ABSTRACT

DIGITAL IMAGE PROCESSING:
HOMOMORPHIC IMAGE ENHANCEMENT, IMAGE
RESTORATION AND PHASE-ONLY IMAGE PROCESSING

by James Jianzhou Long

Homomorphic image processing is of interest in contrast
enhancement and controlling dynamic range. A simple scatter
model was established and a homomorphic filter was discussed in
the different cases of contrast enhancement and dynamic range
compression.

Image restoration is to design a restored filter for the inverse
problem. "A general degradation model was discussed and three
types of filters were derived: the inverse filter, the Wiener filter,
and the magnitude-only filter. A derivation for the Wiener filter in
the spatial domain was developed. The advantages and
disadvantages of these filters were compared. These filters were
applied to degraded pictures to obtain image restoration. The
relationship between the frequency resolution and statistical
resolution of the ensemble averaging magnitude-only filter with the
different windows size and overlap were demonstrated.

Phase-only image processing was contrasted with magnitude-
only image processing to emphasize the importance of phase
information in image synthesis, restoration, and reconstruction.
Examples of exact image reconstruction from phase-only spectra
were shown. A comparison of phase-only, magnitude-only and
classical matched filters under the different signal to noise ratio
(SNR) situations were presented and image identification examples
were provided.
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CHAPTER I

INTRODUCTION TO DIGITAL IMAGE PROCESSING

What is image processing? Actually image processing is surrounding us

every day. For example, the glasses we wear provide optical image processing
which helps to correct our visual image; our TV's contrast or brightness
adjustment provides electronic image processing which helps to make the
pictures appealing to our eyes. Digital image processing is a similar kind of
image processing in digital form, which uses numeric techniques to process
images. Digital computers and digital signal processing (DSP) techniques have
brought digital image processing into reality. All of the methods used by
photographers , such as enhancement, manipulation and subtraction, can be
done in the today's digital "darkroom".

The digital image processing problem is to find out proper digital operators,
then carry out the operations. Seeking operators is simply thinking of a 2-
dimensional digital filter design. Generally, there are three operations of
interest in digital image processing: quality enhancement, analysis, and coding,
Quality enhancement may be divided into two classes: one is to make the
digital picture more appealing to our eyes, for example, making the images

smooth or sharp. This is called image enhancement. The other is to recover




an image from a degraded version of the original one. For example, if a
recorded picture is blurred due to the motion of the camera, then a digital
operator is used to restore the degraded picture to the correct picture. This is
called image restoration. Image analysis is an operation to describe an image
and suggest a further operation. For example, a picture's information can be
retrieved from its histogram, which is a function of the number of pixels or
probability vs. pixels' intensity or brightness. A low contrast picture's
histogram may only occupy a small region, then a technique called histogram
equalization that tries to expand the histogram equally over the whole space,
may be applied to the contrast enhancement (Gonzalez et al., 1987). Image
coding is used because some images are too large to store and too long to
transmit. For example, a 640x480 resolution picture of 256 grey scale requires
300 KB space. It may be necessary to change the image into another digital
form in order to reduce its storage.

Since an operator is a digital filter, the corresponding image operations can
be regarded as 2-D filtering. Linear shift invariant (LSI) filtering of our interest
can be carried out by the convolution operation in either spatial domain or
multiplication in frequency domain by discrete Fourier transform (DFT). The
choice of operation depends on the trade off between the computing time and

storage space.

Since digital image processing deals with the pictorial information, pictorial
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demonstrations will provide deeper insight into image processing. We begin
our discussion with some simple examples of image processing, using 3x3
operations. There are two very common image operations: smoothing and
sharpening. Let us begin with these operations in the spatial domain, then in
the frequency domain. All the sample pictures in this thesis are 256x256 pixels
and with 256 grey scale for each pixel. The programs were written using the
IDL programming language (Research System Inc., 1993) under the OpenWin

environment on a Sun Sparc station.

Spatial domain examples

As we know, the integration helps to smooth the data. And the integration
may be written as the addition of finite terms. Probably the simplest
smoothing example is to replace each pixel with the equally weighted average
of all its neighbors. Each smoothing operator may be represented as a 2-D

matrix or mask h(x,y). One of these masks is:

1 / 9 1 / 9 1 / 9 hx—l,y—l hx-l,y h'x—l,y+1
1/9 1/9 1/9 or hoot hy hyy
1 / 9 1 / 9 1 / 9 hx+1,y—l hx+1,y h-x+1,y+1

The convolution between the operator h(x,y) and the picture f(x,y) carried in

time domain will be




fxy) = f0y)* hixy)
= fayp® hx-l,y-l + fx-1,y * hx-l,y + fx-l,y+1 *hyyn

+fpa * ey + 6,0 hy + 0" hu

+ £ty * Doy + fay * Ny + feagn " Beaga
where ** is the convolution operation and f(x,y) is the processed picture. The
result of this operation is shown in Figure 1-1. The processed picture is
smoother or blurrigr than its original one as expected. This process can be
used to smooth spot noise (small areas of very bright pixels) in a picture (Long
et al., 1992).

Sharpening, accentuation of the high frequency edge information in a
picture, is the opposite operation of smoothing. Let us look at some very
common sharpening masks. An unsharp masking enhancement mask is
derived from the substraction of a smooth picture from its original one. After
subtraction the low frequency information, of course, the high frequency
information remains in the original picture. A detailed derivation may be

found in the mask design section. This mask is:

0 -1 0
-1 5 -1
0 -1 0

The result of this operation is shown in Figure 1-2. The edge information of

the processed picture has been enhanced as expected. Some other sharpening




(a) The original picture UWO'
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(b) The magnitude frequency response of
the mask (ranging from -x to & and zero
frequency in the center of the plane)

(c) The picture processed by the convolution
with the mask

Fig. 1-1. Equally weighted average smoothing



(b) The magnitude frequency response of
the mask (ranging from -x to x and zero
frequency in the center of the plane)

(c) The picture processed by the convolution
with the mask

Fig. 1-2. Unsharp masking enhancement



operators of our interest are for the enhancement of edges in a certain
direction, such as vertical, horizonal, gradient or all directions.

Shift and difference edge enhancement mask (Baxes, 1984), as the name
implies, is to subtract a spatially shifted picture from its original one. For
example, after subtraction of a vertically shifted picture from its original
picture, the vertical edges will be enhanced. A vertical direction enhancement

mask is listed below

0 -1 0
0 1 0
0 0 0

The example of using this mask is shown in Figure 1-3. The processed picture
shows the edge enhancement in the vertical direction.
Gradient direction edge enhancement mask is similar to that of shift and

different edge enhancement. For example, an east direction enhancement

mask is
-1 1 1
-1 -2 1
-1 1 1

This mask can be rotated a certain degree to form another enhancement

operator in another direction or gradient. For example, a 45-degree

counterclockwise rotation of this east mask forms a northeast direction




(b) The magnitude frequency response of
the mask (ranging from -r to © and zero
frequency in the center of the plane)

(c) The picture processed by the convolution
with the mask

Fig. 1-3. Shift and difference edge enhancement



enhancement mask, which is

1 1 1
-1 -2 1
-1 -1 1

The result of this operation is shown in Figure 1-4. Unfortunately, the
processed picture enhances the edge information not only in the northeast
direction, but also.in the northwest direction.

Laplacian mask is an omnidirectional enhancement operator. This highpass

mask looks like:

0 -1 0
-1 4 -1
0 -1 0

The lowpass Laplacian mask will be discussed in the mask design section
and the highpass mask is simply formed from taking the minus sign of that of
the lowpass mask. The expected result of this operation is shown in
Figure 1-5.

Embossing mask is to embolden a picture. The embossing picture should
contain both the original information and the emphasis edge information.

Thus this mask should reflect these characteristic. This mask is:
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(a) The original picture MAN'

(b) The magnitude frequency response of
the mask (ranging from -x to n and zero
frequency in the center of the plane)

(c) The picture processed by the convolution
with the mask

Fig. 14. Gradient direction edge enhancement
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(a) The original picture PATTEN'

(c) The picture processed by the convolution
with the mask

(b) The magnitude frequency response of
the mask (ranging from -m to @ and zero
frequency in the center of the plane)

Fig. 1-5. Laplacian edge enhancement
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1 1 1
0 1 0
-1 -1 -1

'i‘he result of this example is illustrated in Figure 1-6. Obviously, all the
edge information has been highlighted and it is mostly used in art design
applications.

The last interesting edge enhancement operator is the contour filter
(Watkins, 1993). This filter outlines all edges in a picture, that especially gives
an impression of a contour mapping from an aeroplane picture. Thus, we call
it contour filter. It is a non-linear filter. The new picture is calculated from

f(xy) = sqrt{ [f(x,y) ** h(xy)P + [f(xy) ** hy(xy)P)

where h;, is a Sobel filter in the horizontal direction, which is

1 2 1
0 0 0
-1 -2 -1

1 0 -1
2 0 -2
1 0 -1

The contour filter is of great interest in some applications, such as remote

sensing and geography information systems (GIS). The filtered picture is
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(a) The original picture UWO'

(b) The magnitude frequency response of
the mask (ranging from -r to 1 ang zero

frequency in the center of the plane) (©) Tv;/hiethp i;:\t:r;a;;iocessed by the convolution

Fig. 1-6. Embossing enhancement
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shown in Figure 1-7. The processed picture looks like a contour map,
especially in the area of leaves. The edge enhancement technique can be
applied in edge detection, which is very important in machine vision or image
segmenting; it divides the image into many useful segments for further
processing.

The above examples all use convolution in the spatial domain. But for LSI
operations this fil.tering can also be accomplished in the frequency domain,

which has frequently certain advantages.

