/266/302/001

The resource returned is an XML view with relevant data from our course timetable:

<section>
<type>LEC</type>
<number>001</number>
<timeOfDay>01:00 PM 02:15 PM</timeOfDay>
<daysOfWeek>TR</daysOfWeek>
<course>

<number>302</number>
<title>Introduction to Programming</title>
<department>

<code>266</code>
<name>COMPUTER SCIENCES</name>

</department>
<session>

<code>A1</code>
<term>

<code>1094</code>
<semester>Spring</semester>
<year>2009</year>

</term>
</session>

</course>
<instructors>

<instructor>Skrentny,James Douglas</instructor>
</instructors>

</section>

Other useful URL-defined resources in our application include things like a list of courses
offered by the Computer Sciences department:

http://localhost/terms/1094/A1/266

or a list of departments offering courses during a given session:

http://localhost/terms/1094/A1

These kinds of resources can be used to generate navigation screens when a librarian is
selecting a course to create a new library course page (see figure 1). The Restlet
framework excels at mapping URL-identified resources into programmatic objects. By
splitting our LCP system into three distinct applications we were free to use this
technology to solve one problem extremely well.

Figure 1. Navigation screen for attaching course metadata to a Library Course Page.

Data for Presentation & Interaction

The final component to our Library Course Page system is an interface to all the other
data. This piece provides both machine and human interaction among the different
components. For this part we needed a technology that is strong at both human
interfaces and machine interfaces. We chose the Ruby on Rails framework because it has
an MVC framework designed to solve both of these tasks.

The Human Interface

Our LCP system has a traditional web application component, a user interface for
librarians to create course pages and the resulting set of web pages that students use to
view the content. Librarians build course pages to deliver reserves content or custom
library instruction in the form of recommended database lists and search strategies for
course topics. This portion of the LCP system acts as a highly customized content
management system. Common tasks for library staff building a course page might
include:

• Providing the link to reserves content via a deep link into a licensed full text
database,

• Uploading the course instructor's syllabus into the LCP system so that it can be
downloaded from the course page,

• Providing the persistent link to a licensed electronic resource along with a
description of search capabilities for the resource.

Figure 2. End user views for patrons and staff for the LCP application

The Machine Interface

The Rails application is also the piece that coordinates the interaction among the
different components. At a high level there are a few core tasks that this component
performs in conjunction with the file repository and timetable service:

• Generate lists of departments and courses for a given semester,
• Store a file in the repository,
• Verify the enrollment for a given student attempting to download a file

associated with a given course,
• Retrieve a file from the repository.

The machine interaction of the Ruby on Rails interface with the other components lies at
the center of our web service architecture and is illustrated in figure 3.

Figure 3. Application request flows within the LCP system.

Pros & Cons to the Web Service Architecture

Transitioning to a web service architecture does have a few downsides in our experience.
The LCP system has a slightly higher degree of complexity in that we need to manage
multiple applications rather than one. Supporting the application requires a knowledge of
the application components in order to quickly pinpoint where problems reside. This does
make it a little more difficult for front-line support staff to troubleshoot what is going on
with application problems.

Despite the up front complexity of the three for one application structure, and as
mentioned above, we chose to write the new version of our application with a service-
based architecture because it provides optimal technology choices. Any given application
with a sufficient amount of complexity will solve many different tasks. By solving each of
those functional areas individually we believe we are solving them in the most efficient
manner possible.

The process of designing the locally developed application structures also benefited from
the web service orientation. When designing our timetable service, for example, we
approached the design with a data-centric process. Too often there is a temptation to
begin designing web applications from the perspective of an end user at the expense of
the data model. When we worked on the timetable service we were in the business of
exposing marked up data in the form of XML. Working with the web pages that would
present the data to end users was not a factor at this stage since that was left up to the
design of the user interface application. The data-driven design of this service meant we
were focused on ensuring our data model was well formed and optimized prior to

addressing its display issues.

Something Went Very Wrong...

...but it turned out OK.

In the initial design of the LCP system the process of downloading was handled
differently. Initially downloads were processed through the Restlet-based timetable
service. The initial assumption was that in cases where enrollment needed to be checked
for compliance with fair use copyright laws, the download process should be located as
close as possible to where that enrollment data was stored. However, as the application
activity picked up during the first week of classes it turned out that the initial
configuration of the Restlet application was struggling under the volume and kept
crashing with broken pipe exceptions.

Fortunately, Rails has native file streaming capabilities via its sendfile function. Due to
the service orientation of the rest of the application, all we needed to do was rearrange
the directionality of the service calls that are used to verify enrollment. To understand
how this works, see the modifications to the download process illustrated in figure 4.

Figure 4. Application request for downloading files from the LCP system pre and post code refactoring.

Instead of the timetable service asking the Rails-based CMS which courses a particular
file is associated with, the Rails application just needs to ask the timetable service which
courses a given logged in student is associated with and the Rails application can gather
all the data it needs to do the authorization logic. If it passes, then the Rails application
can make the localhost request to Fedora for the file and send it on to the student.