Frequency domain examples

Spatial domain image processing has the advantage of small storage space
and fast computation time for short operators (regardless of the overhead of
the frequent read and write operations on the storage devices). For example,
the program of handling the 3x3 masks above only requires two 3x3 matrices
to store both the operator and pixels. But when the operators are very large,
computing time becomes a serious problem in the spatial domain.
Additionally, short spatial domain operations are insufficient in complicated
applications. This is why Fourier processing is so popular, and many image
processing algorithms are carried out in the frequency domain. Also,
frequency domain operations give a deeper insight of image processing. It is

easy to understand what the above operators do while looking at the masks,
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(b) The magnitude frequency response of the Sobel
vertical filter (ranging from -n to 7 and zero
frequency in the center of the plane)

(a) The original picture UWO'

(c) The magnitude frequency response of the Sobel
horizonal filter (ranging from -n to 7 and zero
frequency in the center of the plane)

(d) The picture processed by the Sobel filter

Fig. 1-7. Contour filtering enhancement
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but if the masks are larger and more complex, it is difficult to tell their
properties, such as the gain and cutoff frequency. Another problem arises, that
is the above 3x3 masks are too small to control the frequency response
precisely. The cutoff frequency is either too high or too low in the particular
application, causing under- or over-filtering, A solution is found by specifying
more points in the frequency domain, resulting in an equivalent larger mask in
the spatial domain. A very common filter in the frequency domain is the
Butterworth filter. The power spectrum response of its low-pass filter is

presented as

1.0
1.0 +[ —_—_ul;);v) ]2"

| K u,v) P =

and its highpass filter's power spectrum response will be

1.0
DO ]Zn
D(u,v)

| Fu,v) | =
1.0 + [

where D, is the cutoff frequency, and D(u,v) is the discrete point along u and
v directions in the frequency domain (that is D(u,v) = u® + v?) and n is the

order of the filter. The higher the order, the sharper transition band.

The resulting pictures and the filter's power spectrum response are shown in
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Figure 1-8. We can see the filter has been very precisely defined according to

the cutoff frequency and the filter's order.

Mask design

The longer spatial domain mask does a better job. In some applications,
such as a build-in digital operator for noise filtering, the spatial domain masks
become necessary since the masks are easy and time-efficient implemented.
How can we derive the spatial domain mask? It is a problem of 2-D digital
filter design. There are many publications covering this topic. Two of the
general methods to derive the spatial domain masks are: from the differential
equation, and from frequency sampling.

If the integration can be regarded as a smoothing operation, the derivative
operation can be thought of as sharpening operation.

Let us begin with a 2-D Laplacian operation over a picture f(x,y):

v iy - S T

Defining the difference operators using forward differences gives

Of (X, ¥) _Lcryn -
—ax— f(x lsy) f(X,y)

and




onse of the (d) The magnitude frequency response of the
Butterworth highpass filter (ranging from -n
to m and zero frequency in the center of the plane)

(b) The magnitude frequency resp
Butterworth lowpass filter (ranging from-nt
to 1t and zero frequency in the center of the plane)

Fig. 1-8. Image filtering in the frequency domain

31
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af_ngﬂ —f(x,y+1) -f(x,y)

Then applying these approximations twice gives
7 E(x,y) = f(x+Ly) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)
The result of the above processing is a blurred picture, which is the same as

the convolution between a picture f(x,y) and a mask h(x,y). The mask is:

0 1 0
1 -4 1
0 1 0

This mask is the same (except for an overall minus sign) as the Laplacian
mask presented previously as an omnidirectional enhancement operator.
A simple highpass filter can be achieved by subtracting this mask from the

identity operator:

o -1 o Jo o o0 [0 1 0
14 5 a1=l0o 1 ol - 1 4 1
o -1 o0 lo o o o 1 0

_ _ _. o

This is the same mask used as an example in unsharp masking enhancement.
Another commonly used method for mask design is frequency sampling.
For a given picture, its frequency response is specified. Thus in this problem
the filter's frequency response of interest is known from other considerations.

The algorithm to derive the spatial domain mask is listed below.
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(1) Define the ideal filter with the desired magnitude response and phase
response in frequency domain, H(u,v)

(2) Take the inverse DFT (IDFT) back to spatial domain to get h(x,y)

(3) Multiply h(x,y) with a chosen window to truncate the filter to the desired
length: ' (x,y)=h(x,y) * w(x,y)

In step (2), in order to reduce aliasing, it is necessary to keep h(x,y) much
longer than f' (x,y). This procedure usually does not give the desired filter
response because of this aliasing in the spatial domain. But an iterative
method based on a criterion of the minimum of least square error of (H(u,v)-
H'(u,v))’ can improve the desire filter (oppenheim, 1975). The true frequency
response of this filter can be viewed by amply zero padding h'(x,y) and taking

the DFT. (h'(x,y) is the derived mask and H'(u,v) is the DFT of h'(x,y))

My study is in homomorphic image enhancement, image restoration and
phase-only image processing. Especially, phase-only image processing has
been mostly neglected in the digital image processing literatures. But phase
information does play a very important role in image processing. Due to the
nature of images, a lot of processing techniques may be improved or
developed by the consideration of phase-only processing. These three topics
are presented in the following three chapters. Each chapter includes

background information, theory, algorithms, and examples.




CHAPTER II

HOMOMORPHIC IMAGE ENHANCEMENT

Introduction

(a) Image scatter model.—-We see objects because they emit or scatter the
light into our eyes to form an image by the psychophysical system. A digitally
recorded picture is formed in the same way by the detector. Most objects do
not emit light by themselves, but scatter the light. The scatter situation is of
great interest in image processing. Figure 2-1 is the common and simple
model of an imaging system (Cohen, 1993): I is the illumination or incident
light, f is the scattered light, N is the normal which is perpendicular to the unit
area dA of object P at (x,y), illumination angle 6, and scattered angle 6, are the
angles between I and N, and R and N respectively, ¢, and ¢, are the slopes of
the projections of I and R onto the tangent plane at P(x,y). 6, and ¢; determine
the illumination direction, and 6, and ¢, determine the scatter direction. Let's
define a scatter function R(x,y) as the ratio of total amount of the scattered

light over the total amount of the incident light,

Roy) ff(x,y,}\.)S()\.)d}\.
X,y =
fI(x,y,}\)d}\.

21




Fig. 2-1. Image scatter model

fix,y) g(x,y) G(u,v)
>4 LOG > DFT >
Filter
<1 EXP < IDFT <
f_(x,y) g_(x,y) — G_(u,v)
Fig. 2

-2. Diagram of homomorphic image processing
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where A is the wavelength of light and the model may be simplified to be
wavelength independent. S(A) is the sensitivity of the detector and can be
taken as unity (i.e. one) in this study. It has been proved that the power per
unit solid angle in the direction of the light ray is the same as the power per

unit projected area. Thus,

_ Sf(x,y)cos 0,dA
R(x,y) = I(x,y)cos 0, dA

If the light source is infinitely far away, the incident lamp is assumed to be
parallel, and if the detector or eye subtends a rather narrow angle, the
scattered light is parallel as well. Meanwhile if the detector or the eye is
assumed to be far away from the object, the surface of the object may be
regarded as flat. Thus the scatter function R(x,y) doesn't depend on any angle
anymore and the scatter model turns into a rough reflection model, which is
f(x;y) = I(¢y) R(xy)
f(x,y) can be considered as the intensity of a pixel inside a recorded image
corresponding to the object at P(x,y). In the scattered radiation imaging
system, the illumination part I(x,y) changes very slowly in the picture, and is
largely related to the diffuse and smooth area of pictures. The illumination
contributes most to the dynamic range and the low frequency. The scattered
component R(x,y) changes very rapidly; it contains the edge information of

pictures. The scattered component has high frequency content that represents
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the edge information. The contrast enhancement may result in the edge
enhancement, and may possibly be applied to edge detection.

(b) Homomorphic image processing.--The question then is how to take
advantage of the representation of a picture with these two components, I(x,y)
the low frequency part, and R(x,y), the high frequency part. If simply
applying filter h(x,y) to the picture f(x,y), it will affect both I(x,y) and R(x,y).
Our attempt is to separate the different frequency components and apply thé
appropriate filter to enhance or eliminate a certain range of frequency of
interest. Homomorphic processing provides a transformation , thus maps the
operation in one space into another space where the operation may be easily
performed. Taking the natural logarithm of f(x,y), gives

g(x,y) = In f(x,y) = In I(x,y) + In R(xy)
filtering In f(x,y) with respect to the frequency component of interest, then,
8'(x;y) = h(x,y) ** g(xy),
where ** is the convolution operation. The filtered picture can be retrieved by
taking the exponential of g'(x,y), thus
f'(xy) = ebxy)
The homomorphic filter is non-linear and thus may satisfy a human's non-
linear psychophysical model. Our next intention is to discuss the filter for
contrast enhancement and dynamic range compression.

In the photography process, we may select the different materials and
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control the process time in order to achieve a large dynamic range which
provides higher resolution and more information. One simple way to change
the dynamic range of an image is to raise each pixel strength to a power ¥:

£ (xy) = fiixy)
The larger 7y (always greater than 1.0), the larger the dynamic range, and vice
versa. The increase of dynamic range may help contrast enhancement. But in
some situations, a reduction in dynamic range is desired. For example, the
resolution of a detector is 16-bits, but the display system can'handle only 8-
bits. The extra 8-bits are overhead. The larger dynamic range requires a
larger storage space and longer transmit time. The dynamic range
compression is a solution. If v is chosen below 1.0, then the dynamic range is
reduced.

The contrast enhancement is to boost the high frequency component R(x,y).
A high-pass boost or high frequency empbhasis filter is desired. With many
lowpass filters, such as Butterworth and Chebyshev lowpass filters, a highpass
filter can be achieved by

fu(xy) = 1.0 - fi(x,y)
Multiplying with an emphasis factor 'a’,
a fy(xy) = a [1.0 - fi(x,y)]
A constant or a low pass filter f;(x,y) is added as an offset to conserve the low

frequency information, since a constant may be viewed as an all pass filter and
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a lowpass filter will not attenuate the low frequency information. The final
filter is written as (Alexander, 1986),

fu(x,y) = a [1.0 - f(x,y)] + 1.0
or

faxy) = a [10 - f(x,y)] + (xy)

If we would like to have contrast enhancement and dynamic range
compression at the same time, it is easily implemented by adjusting the offset
of high emphasis filter to begin at ¥, since 7, smaller than 1.0 helps to compress
the dynamic range, and the emphasis factor is chosen as y,, which is normally
greater than 1.0 and helps to increase the contrast. Thus the result of picture
will be,

£(xy) = I"(xy) + R"(xy),
and the selected filter is

fu(xy) = v [1.0 - f(xy)] + v,

Experiment

The homomorphic image processing is diagramed in Figure 2-2. Following
this diagram, a complete program is easily implemented. The results are
shown in Figure 2-3. We can see the different values of y controlling contrast

enhancement (y > 1) in Figure 2-3b. On the other hand, dynamic range
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(a) The original picture TOWER' (b) The picture with dynamic range increased by a constant
homomorphic filter h(x,y) = 1.18 (y = 1.18)

(c) The picture “{ith' contrast enhancement by 2 (4) The picture with dynamic range compression by a
high emphasis filter with a factor a = 1.65 constant homomorphic filter h(x,y) = 0.9 (y=09)

Fig. 2-3. Homomorphic image processing: contrast enhancement

and dynamic control
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(e) The picture with both contrast enhancement and
dynamic range compression by a highpass filter
with ¥, = 1.65 and vy, = 0.85

(f) The magnitude frequency response of the filter to
handle both contrast enhancement and dynamic
range compression

Fig. 2-3. (Continueq)
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compression (y < 1) is shown in Figure 2-3d. The high emphasis filter
enhances the contrast, while it keeps the low frequency component in Figure 2-
3c. The contrast enhancement and dynamic range compression filter's
spectrum is shown in Figure 2-3f and the picture processed by this filter is

shown in Figure 2-3e with good results.

Conclusion

Under the simple scattering model, an image consists of both low frequency
illumination and high frequency scatter components. A relatively simple non-
linear homomorphic filter provides a good solution for contrast enhancement,

dynamic range compression, or both simultaneously.




CHAPTER III

IMAGE RESTORATION

Introduction to image restoration

The ultimate goal of image restoration is to recover the original image from
the degraded or noise-buried images with some a priori or a posterior
knowledge. This kind of research began in the late of 1960s and a lot of
advances have been made since (Sezan et al., 1990). The framework of image
restoration includes modeling, identification and restoration.

There are two kinds of models involved: the observation model and the
image model. The observation model tends to establish a mathematical model
of forming a degraded image, for example, one of the models looks like

g(xy) = S [h(x,y) ** f(x,y) + n(xy)]
where S[. . .] is a function of detector's effect, f(x,y) is the original picture,
g(x,y) is the degraded picture, h(x,y) is the degraded filter or point spread
function (PSF), and n(x,y) is the noise. The observation model tries to figure
out the correct effect of an imaging system from detectors, degraded filters,
and noise. The image model addresses of a 2-D image as a 2-D deterministic
sequences or a random field. It is worth pointing out the definition of the

random field, since it is a widely used model, and is convenient for some

30
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restorations. A family of random variables f(¥,0,) is defined as a random field.
It is the function of ¥ or o with respect to each other, where ¥ is a set of
discrete points or numbers to generate a family of random variables and the
outcome @, is the ith member of the class. In a 2-D picture, ¥ may represent
the vector position in x-y plane, say (x,y), and @, may be the ith picture in a
class of the collected pictures. It is easy to see for a given o, or a certain
picture, f(f,) can be regarded as a 2-D function or a picture in the x-y plane.
Then the picture is assumed to have a certain probability distribution function
(PDF) for the random variable f(¥,w,) at the point ¥ or (x,y) in the x-y plane,
which is denoted as

P(¥) = @ {fF,0,)}
where @ is the probability of event f(¥,w,). Then stochastic processes and
statistical techniques can be applied to image processing.

Identification is a procedure to identify the above models' parameters, or a
priori and a posteriori knowledge of the models. For example, the
identification of the observation model may involve determining what the type
of blur is, motion blur or defocus blur, or what the kind of noise, white noise
or colored noise. A priori information is an existent knowledge, such as the
degradation by a zero phase degraded filter, so that it can be assumed that the
degraded picture has the same phase spectrum as that of the original picture.

A posteriori information is the knowledge computed from the existent
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information, such as the estimated variance of the noise from a degraded
picture. A priori or a posteriori knowledge are always necessary in image
restoration. The more such knowledge, the more precise the model, and
 finally the better the restoration.

The final step is restoration. It requires restoration filter design and then
inverse filtering. There are hundreds of restoration algorithms available. They
may be classified by:

(1) linear vs. non-linear
(2) iterative vs. non-iterative
(3) deterministic vs. stochastic

My study in this chapter uses Fourier computing to implement the basic
restoration algorithms. First, let us begin with a certain imaging model. In the
above observation model's example, because of the linear character of today's
charge-coupled devices (CCD), which are much better than chemical films, the
detector’s non-linear effect S[. . .] may be eliminated. The degraded filter
h(x,y) can be then assumed to be a LSI operator and the noise n(x,y) is
assumed to be signal independent, additive noise. Then the observation model
will be

g(x.y) = h(x;y) ** f(x;y) + n(x,y)
If a restoration filter m(x,y) exists, then the restored picture f' (x,y) will be

£' (xy) = m(xy) ** g(x,y)
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It should be noted that there is no unique solution in image restoration due
to the nature of the inverse problem. The most common problems with image
restoration are: singularities, non-uniqueness, and ill-conditioning.

Sometimes the restoration filter m(x,y) may not exist. This is the problem of
singularities. Karl (1989) shows a simple example for which, with a known
short sequence and the known final convolution result, it may be unable to
recover the long sequence due to lack of the sufficient information.

Even though the restoration filter m(x,y) exists, there may be more than one
solution of m(x,y). This is the problem of non-uniqueness.

The last problem of ill-conditioning is that the restored picture's error or the
difference between the original picture and the restored picture is large and
cannot be negligible. The result may be that the restored picture is worse than
the degraded picture in some point of view, such as the signal to noise ratio
(SNR).

Since the Fourier computing is employed here for image restoration, it is
necessary to discuss the approximation required in Fourier computing of

digital signals. A 1-D LSI operator h(t) may be expressed in a Toeplitz matrix:
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As we know, with enough zero padding (at least 2:1 zero padding over the
long sequence), the overlap between two linear convolution sequences is
avoidable, and the linear convolution can then be treated with the circular
convolution. Our attempt here is to construct the circulant matrix (which will
be defined next) from the Toeplitz matrix, which may be carried out by the
discrete Fourier transform(DFT). The circulant matrix after the zero padding
over Toeplitz matrix becomes
hy 0 0 0 0 O
hy hy 0 0 0 O
hy hy h, 0 0 O
O hy hy hy 0 O

0 0 hy hy by O
0 0 0 hy hy h,

In a circulant matrix, each row is the right shift of the row above and the first
row is the right shift of the last row. For an image or 2-D matrix, zero
padding adds zero in the same positions as the above Toeplitz matrix of h: the
upper right corner and lower left corner. In the circular framework LSI
convolutions can be accomplished by the DFT. The periodic sequence is
assumed outside the DFT window. But for some image models, zero is
assumed outside the image. This significant character of the DFT may cause
artifacts in image restoration. Some restored pictures may have the obvious

crossing bars (Andrew and Hunt, 1977). Generally, the edge effect of DFT
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computing is unavoidable in image restoration. Some methods have been
proposed to solve this problem, for example, using a convolution operation in
the time domain instead of a Fourier transform in the frequency domain, or
using windowing to reduce the edge effect.

It is easy to apply the DFT to image processing under the random field
assumption. A picture may be represented as f(F). Its expected value may be
noted as E{ f(¥) }, and its autocorrelation is R(¥, ¥,) = E{f(¥,) f(£,)}, and its
autocovariance is C(¥,,F,) = E{ [f(¥,)-u(¥,)] [fF,)-u(¥,)] }. If the mean values of
u(¥,) and u(¥,) are zero, then the autocovariance becomes the autocorrelation:
R(¥.,f,) = C(¥,,f;). One very important property of the Fourier transform is that
the Fourier transform (%) of a function's autocorrelation is its power spectrum.
Thatis, | F|2 = & (R, 1)} = F (C(t,£,)). This expression will be directly
applied in the coming sections.

Before closing this section, let me quote from Sezan and Tekalp (1990) stress
that the current difficulties in image restoration stem from a lack of
(1) fast and reliable blur identification methods,

(2) general efficient algorithms for the identification and restoration of space
variant (SV) blur,
(3) the presence of artifacts in restored image.

It is hoped that there will be breakthroughs in these area in the near future.
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Inverse filter
(a) Introduction.--The observation model of interest in the previous section
is
8(xy) = hixy) ** f(x;y) + n(x,y)
Its Fourier transform is
G(u,v) = H(u,v) F(u,v) + N(u,v)
If there exists a restoration filter H'(u,v), then multiplying it on the both sides
gives
H'(u,v) G(u,v) = H'(u,v) H(u,v) F(u,v) + H'(u,v) N(u,v)
= F(u,v) + H'(u,v) N(u,v)
So the exact restored picture will be
f' (xy) =F YFuv)} = F{H(u,v) G(u,v) - H'(u,v) N(u,v)} (3.1)
where F 7 is the inverse Fourier transform, and H'(u,v) is the inverse filter.

The above derivation is based on the Fourier transform. Given the degraded
filter H(u,v) and the noise N(u,v), the exact restoration may be found. But in
practical applications, these Mo terms need to be estimated.

There is another derivation based on the least square of the noise term,
which may bring a deeper understanding to the inverse filter. The whole
approach tends to find a smooth image with a lower noise variance and thus
the noise variance is taken as a criterion.

n(x,y) = g(x,y) - h(x,y) ** f(x,y)
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for a convenient notation, let Hy be the Toeplitz matrix and write,
n=g-H;f
The noise's variance can be computed from the multiplication of the noise
matrix with its transpose. Then
¥.=nn'=(g-H ) (g-Hyf)
The minimum of variance is found by differentiating with respect to the

desired restored picture f ' . Giving
2 [(g-Hrf) (8-H f)'] =0
X 8§~y 8 ~Hr

Then
H'y f "Hy = g' Hp
Taking the transpose on both sides and retrieving f ' gives,
f'=HHY)'gHy=HY g=H, (H;f+n) =f+ H; n (3.2)
From equations (3.1) and (3.2), we can see that with the absence of noise, the

image can be exactly recovered. But with the presence of noise, {H* n} will

contribute to the new noise. This implies ill-conditioning in the inverse filter.
Let us discuss the singularities and the ill-conditioning problem next. When

H'(u,v) doesn't exist, the singularities problem arises. If H(u,v) has at least

one zero eigenvalue, it will result in a non-existent H(u,v). Most likely, a

number of eigenvalues of H(u,v) may be zero. One way to alleviate H(u,v)
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from its zero component is to add a small constant in frequency domain. This
is called whitening because the spectrum of white noise is constant and flat.
The ill-conditioning situation in the inverse filter may be serious. The error
from the inverse filtering on the noise term such as H' (u,v) N(u,v) or H'; n

will be numerous if H' or H'y is far greater than 1.0. According to Parseval's

theorem, which is
[LorGaneady = [T " FCu,v) 2 dudy (3.3)

the noise will have the same power on both spatial and frequency domain. A
criterion for noise image situation is SNR, which is defined as

5

SNR = —:
where 8% and &, are the variances of image and noise respectively. If it is
assumed that the restored picture f ' has the same power as the original
picture {, that is & = 8%, and if the new variance of noise &, calculated from
{H'(u,v) N(u,v)} is greater than previous &, then the recovered picture may
be worse than the degraded picture from the point of view of SNR.