Conclusion & Looking Forward

Using a web service architecture for our Library Course Page application has been a
great experience for our development group. We were able to choose the best
technologies to solve the different tasks at hand. We were able to design our
applications based on the data models unique to each functional area. Since we have
isolated each functional area within its own service the data will be easier to use in other
applications. Specifically, our timetable service can be used by other applications that we
would like to write, such as personalized library home pages. Because we did not couple
the timetable data tightly to the LCP application exclusively, we can make API calls
against it for other projects. So even though our web services only run on localhost right
now, we have laid an infrastructure that can be used again and again.

For Further Exploration

• W3 Consortium definition of Web Services: http://www.w3.org/TR/ws-arch/
#whatis

• Restlet framework: http://www.restlet.org/
• Ruby on Rails framework: http://rubyonrails.org/
• Fedora Repository: http://www.fedora-commons.org/

Appendx A: Timetable Service Code Example

The following code snippets demonstrate using the Restlet framework to serve up the
XML needed to display a course listing for a department as illustrated in figure 1 above.
These snippets are incomplete and cannot run on their own. They merely provide a
demonstration of how we map a URL-based resource definition to an XML represntation
of a department object.

The Base Application

The following class extends the core Restlet Application class. It is used to define
individual Restlets and map them to URL patterns.

package edu.wisc.library.ltg.timetable.controller;

import org.restlet.Application;
import org.restlet.Restlet;
import org.restlet.Router;
import edu.wisc.library.ltg.timetable.controller.term.*;
import edu.wisc.library.ltg.timetable.model.Timetable;

public class BaseApplication extends Application {

private Timetable timetable;

public BaseApplication(Timetable timetable) {
this.timetable = timetable;

}

@Override
public Restlet createRoot() {

// Create a root router
Router router = new Router(getContext());

/*
* Create individual restlets for the types of responses that
* we expect to see.
*
* The requests come in the form of
* semester:session:department:courseNumber:sectionNumber
*/

Restlet termIndex = new TermIndex(timetable);
Restlet term = new TermHandler(timetable);
Restlet session = new SessionHandler(timetable);
Restlet department = new DepartmentHandler(timetable);
Restlet course = new CourseHandler(timetable);
Restlet section = new SectionHandler(timetable);

// Attach the handlers to the root router
router.attach("/terms", termIndex);
router.attach("/terms/{term}", term);
router.attach("/terms/{term}/{session}", session);
router.attach("/terms/{term}/{session}/{department}", department);
router.attach("/terms/{term}/{session}/{department}/{course}", course);
router.attach("/terms/{term}/{session}/{department}/{course}/{section}",

section);

return router;
}

}

The Department Handler

The following class acts as a servlet that is handed requests to represent information
about academic departments. The information it returns is a list of the courses offered
by the department in question for a given semester and session.

package edu.wisc.library.ltg.timetable.controller.term;

import org.restlet.Restlet;
import org.restlet.data.MediaType;
import org.restlet.data.Request;
import org.restlet.data.Response;
import org.restlet.data.Status;
import org.apache.log4j.Logger;
import edu.wisc.library.ltg.timetable.TimetableException;
import edu.wisc.library.ltg.timetable.model.*;

public class DepartmentHandler extends Restlet {

protected static Logger log = Logger.getLogger(DepartmentHandler.class);
private Department department;
private Session session;
private Timetable timetable;

public DepartmentHandler(Timetable timetable) {
// the timetable is the Hibernate-based ORM connection to the database
this.timetable = timetable;

}

@Override
public void handle(Request request, Response response) {

try {

// Pull the relevant params out of the URL for this handler as
// defined by the base application.
String termCode = (String) request.getAttributes().get("term");
String sessionCode = (String) request.getAttributes().get("session");
String campusSubjectCode = (String)

request.getAttributes().get("department");

// Get the session and department objects from the database
session = timetable.getSession(termCode, sessionCode);
department = timetable.getDepartment(campusSubjectCode);

// Set the response object's entity to the XML representation of the
department

// and apply the appropriate mime type to the response.
response.setEntity(department.getXml(), MediaType.TEXT_XML);

} catch (TimetableException te) {

// Catch bad params or data from the URL and set the appropriate
response

if(log.isInfoEnabled()) {
log.warn(te.getMessage());
log.warn("returning response: bad client request");

}
String error = "path to department is invalid";
response.setStatus(new Status(400), error);
response.setEntity(error, MediaType.TEXT_PLAIN);

}
}

}

As you can see, this is not a lot of code to run a servlet-style service. The Restlet
website has excellent tutorials for getting started with the framework.

	Using a Web Services Architecture with Me, Myself and I
	Introduction
	Background
	Dividing Up the Application
	Storing Files
	Course Info
	Data for Presentation & Interaction
	The Human Interface
	The Machine Interface

	Pros & Cons to the Web Service Architecture
	Something Went Very Wrong...
	Conclusion & Looking Forward
	For Further Exploration
	Appendx A: Timetable Service Code Example
	The Base Application
	The Department Handler