A very common white noise degraded picture's power spectrum is
illustrated in Figure 3-1. The noise spectrum is rather flat and occupies almost

the whole spectrum. The picture's spectrum seems to be added on the tail of
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Fig. 3-1. The power spectrum of a noise image 5 (a) The original picture 'S’

y a Butterworth

lowpass filter without noise (c) The recovered picture of (b)

(b) The picture degraded b

Fig. 3-2. Examples of the inverse filter
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(d) The picture degraded by both a Butterworth (e) The recovered picture of (d)

lowpass filter and the high SNR additive noise

(f) The picture degraded by both a But?e.rwortl_i (8) The recovered picture of (f)
lowpass filter and the low SNR additive noise )

Fig. 3-2. (Continued)
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h) recovered by the inverse filter

applied to a small neighborhood range r

(

The picture of (h) recovered by the inverse filter
applied to a large neighborhood range r

)

k

(

The picture degraded by both a Butterworth lowpass (8} This pietsrs of
filter and the very low SNR additive noise

(j) The picture of (h) recovered by the inverse filter

(h)

applied to a medium neighborhood range r

Fig. 3-2. (Continued)
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the noise and it changes rapidly within a certain range r of (u,v), say u? + v?

<=1’ The ill-conditioning is due to a large H''(u,v) value affecting much on

those noise components beyond the range r. One efficient way to solve this
problem is to only allow H'(u,v) filtering the signal's terms within a certain
neighborhood range r and set H'(u,v) to be a unit elsewhere, Then the
improved inverse filter is
H'l(u,v) ={10/ H(u,v) for u? + v? <= 12
(1.0 for u? + v > g2
(b) Experiment.—The algorithm to implement the inverse filter by Fourier
computing is given below.

(1) With at least 2:1 zero padding to compute Fourier transform of the
degraded picture G(u,v) from g(x,y)

(2) With enough zero padding to make the same length of degraded filter and
make it symmetric to eliminate the phase shift problem, then compute
Fourier transform of the degraded filter H(u,v) from h(x,y) |

(3) Only compute the inverse filter within the range of u® + v? <= 12 a5 H(u,v)
= 1.0/H(u,v) and set it to be 1.0 elsewhere as H(uyv) = 1.0

(4) Filter the degraded picture: F(u,v) = G(u,v) F(u,v)

(5) Compute the restored picture from the inverse Fourier transform of F(uv).

A small number such as 1E¥ is added to prevent the problem of dividing by

zero in computing the inverse filter.,
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The test results are shown in Figure 3-2. Perfect restoration is made where
there is no noise present (Figure 3-2c), Comparing the results of a high SNR
(Figure 3-2e) with those of a low SNR (Figure 3-28), we see the inverse filter
is very noise sensitive and the ill-conditioning is very serious. What's more,
within a small neighborhood range r, the restoration is highly intelligible, but
in a large neighborhood range r, the restoration will be difficult to identify due
to the ill-conditioning from the i Inverse filtering on the noise term (Figure 3-

2k). The results confirm the spectrum distribution of the noise picture.

(c) Conclusion.--Inverse filter is the inverse of the degraded filter and also
a least square filter. The restored picture can be exactly recovered from the
inverse filter without noise or in a very high SNR condition, The small
neighborhood range helps to eliminate the ill-conditioning. Generally the

inverse filter is bad in noise immunity.

Wiener filter

(a) Introduction.—_In the previous section, the inverse filter was derived by
the least square of the noise variance. It is a rather loose criterion because it
doesn't touch the noise and image models at all. This filter is very noise
sensitivity and does little to improve the SNR. This section is going to

introduce a more vigorous criterion: minimum mean Square error (MMSE),
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which will result in a rather robust Wiener filter. Before using the MMSE
criterion, let us introduce a simple derivation of Wiener filter which actually
does satisfy the MMSE criterion, although it is not obvious from the
presentation.
Using the same observation model as in the previous sections,
g(xy) = h(x,y) * f(x,y) + n(x,y)
If there exists a restoration filter m(x,y), assume the picture can be exactly
recovered from,
g(xy) ** m(xy) = f(x,y)
For better notation, writing in brief,
g*m=f
Convolving the complex conjugate of the reverse of g on both sides gives
g'_**g*ﬂ-m=g'—%*f |
Defining the autocorrelation and crosscorrelation as

Cor=g ®f=g *f

and
<I>%=F®f=f‘_**f

Thus

No!
~

!

4]
®
5

O
oy
o
®
o
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Since

g ®f =h"f+n)@f=h""fRf+n*Qf
and"
g§®g=("f+n)®(h*f+n)
=h " fOh"f+h*"f®n+n®h*f+n'®n
=h"®h"™fRf+hN*f®n+h*n"®f+n ®n

Because it is assumed that there is no any correlation between the signal and

the noise,
N®f=0andf ®n=20
The final result of m is
- h>xxf * @ f - h* 3.4
" fPOf »xh*Qh +n*Qn D, (3.4

n
q)h,h +

)
:

Given the autocorrelation of the picture and the noise, and the knowledge of

the degraded filter, the exact restoration may be found.

Let's go further to see that this result is the same as that from MMSE

criterion.
Assume the restored picture is,
£ (X/Y )= m(x,y) * g(X/Y)

Generally, a good restoration will be as close as possible to the original image.
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An error between the restored picture and the original one is
e =fxy) - £' (0y) = f(x;y) - m(xy) ** g(xy)
The error e may represent the random numbers, and the sum square error or
the variance of zero mean may be represented as
2 (¢%) = e €' = {f(x,y) m(xy)*g(xy)} {f(x,y)- m(x,y)**g(x,y)"}
where ' is the transpose of the corresponding matrix. For a convenient
notation, assumelthat m(x,y) and h(x,y) are Toeplitz matrices M; and H;
respectively, and write in,
Z (¢%) = {(f - Mrg)} {(f - Myg)}'
= {f - My( Hif+n )} {f - My( Hyf+n )}t
since,
fn'=0andn‘f=0
The result would be
ee' = ff* - M"Y - MH,ff + MHffH'M'; + Minn'M?,;
The minimum of variance is found by differentiating with respect to the

desired filter M and forcing it to be zero,

9 -
m[ee]—o

or
'HT f P + HTffthTMtT + thT= 0

Taking the transpose of both sides and retrieving M gives
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(f'f) Hy

M = -
Hff 'Hr + nn'

All these Toeplitz matrices such as H;, HY, f, £, MY, M%, n, n* may be used
to construct the circulant matrices with sufficient zero padding on its upper
right and lower left corner. As we know, the eigenvalue A of a circulant

matrix He is the Fourier transform of its cyclic sequence hyj).

N-1 | 20k
ACk) = ;C(j) e

or
Mk) = DFT {c(j)}
Let us define e?™/N a5 a matrix W. It is obvious that the inverse Fourier
transform, that is (1/N)e™/N, can be defined as the inverse matrix WL If A,
is the diagonal matrix of eigenvalues, then the circulant matrix H¢ can be
represented as
H, = [W] Ay [W7]
And this expression has the following properties,
H' = [W] X W]
Hy + Hy, = [W] (A, + 4y) [W]
and

Ccl CcZ = [W] 0\'1 AQ) [‘Nl}
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(Please refer to the appendix for detail.) So, the restoration filter may be

represented as

fctfc}lc‘ = A';A'fA‘l: [ W..]]
Hf f H +nn! AArAf A+ Ay A

M -

Multiplying [W] on the both sides gives

AiAA,
MAAA + AA,

MW =W

Since [W] represents the Fourier transform matrix, M, [W] is the Fourier
transform of the circulant matrix M. And because H. =[W] A, [W] may be
written as He [W] = [W] A,, the expression [W] A, is the Fourier transform of

the corresponding circulant matrix H, as well. So the result in the frequency

domain is
H'F'F H*
u,v) = = 3.5
M ) H*Iﬂ;'*F + N*N |H|2+ I NI2 ( )
| | F P

Equation 3.5 was first derived by Pratt using a slightly different approach
(Levune, 1985), and the so-called Wiener filter is a special case of it at H=1.0.

But we still would like to call the general form of this restoration filter Wiener

filter.
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Equations 3.4 and 3.5 are the same except that Equation 3.5 is in the
frequency domain. This is also why the derivation of Equation 3.4 satisfies the
MMSE criterion. Equation 3.4's derivation is rather simple and easily
following than other derivation found in the literature.

The singularities problem will not exist in a Wiener filter, because of the
power spectrum of SNR term in the denominators. The SNR term also helps
to compress the iﬁ-conditioMng. But due to the simple stochastic models of
the image and noise, it makes a Wiener filter not sufficient in some

applications.

(b) Experiment.—The algorithm to implement Wiener filter is listed below,
(1) With at least 2:1 zero padding to compute the Fourier transform of the
degraded picture G(u,v) from g(x,y)
(2) With enough zero padding to make the same length of degraded filter and
make it symmetric to be zero phase, then compute the Fourier transform
of the degraded filter H(u,v) from h(x,y)
(3) Compute the power Spectrum of the original picture from f(x,y), which is
assumed to be known

(4) Compute the variance of the noise from n(x,y), which is assumed to be

known as well
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(5) Construct the restoration filter M(u,v) in frequency domain as
Equation 3.5
(6) Filter the degraded picture: F(u,v) = M(u,v) G(u,v)
(7) The restored picture is computed by the inverse Fourier transform of
F(u,v)
All the noise in our experiments is zero mean Gaussian noise which is
generated in this way,
noise = sqrt(variance) * randomn(seed)
'Randomn(seed)' is an IDI, subroutine to generate the normal distribution
random number and it is sampled from the unity distribution random number
generated by a routine called randomu(seed)'. The relationship of these two
random numbers is given below
randomn(seed) = {312, randomu(seed) } - 6.0
Sampling is adding the unity distribution numbers 12 times and subtracting
6.0 to get zero mean, which is a result of the central limit theorem.
The results are shown in Figure 3-3. Compared to the inverse filter's case
(Figure 3-3f), the Wiener filter is rather robust in noise environment (Figure
3-3e) in the same degradation situation. Even in the low SNR condition, say

SNR = 100, the restored picture is still intelligible (Figure 3-3c).
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(b) The picture degraded by both a Butterworth
lowpass filter and additive noise (SNR = 100)

(c) The picture of (b) recovered by the Wiener filter (d) The picture degraded by both a Butterworth
lowpass filter and additive noise (SNR = 1000)

Fig. 3-3. Examples of the Wiener filter
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(e) The picture of (d) recovered by the Wiener filter (f) The picture of (d) recovered by the inverse filter

3-3. (Continued)

Fig
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(c) Conclusion.--The Wiener filter is based on a better criterion than
minimizing the noise variance, which was used in the inverse filter. The
Wiener filter criterion is to obtain MMSE between the restored picture and the
original picture. Wiener filter is a rather robust filter for noise immunity and

the restored picture has remarkably been improved in SNR.

Magnitude-only inverse filter
(a) Introduction.—The criterion of Wiener filter is based on obtaining a
restored picture which is the closest approximation to the original picture.
This section is going to introduce another criterion which is based on the
closest approximation of the power spectrum of the restored picture to that of
the original one. Even though the criterion is looser than the Wiener filter, it
will result in a magnitude-only filter of interest.
Using with the same observation model,

g0.y) = h(xy) * f(x,y) + n(xy)
if there exists the restored filter m(x,y), the restored picture will be,

g(xy) ™ m(xy) = ' (x,y)
Its Fourier transform is

GM=F"'
According to Parseval's theorem (Equation 3.3), a time domain sequence will

have the same power as that in the frequency domain, thus
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Gk IM P = [FE

where IGF and [P are the power spectra of the degraded picture and

original picture respectively. So,
M- ’Jﬂ_’
G?

It is obvious that M(u,v) is a magnitude-only inverse filter. If the power
spectrum of the original picture [FEis known, the only thing left for thé
restoration filter is the power spectrum of the degraded picture IGE. This
turns to a problem of power spectrum estimation of a degraded picture. A
very common method is ensemble average, which is based on the ergodic

assumption of an image. The average of picture f(x,y) is presented as
_ 1
E = 2[f(x,) duy

where A is the area in averaging and f(x,y) is a picture or a random field. If E
is constant, then E is equal to the mean, and the random field is called ergodic
with respect to the mean (Rosenfeld, 1982). If a collection of pictures is a
random field, then the mean of the random field may bé obtained from the
spatial average over one of the collection pictures. This character will be
applied in Chapter IV, which is to use the average magnitude of one of the

collection pictures and the original Phase spectrum of picture for image
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synthesis. The other type of ergodic assumption of an image is ergodic with
respect to the autocorrelation, which means the spatial average E is constant in
the integration of the autocorrelation of f(x,y) instead of the image f(x,y). And

E can be represented as
E= 2 [ [FCxy) F(xva,yb) duy

Also, the power spectrum of a collection of pictures in the random field can be
obtained from the spatial average over the autocorrelation of one particular
picture. Under this assumption, an ergodic picture may be partitioned into
several segments, each of which can be used for power spectrum estimation of
the complete picture. This partition averaging method is called ensemble
averaging and it improves the SNR, since summing the noise data for N times,
the signal grows N times as well, but the noise only grows sqrt(N) times, thus
the new SNR will grow N/sqrt(N) = sqrt(N) times. But there is a significant
tradeoff in ensemble averaging. Each segment is treated as a data window,
which determines the frequency resolution. The smaller the segments, the
more averaging operations, thus the better SNR, but the worse the frequency
resolution. One improved method is allowing overlap among the segments
which may not only maintain a certain size of data window, but also increase
the averaging operations (Stearns, 1988). What percentage of the overlap is the

best? There is no unique answer. It depends on the practical situation and is
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determined by trial and error. Please note that inside an image, the pixels are
only correlated within a small region. This means the overlap of segments
may form a new data window. Meanwhile, if the distance between the pixels

is beyond 20-30 pixels, there is no correlation at all. This implies that too

much overlap may be useless. This filter is called ensemble average
magnitude-only filter.

Another method to estimate the degraded picture's power spectrum directly
begins with the definition of the power spectrum of a degraded picture, which
is

GP= G'(u,v) G(u,v) <H F +Ny ® F + N) = | HE I + IN?

Then the final restoration filter will be

S
W*W

It looks like a Wiener filter, but it is a magnitude-only filter. This filter is
called Wiener magnitude-only filter and it requires the power spectrum of the
degraded filter in computing, which is not known in some practical
applications. In this situation, ensemble average magnitude-only plays a more

important role.
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(b) Experiment.-_The algorithm to implement ensemble average is listed

below:
(1) Divide a degraded picture g(x,y) into N x M segments and each segment
containing n x m pixels
(2) Compute the periodogram of each segment by Fourier computing,
G(u,v) = (1.0/n m) [DFT { g(xy) }]
(3) Sum every periodogram until all the segments have been processed,
G ® =G b+ (1.0/n M) G(u,v)
.(4) Compute the power spectrum of an original picture IF ¢ » which is
assumed to be known
(5) Compute the power spectrum of the degraded picture G
(6) Interpolate G bto the same length as lG#by Fourier computing:
transform IG "2 into spatial domain, with enough zero padding, transform
it back to frequency domain,
(7) Form the magnitude-only inverse filter by M(u,v) = sqrt(d,/ ®,)
(8) Filter the degraded picture by: F'(uv) = G(u,v) M(u,v)
(9) The restored picture is computed from the inverse Fourier transform of
F' (uv).
The results are shown in Figure 3-4 to Figure 3-6. Generally, the ensemble
averaging has a better statistical resolution than Wiener magnitude-only filter,

but there may be some loss in frequency resolution in the small window size
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{a) The criginal pictie 5 (b) The picture degraded by both a Butterworth lowpass

filter and the additive noise (SNR = 1000)

(c) The picture of (b) recovered by the Wiener

magnitude-only filter (d) The picture of (c) recovered by the ensemble

averaging magnitude-only filter with window
size = 64 and overlap = 32

Fig. 3-4. Examples of magnitude-only inverse filter and
ensemble averaging magnitude-only filter with

SNR = 1000



(b) The picture degraded by both a Butterworth

(a) The original picture '5' lowpass filter and additive noise (SNR = 100)

(c) The pi;ture of (b) 'recovered b_)’ (d) The picture of (c) recovered by the ensemble
the Wiener magnitude-only filter averaging magnitude-only filter with window
size = 64 and overlap = 32

Fig. 3-5. Examples of magnitude-only inverse filter
and ensemble averaging magnitude-only
filter with SNR = 100
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(b) The picture of (a) recovered by the ensemble
averaging magnitude-only filter with window
size = 64 and overlap = 32

(a) The picture degraded by both a Butterworth
lowpass filter and the additive noise

(c) The picture of (a) recovered by the ensemble (d) The picture of (a) recovered by the ensemble
averaging magnitude-only filter with win e averaging magnitude-only filter with window
size = 128 and overlap = 32 size = 128 and overlap = 64

Fig. {3—6. Examples of ensemble averaging magnitude-only
inverse filter with different window size and overlap length
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(Figure 3-4c vs. Figure 3-4d and Figure 3-5c vs. Figure 3-5d). With a longer
data window, the recovered picture has been improved in frequency resolution
(Figure 3-6¢ vs. Figure 3-6d). The smaller the data window, the more addition
operations, thus the improvement of statistical resolution (Figure 3-6b). And a
proper window size and the length of overlap can improve both statistic and
frequency resolution (Figure 3-6d). Meanwhile, with ensemble averaging
some DEFT artifacts occurs (Figure 3-6b), since ensemble averaging employs

DFT to compute the periodogram of each segment.

(0 Conclusion.--Magnjtude-only filter is assumed to be zero phase and
will not change the phase spectrum. The ensemble average of the degraded
picture estimation helps improve the SNR and with a proper window size and
overlap length, a good restoration may be achie\‘red. In the practical
application, only a degraded picture and original picture's power spectrum are

available, so the ensemble average will be very useful.

Summary

Three different restoration filters have been discussed. Recalling the
definition of image restoration, we will see how important a priori and a
posteriori knowledge are. All the derived filters are based on the different

models. The table below is a summary of three types of filters .
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Table 3-1. Summary of three types of restoration filters

F“F I
Inverse filter Wiener filter Magnitude-only
filter
priori knowledge h(x,y) h(x,y), ®, ®, | &,
posteriori knowledge | no require no require O,
criteria nn' (F-£" )£ ')t | (EP-If 'B)(iFP- ;
£ P
|
Noise immunity bad good better |
frequency resolution unchanged unchanged | decreased
statistical resolution | slightly improved | improved much improved
singularities problem | yes no no
phase problem no no yes
e ——————

In the above table, h(x,y) is the degraded filter, &, ®_and ®, are the power
spectra of original picture, noise and degraded picture respectively, f ' is the
restored picture, magnitude-only filter refers to that of the ensemble
averaging, and the criterion is taking the least square of the corresponding
terms. Bad noise immunity may result in ill-conditioning in a low SNR
situation.

Even though these three filters are derived from different constraints, they
are related. Under some conditions, they can be changed to another form. For

example, the Wiener filter is
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if there is no noise present, h\ﬂ2 = (), then

_H 1.0
M“"’)"u‘Tz 7

This is the inverse filter. In the condition of extremely low SNR, that is [F? ->
0, then the Wiener filter will be M(u,v) -> 0 also. But for the magnitude-only
inverse filter, the sjtuation is different. Since ’Gt’ = lH(u,v) P fFP + INP,

if HZ = 0, then ,sz = lNF, thus the magnitude-only inverse filter will

change from its original form

‘ @
=
Mu,v) —ﬁ(pg
to
Mu,v) = (—iﬁ

n

In this case, the magnitude-only inverse filter is proportional to the ratio of the
power spectrum of the signal over the power spectrum of the SNR according
to our definition. And this is why this kind of filter may be used in a very
low SNR situation. If the degraded filter is a delta funcﬁon, that is H(u,v)

=1.0, then the Wiener filter will become,
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This is so-called Wiener filter which is derived by Wiener. It is the magnitude-
only restoration filter as well. It can be successfully applied in the known
SNR additive noise degradation.

Among these three filters, the ensemble average magnitude-only inverse
filter requires the least a priori knowledge, except the power spectrum of the
original picture. The Wiener filter requires more a priori knowledge and thus
does a better job in most cases. However in some applications, the variance of
the original picture is not available, and a variance estimation procedure is
required. The iterative Wiener filter may be well applied in this case (Hillery
et al, 1991). The iterative method begins with a variance of the degraded
picture and treats it as the variance of the original picture. After filtering the
degraded picture, it uses the variance of the restored picture as the variance
of the new original picture again for the next step. The algorithm is listed
below,

(1) Compute the power spectrum of the degraded picture ®, and use it as the
power spectrum of the original picture: Gk -> [

(2) Compute the Fourier transform of the degraded picture: G(u,v)

(3) Construct the Wiener filter from Equation 3.4: M(u,v)

(4) Filter the degraded picture in the frequency domain: F ' (u,v) = G(u,v)
M(u,v)

(6) Compute the restored picture f ' (x,y) from the inverse Fourier transform
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of F(u,v)
(6) Compute the power spectrum of the restored picture f ' (x,y) and use it as
the power spectrum of the original picture: Bk IF
(7) Compute the Fourier transform of a restored picture G ' (u,v), and take it
as that of the new degraded picture: G ' (w,v) -> G(u,v)
(8) Goto (3) until the iterative condition is satisfied

The results are shown in Figure 3-7. We can see the restored picture after 10
iterations has been improved and results in more structured features in the
tree and the black border of the picture (Figure 3-7d).

In the mathematical model point of view, Wiener filter is nearly perfect, but
our non-linear visualization system does not show the enthusiasm to welcome
it. Our visual psychology prefers some kind of noise and throws away some
structured features. This is the reason some reétored results from Wiener filter
are not welcome. Here are some further discussions about the magnitude-
only inverse filter. The criterion to derive the magnitude-only inverse filter is
rather loose, as we will see in Chapter IV. In the common pictures, the power
spectra of the common pictures look similar, especially in the low frequency
region. But there is no doubt about the ability of ensemble averaging to
reduce the variance of the degraded picture and to improve the SNR. A better
proposal for ensemble average is windowing the data segments before

computing their periodograms (Dudgeon, 1984). Finally, the magnitude-only
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(a) The original picture UWO' (b) The picture degraded by both a Butterworth
lowpass filter and the additive noise

4
)
s
g

- ..

(c) The picture of (b) recovered by the iterative (d) Thg picture of (b) recoyered by the iterative
Wiener filter at the first time Wiener filter after 10 times

Fig. 3-7. The example of the iterative Wiener filter
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inverse filter assumes zero phase degradation, but in some applications, it may
cause a problem. For example, the motion blur may be thought as a
convolution between a picture and a box car. The Fourier transform of a box
car is a sinc function and Gibbs phenomenon will exist in the frequency
domain. The positive hump of the sinc function generates the zero phase, but
its negative counterpart will give a 180-degree phase angle. Obviously, in this
case, the magnitﬁde-only filter cannot recover the correct phase spectrum and

the wrong information may contribute to the edges of the picture.




CHAPTER IV
PHASE-ONLY IMAGE PROCESSING

The importance of phase in image synthesis

(a) Introduction.—As we have seen before, the Fourier transform plays an
important role in image processing. The Fourier transform of an image f(x,y)

can be expressed as

F(u,v) =f:f;wf(x,Y)e H2m (uxvy) dxdy
The inverse Fourier transform can be written as

f(x,y) =f:f:F(u,v)ei2” (UX+vy) qudv

In general, f(x,y) is a finite and positive 2-D sequence and F(u,v) is a 2-D
complex sequence. F(u,v) can be represented in terms of a real part Re{F(u,v)}
and an imaginary part Im{F(u,v)}, or in terms of a magnitude part M(u,v) and

a phase part 6(u,v). M(u,v) and 6(u,v) can be computed from,

AA

2
M(u,v) = s/(Re(F(UrV)))2+(Im(F(u,V) ))?

and

68
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~tan 1AM (F(u,v))
O(u, v) =tan lRe(F(u o))

Our study determines the different contributions of the magnitude and
phase spectra to image synthesis and apply this knowledge to image
processing.

Given a magnitude or phase spectrum, or both, it is of interest in image
synthe31s to find out the original i Image. The inverse Fourier transform
provides a solution to the problem. Three kinds of synthesis may be
classified: a complete synthesis, magnitude-only synthesis and phase-only
synthesis. A complete synthesis may be derived when given both magnitude
and phase spectra. It is,

f(x,y)=5 "1 {M(u,v)elo(uV))
where 7 1 is inverse Fourier transform. The magnitude-only synthesis is
defined as

fxy)=7 "1{M(u,v)}
and phase-only synthesis is defined as

£x,y)=F “LMp(u,v)el®(v))
where My(u,v) is the unity magnitude or the average of a class of similar
images. Itis based on the ergodic assumption of images which has been

discussed in the ensemble average section of Chapter III.
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(b) Experiments.--We begin with the synthesis of one single picture. First,
we compute the Fourier transform of a single picture f(x,y), then retrieve the
magnitude M(u,v) and phase 8(u,v) spectrum respectively, and finally, we
carry out the magnitude-only and phase-only synthesis. For the phase-only
synthesis, if the unit magnitude spectrum My(u,v) is very small, say 1.0, the
synthetic picture may be too dim to see and an appropriate factor for My(u,v)
will then be needed. The results are shown in Figure 4-1. This case tells us
that the phase spectrum contains the most important feature of an image and
the synthesis from the phase-only spectrum is very high in intelligibility
(Figure 4-1b), while the magnitude spectrum is not (Figure 4-1c). This implies
possible image reconstruction from phase-only information.

Let us look at the synthesis in crossing two different pictures. Following the
same instructions above, we compute the magnitude and phase spectra of two
pictures respectively, exchange the phase spectra of these two pictures and the
magnitude spectra remain unchanged. The synthesized pictures are shown in
Figure 4-2. This case highlights the previous statement again. The synthetic
picture is determined by the corresponding phase spectrum and seems to have
nothing to do with the magnitude spectrum. For example, the image (Figure
4-2¢) synthesized from the phase spectrum of UWO' and the magnitude
spectrum of '"MAN' (Figure 4-2a) looks close to its phase spectrum's picture

'UWO' (Figure 4-2b).
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(b) The phase-only synthesis picture from the phase
(a) The original picture MAN' spectrum of ' MAN' and unit magnitude spectrum

(c) The magnitude-only synthesis picture from the
magnitude spectrum of 'MAN' and the zero phase

Fig. 4-1. Single picture's synthesis
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(d) The synthesized picture from the phase

(c) The éynthesized picture from the phase ; . '
spectrum of UWO' and the magnitude spectrum of 'MAN' and the magnitude
spectrum of MAN' spectrum of UWO'

Fig. 4-2. Pictures' cross synthesis
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The two continuous grey tone pictures (MAN' and 'UWOQ') above are very
common in our daily lives. But still, there exist some special cases, like
pictures with very high geometric structure and symmetric pictures. Let us
choose two of these pictures and repeat the experiments above. The results
are shown in Figure 4-3 and Figure 4-4 respectively. The weight of the test
results seems to be put more on the magnitude side (Juvells, 1991). The
magnitude-only synthesis has a good reconstruction (Figure 4-3c). What's
more, the synthesized picture from the phase spectrum of 'BALL' (Figure 4-4c)
doesn't look like the balls at all, but like some similar periodic bar information
from its magnitude-contributed counterpart. Meanwhile the synthesis from the
magnitude part of 'BALL' contains something that looks like the balls (Figure
4-4d). But still, there is another important characteristic of the phase spectrum.
That is the phase information can give the correct location of the pixels in the
spatial domain. The phase-only synthesis of a bar picture (Figure 4-3b) has a
very sharp edge like its original picture (Figure 4-3a) and the synthesized
picture from the phase spectrum of 'BALL' (Figure 4-4d) has three horizonal
bars which implies the possible location of the balls in the horizontal direction.
This is one significant feature of the phase spectrum. As we know, the shifting
in spatial domain only effects the phase spectrum, it has nothing to do with
the power spectrum. Another well-known case is when an IIR filter is applied

to an image, the incorrect phase response may distort the edge information
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() The original picture BAR (b) The phase-only synthesis picture frorr_1
the phase spectrum of 'BAR' and unit
magnitude spectrum

4 bl Gl

(c) The magnitude-only synthesis picture from
the magnitude spectrum of 'BAR' and
the zero phase

Fig. 4-3. Single high-geometry picture's synthesis
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(a) The original picture 'BAR'

(c) The synthesized picture from the phase (d) The synthesized picture from the phase
spectrum of '‘BALL' and the magnitude spectrum of 'BAR' and the magnitude
spectrum of 'BAR' spectrum of 'BALL'

Fig. 4-4. High-geometry picture's synthesis
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and result in a blurred profile image (Dudgeon et al., 1984),

In order to have a better understanding of these, it is helpful to look at the
magnitude and phase spectra in the frequency domain. Figure 4-5 and Figure
4-6 illustrate the logarithms of the magnitude and phase spectra of 'UWO' and
'MAN, and 'BAR' and 'BALL' respectively. Surprisingly enough, all
magnitude spectra are very high in intelligibility, while the phase spectra are
not. Buf within a certain area near the zero frequency (the central part), the
magnitude spectra of 'MAN' and "UWO' are very similar (Figure 4-5a vs.
Figure 4-5¢). This is true for most continuous tone pictures. As for the phase
spectra, they are different in texture and pixel’ orientation. It is easier to see if
we divide the spectra into blocks. Looking at the geometric pictures' spectra,
the magnitude spectra reflect the significant geometric characteristics of the
original pictures (Figure 4-6a vs. Figure 4-6c). The higher geometric structure
in magnitude spectra allows them to play a more important role in image

synthesis.

(¢) Conclusion.—_After a series of experiments, we have seen different roles
played by the magnitude and Phase spectra. Generally, the phase spectrum
contains more important information of a picture and phase-only synthesis is
higher in intelligibility. While for the geometric, periodic, or symmetric

pictures, the magnitude spectrum contributes more to image synthesis.
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(a) The magnitude spectrum of
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(c) The magnitude spectrum of UWO' (d) The phase spectrum of 'UWO'

Fig. 4-5. Logarithm magnitude spectra of continuous grey
tone pictures
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Image restoration via a true phase spectrum
(a) Introduction.—As previously explained, the phase spectrum catrries the
most important information of an image and an image may be well
reconstructed from its phase-only synthesis. One of the most successful
applications is found in image restoration.

In Chapter II, a degraded picture is modeled as,

8(xy) = h(x;y) ** f(x,t) + n(xy)
If h(x,y) is a zero phase or near zero phase operator, regardless of the
sensitivity of the deviation from zero phase, the degraded picture has the same
phase spectrum as that of the original one. Given this phase spectrum, the
problem of restoration is to find the correct magnitude spectrum. One solution
is based on power spectrum estimation. The other solution is based on the
magnitude-only filter which will not change the correct phase spectrum.

Let us begin with the power spectrum estimation. Assume the absence of
noise and h(x,y) as a smoothing operator, since most degraded cases of
computer simulation are generated by a lowpass or Gaussian filter. Then

g(xy) = h(x,y) ** f(x,y)
Its Fourier transform is
G(u,v) = H(u,v) F(u,v)
Since the phase spectrum of G(u,v) is the same as that of F(u,v), only the true

magnitude spectrum is left to be discovered in the restoration. Let the




degraded picture pass another zero phase smoothing filter, say S(u,v)[ . . .

then
Su,v)[G(u,v)] = S(u,v)[ H(u,v) Fu,v) ]
Since H(u,v) is also a smoothing operator, approximately
S(u,v)[ G(u,v) ] = H(u,v) S(u,v)[ F(u,v) ]

or

S, v)[Qu,v)]
Hu,v) S(u, v)[F(u, v)]

then

- Ku,v) _ S(u, v)[Flu,v)]
F(u’v)-H( vy ~ &) SCu, v)[Qu, v)]

]
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For most common pictures, the magnitude spectra look similar to each other

(especially within a small area of the zero frequency). If we encapsulate a set

of similar magnitude spectra's pictures into a class, then S(u,v)[F(u,v)] can be

regarded as a smoothing operator over the average spectrum of a set of

pictures or over a very similar magnitude-spectrum-looking picture. It is

obvious that the smoothing operator helps to reduce the dissimilarity among

pictures of the same class, since the smoothed pictures only contain similar

low frequency information. On the other hand, the smoothing operator S(u,v)

helps to prevent a large deviation from the original operator H(u,v), it is easy

to understand that the result of the convolution of two Gaussian filters is still
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in the Gaussian shape, except different in width. So the approximation will be

S(u, v) Fy(u,v)|

/ =
F'(u,v) =Qu, v) SCu, v) |u,v)|

where | Fy(u,v) | and | G(u,v) | are the magnitude spectra of the ensemble
pictures or an arbitrarily similar magnitude spectrum picture and degraded
picture respectively. The restored picture will be

f0y)=5 "1 (F (uv)et®¥))

Unlike the other methods introduced in the chapter on image restoration,
this method does not require any a priori knowledge except a degraded
picture g(x,y) and a reasonable assumption of zero phase degradation. The
principal challenge is power spectrum estimation. Compared to those
algorithms, for example Wiener filter, this method seems to be poor. Rather, it
is presented to reiterate the important feature of the phase spectrum and the
- similar power spectrum of most images.

Let us change to the restoration from magnitude-only filtering. Among all
the restoration methods in Chapter III, both inverse filter (or so-called least
square inverse filter) and Wiener filter (or so-called minimum mean square
error (MMSE) filter) require one term of degraded filter H(u,v), which may hot
be zero phase. Even though the original degraded filter H(u,v) is a zero phase

filter, the estimated of PSF (point spread function) estimation may be a non-
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zero phase degraded filter. But all the experiments in image restoration of
Chapter 3 are under the real degraded filters, which is the same as the
assumption made in this section. The magnitude-only filters are of great
interest, since they will not change the phase spectrum. Two of these types of
filters are presented here: one is the so-called Wiener filter, which is a special

case of MMSE filter when H(u,v) is a delta function, that is H(u,v)=1.0, giving

1.0
1.O+[| NCu,v) P F(u,v) 1]

Mu,v) =

where h\I(u,v)l2 and lF(u,v)r2 are power spectra of noise and original picture
respectively. The Wiener filter is to remove degradation from additive noise.

The other is a magnitude-only filter, which has the form

Mu,v) = Fu, v)|
\l X u, v) 2
where lG(u,v)l2 is the power spectrum of the degraded picture. The restored

picture can be computed from

f(x,y) = IDFT[ M(u,v) G(u,v)]

(b) Experiment.—The results of the power spectrum estimation are shown
in Figure 4-7. The original filter H(u,v) is a Butterworth low pass filter with a
cutoff frequency at 6.0/512.0 x, and the smoothing filter S(u,v) is arbitrarily

chosen to be the same type of filter with a cutoff frequency at 9.0/512.0 .
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(a) The original picture 'S (b) The picture degraded by
a Butterworth lowpass filter

(c) An arbitrary picture '8' used (d) The picture recovered by
for spectrum estimation the power spectrum estimation

Fig. 4-7. Image restoration via power spectrum estimation
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(e) The natural logarithm magnitude (f) The natural logarithm magnitude

spectrum of '5' spectrum of '8’

Fig. 4-7. (Continued)
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Compared to the original picture (Figure 4-7a), the restored picture (Figure 4-
7d) is well restored. The artifact of the restored picture is because of the
contribution of picture '8' 's magnitude spectrum. While looking at the power
spectra of '8' and '5', we find that in a small region of zero frequency, the

power spectra of the original picture and the arbitrary picture are very similar

(Figure 4-7d vs. 4-7f).

(c) Conclusion.--In a zero phase degraded situation, the phase spectrum of
the degraded picture is the same as that of the original one. A restoration can
be achieved with the correct phase spectrum and the estimated power
spectrum. Among all the filters involved, only the magnitude-only filters and

real zero phase filters are most appropriate in this case.

Image reconstruction from phase-only information

(a) Introduction.—_The problem of this section is very similar to phase-only
image synthesis and image restoration from its phase spectrum: an attempt to
reconstruct a magnitude spectrum of an image close to original one. Since the
phase spectrum is known, with an approximate magnitude spectrum, the
image reconstruction is achieved. But the phase-only synthesis is made by
means of a unit magnitude spectrum or the magnitude spectrum of ensemble

images, while the phase-only image restoration is through the power spectrum
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estimation over a degraded picture. Our task here is to find a direct
relationship between magnitude and phase spectrum of an image. In some
practical applications, for example, only the phase information is known. An
example is a kinoform, a device to record the phase information of the
scattered wavefront where the exact magnitude spectrum constructed from
the phase spectrum is highly valuable and of great interest.

This question is gimilar to an interesting topic in DSP called spectral
factorization, which is to recover a time or spatial domain sequence from its
power spectrum or autocorrelation. Among all the sequences, only the
minimum phase one is of interest, since the minimum phase sequence is a
causal, stable and physically realizable system. A minimum phase sequence

may be written as

(Z-2)(Z-Z)...(Z-Z)

S ZFy(Z ). (ZP)

where all the zeros (Zy, Zy, ... ,Z,) and poles (Po Py, ... ,P,) are outside the
unit circle. Under the minimum phase constraint, the magnitude spectrum
M(w) and phase spectrum 6(w) are scale factors of Hilbert transforms of
natural logarithms of each other,

6(w) = R[0.5 In M(w))]
and

0.5 In M(u,v)) = R[6(u,v)]
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where R is the Hilbert transform. A detailed derivation and discussion can be
found in Karl's book (1989)(Chapter 10 on spectral factorization).

The above statement is also true for a 2-D minimum phase sequence. But
the discussion of a 2-D minimum phase sequence is not as straightforward as
that in the 1-D case, due to the algebra’s difficulty, that is the multidimensional
polynomial cannot be generally factored. The power spectrum of the 1-D
signal x is defined as

P(Z) = X(Z) X'(z'])
where " is the complex conjugate, and P and X are corresponding Z-
transforms. If x is real, then

P(Z) = X(Z) X(Z'Y
To find out the 2-D sequence in this form is extremely difficult. However,
there does exist such an expression in the 2-D case, called transcendental
factorization (Dudgeon et al., 1984),

(ZyZp) = X(Z1,Z9) X2y Z,7")
But X(Z;,Z,) has an infinite numbers of terms. In practice, the infinite terms
of X(Z1,Z,) will be a problem. For further study, let us change to a more

convenient quantity, called the cepstrum x'(nl,nz), which is defined as

x(ny,n,) = (zé)szln X(Z,,2,) 2" "'z, dz dz,

The multiplication operation of the natural logarithm may be changed to the
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addition operation, which helps to settle the problem in quadrants. Thus the
transcendental factorization can be expressed as,

P (ng) = x(ny,1g) + X (-n,1p)

It is known that for multidimensional minimum phase sequences, their
inverse and complex cepstra are absolutely summable and have the same
region of support, which means the sequences are non-zero only in one
quadrant of the (ny,n,) plane or a certain area, and will be zero outside that
area (Dudgeon et al., 1984). The same region of support may be non-symmetric
half-plane, etc. The same region of support is crucial to multidimensional
minimum phase sequence. Since p'(nl,nz) = x'(nl,n?_) + x'(-nl,-nz) can be
written as x'(nl,nz) = p'(nl,nz) - x'(-nl,-nz). The condition for x(nqn,) to be
both the minimum phase and finite term sequence is with the region of
support in the first quadrant only, which is |

( p'(nl,nz) n,>0andn; >0
x'(nl,n2)= {05 p'(nl,nz) n,=0 and n; =0
Lo elsewhere

This is the minimum phase constraint for 2-D sequences. However, many
pictures of interest are not minimum phase sequence, which limits the
application. But some other theorems (Quatieri, 1979) to broaden the class 6f
such images, allow the exact magnitude reconstruction from the Fourier

transform of its phase spectrum. These are listed below:
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For 1-D case: For a sequence with no zero on the unit circle and no zero in
conjugate reciprocal pairs, the magnitude spectrum is a scale factor of Fourier
transform of its phase spectrum.

For 2-D case: For a finite N;xN, points sequence with no symmetric factor
in its Z-transform, the magnitude spectrum is a scale factor of 2N;x2N,

Fourier transform of its phase spectrum.

(b) Experiment.—The algorithm is very straightforward under the theorem
mentioned above (Oppenheim, 1981). But the picture f(x,y) must satisfy the
following:

(1) £(0,0) is non-zero.
(2) f(x;y) will be zero outside the region of 0<= x <=N;-1 and 0<=y <=N,-1
(3) No symmetric part in DFT and IDFT.
Then the algorithm is the following:
(1) 2:1 zero padding the picture f(x,y) to f' (xy)
(2) Compute and store the phase spectrum 6(u,v) of the picture f ' (x,y)
(3) Choose a unit magnitude spectrum My(u,v)
(4) Compute f' (xy)=F "1(M(u,v)el®@)
(5) Only take the first half of f ' (x,y) to store as f(x,y)

(6) 2:1 zero padding f(x,y) to f ' x,y)
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(7) Compute the magnitude spectrum M(u,v) and new phase spectrum 6 '(u,v)
of the picture f ' (x,y), and discard the new 6 ' (u,v)

(8) Compute f ' (x,y)=F"1(M(u,v)eléV))
(9) Only take the first half of f ' (x,y) to store as f(x,y)
(10) Go back to (5) until a preselected number of iteration are completed.

The results are shown in Figure 4-8 and the reconstructed pictures (Figure 4-
" 8cand Figure 4-8d) are much better than those done via the simple phase-only
image synthesis and phase-only image restoration. After the sufficient
iteration, there is almost no visual difference between the original picture

(Figure 4-8a) and the reconstructed picture (Figure 4-8d).

(0) Conclusion.-_Under the minimum phase condition, the magnitude can
be exactly reconstructed from the Hilbert transform of its phase-only spectrum.
And under some conditions as mentioned above, the magnitude can be exactly
reconstructed by a scale factor of Fourier transform of its phase spectrum. The
iterative method of eliminating the symmetric part of the image yields good

results.
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(b) The picture reconstructed from the
phase spectrum of MAN' and the
unit magnitude spectrum

(a) The origi_nal pictu_re 'MAN'

. (d) The pictgre rgconstructed
(c) The picture reconstructed affer 50 Gteratiane
after 8 iterations

Fig. 4-8. The iterative image reconstruction via the
Fourier transform of the phase spectrum
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Phase-only match filter and its applications
(a) Introduction.—Since the phase spectrum contains the most important

information of an image and the image can be exactly constructed from its
phase spectrum under a certain condition, can we apply this knowledge to a
filter design? For example, first extract the phase spectrum from a signal, then
design a filter based on its phase spectrum and use this filter to detect the
desired signal. This is the problem of matched filter design.

The matched filter concept has many applications in DSP. It is particularly
used in extracting the signal from the noise environment and improving the
SNR. Here, the SNR is defined as the ratio between the power of the filter
output when only signal is present and the power of the filter output when

only noise is present,

'f_:s(t) *xh(t)dt ’2

SNR =
l f_:n(t) **xh(t)dt l2

where s(t) is the signal, n(t) is the noise and h(t) is the filter respectively. SNR
is a criterion for deriving the matched filter, and Karl's book (1989) gives the
detailed derivation at pages 217-221. The general guideline is: first form the
autocorrelation of noise ® by multiplying the noise matrix n(t) and its |
transpose nl(t), then in order to maximize the SNR performance, take the

derivative with respect to filter's coefficient h,, finally the result is given below,
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D o D) (ke Sn-1

So the crosscorrelation between the noise's autocorrelation and filter h(t) is the
reverse order of the signal sought to be detected. Thus h(t) is called a
correlator or a matched filter which searches for the desired signal in the
noise. The autocorrelation of white noise is unity at zero lag and zero
elsewhere. Thus,

h=s
The Fourier transform of it will be

H(w) = S'(0) = | S() | 6@
Let M() be the magnitude of S(w), and obviously there exist three types of
filters. The classical matched filter is

H(w) = M(a) 0@
When M(w) = 1.0, the phase-only matched filter is

H(o) = e 10(0)
When 6(w) = 0, the magnitude-only matched filter is

H(o) = M(w)

These matched filters can easily be expanded to 2-D case. Next, we discuss
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the criteria for testing these filters:: Horner efficiency, peak height, noise
immunity and discrimination ability.

Horner efficiency (Horner, 1984), also named optical efficiency, is defined as

f.:/.:“x’ y) **h *(x, y) ldxdy
[5[7 ¢ (X, y) Py

where ny,, is the medium's efficiency and is taken as unity in this study. This

criterion for the discrete case with a finite number of terms becomes

-1 n-1

Y Y f(x,y) *x h'(x,y)
_ x=0y=0
77}1 - n-1n-1

a;y};f(x,y)lz

3

=

The autocorrelation and crosscorrelation can be very easily implemented by
Fourier computing. Horner proved that the pure phase correlation filter has
100% light efficiency. Thus the phase-only matched filter has the full Horner
efficiency; and the other two are considerably less.

The peak height is directly related to the power of the output. The matched
filter forms the crosscorrelation with the incoming signal. If this filter is the
reverse version of the signal, this correlation then becomes the autocorrelation

of the signal whose Fourier transform is its power spectrum. Thus the -
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correlation part, the output energy is multiplied with the peak height. The
classical matched filter has a unit or near unit height in the noise condition,
while the peak of the phase-only matched filter is larger than that. This is
why the phase-only correlator can increase the output energy compared to the
classical correlator.

Among these three filters, the phase-only matched filter has the sharpest
peak and the smallest sidelobes. The sharp peak assists in the precise location
of a target, and the small sidelobes help to eliminate the judgement of the false
targets which may be generated by the sidelobes.

The ability to discriminate close objects is subject to the peak character of

matched filters and it can be defined as a different term A,

A = 'Eq}.h_zq)h.h l
YD

The greater the difference between the crosscorrelation @, and the

autocorrelation <I>f’f , the better the discrimination ability, thus a larger
different A. The phase-only matched filter is much better than other matched
filters in image identification.

Another image restoration method may be computed from the inverse
Fourier transform of the product of a noise image and a matched filter in
frequency domain. But the large peak of a matched filter might blur the edge

and the sidelobes may wrongly contribute to the image. Only phase-only
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matched filter retains the best features of an image.

But the phase-only filter is not good for all cases. One of its big
disadvantages is poor noise immunity. According to the phase shift theorem,
a shift in the spatial domain will result in phase rotation in the frequency
domain, leaving the power spectrum unchanged. So, the phase is very
sensitive in the change of spatial positions. If a small amount of noise may be
regarded as a change in position, the phase spectrum of the picture will be
affected. This is why classical matched filters play an important role in low

SNR situations. The experimental section will illustrate this effect.

(b) Experiment._The first part of the experiment is to observe the
autocorrelation peaks of three matched filters. The crosscorrelation peak looks
very close to that of the autocorrelation. The plots are viewed in Figure 4-9.
We can see that the phase-only matched filter has the sharpest peak (Figure 4-
9c) and classical matched filter (Figure 4-9b) is between the phase-only and the
magnitude-only matched filters. And in SNR=1.0, the lower part of phase-
only's autocorrelation is becoming noise-like (Figure 4-9f), but the peak is still
sharp and contrasts sharply with the surroundings. When SNR gets worse,
say SNR=0.01, the phase-only autocorrelation peak is completely buried in |
noise (Figure 4-9h), but classical and magnitude-only autocorrelation have

some noise spots (Figure 4-9g and Figure 4-9i). Compared to the magnitude-
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(b) Autocorrelation between the original
(a) The original picture 'G' picture and its classical matched filter

08—

(c) Autocorrelation between the original

picture and its magnitude-only matched filter (d) Autocorrelation between the original

picture and its phase-only matched filter

Fig. 4-9. Autocorrelation's peak of three match filters
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(e) The noise contaminated picture of 'G' (f) Autocorrelation between the noise picture and
WA SR = 10 its phase-only matched filter with SNR = 1.0

o
1

. -
T T

O i between the noise picture and
i i i (h) Autocorrelation . . o1
(g) Aut correl;mon betwe(lei\ IFheil'IOISG pxctureland its . " filter wit
its classical matched filter with SNR = 0.0 Pha € OIllv matched filter with SNR = 0.0

Fig. 4-9. (Continued)



(i) Autocorrelation between the noise picture and
its magnitude-only matched filter with SNR = 0.01

Fig. 4-9. (Continued)
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only autocorrelation peak (Figure 4-9i), the classical one still has a quite clean
peak (Figure 4-9g) in the central, especially the upper, part. This is why the
classical matched filter can be applied in lower SNR environment, showing a
modest detection because of its rather narrow peak. In order to remain
consistent with the previous chapters, the SNR is still calculated from the ratio
of the image variance to the noise variance.

The second part of the experiment is to test the matched filter's
discrimination ability which is important in image identification and
recognization. We will choose a set of pictures, ranging from very similar
such as '3’ versus '8, to completely dissimilar such as '3' versus ‘4, to the same
character '3' versus the same character moved to the left, and to the noise
situation such as '3' versus noise contaminated '3'. The pictures list in Figure

4-10 and the different terms A are calculated in Table 4-1.

Table 4-1 The discrimination test of three matched filters
3vs. 8 3vs. 4 3 vs. left 3 3 vs. noise 3
Classical 0.0961 0.8285 2.2053x10”7 4.7591x10™%
Phase-only 0.2608 6.1762 6.4120x10™ 2.7460x1073
Magnitude-only 0.2244 0.0007 7.9502x10°6 4.2060x10°4

The test results show that only the phase-only matched filter can correctly
distinguish the foreign objects from the desired object among all cases.

The last part of the experiment is image restoration via matched filters. It is
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(a) Picture of '3' (b) Picture of '8'

(c) Picture of '4' (d) Picture of '3' moved to the left

Fig. 4-10. Pictures for the discrimination ability test
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shown in Figure 4-10. Compared to the restoration results shown before, these
seem to be poor. Among the three filters, the phase-only matched filter does
the best job (4-11c). Not only does it restore the location of the original
picture, but also it contains the visible edge information of the original picture
and has a rather high intelligibility. The classical matched filter also locates
the correct position, but due to its large sidelobes and wider peak, the correct

edge information cannot be easily retrieved (4-11b).

(c) Conclusion.--Under the criteria of Horner efficiency, peak height, noise
immunity, and discrimination ability, the phase-only matched filter is superior
to the others in a rather high SNR situation. This allows the phase-only
matched filter to have valid applications in image recognization and image
restoration. When the SNR decreases, the classical matched filter will be more

advantageous than the phase-only filter.
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ise contaminated picture (b) The picture recovered from
() The noxsethNR 1000 the classical matched filter
of '3' wit = |

ad -

(c) The picture recovered from
the phase-only matched filter

(d) The picture recovered from
the magnitude-only matched filter

Fig. 4-11. Image restoration via matched filters



CHAPTER V
CONCLUSION

Digital image processing may be carried out in the spatial or frequency
domain. In this study, filters in both domains were used. In particular,
techniques in homomorphic image enhancement, image restoration and phase-
only image processing were implemented and examples of each were
presented.

Homomorphic filters are commonly employed for contrast enhancement,
dynamic range compression, or both. The homomorphic filters of these three
cases were applied to a picture ' TOWER' with the scattered background. The
contrast enhancement improved the contrast of a background.

Inverse filters, Weiner filters and magnitude-only filters were applied to
image restoration examples. When applied to the pictures degraded by a low-
pass Butterworth filter and additive noise, the inverse filter restored the picture
well in the high SNR case, but was not effective in the low SNR case. The
inverse filter was also applied to small, medium and large frequency ranges
for comparison. Good picture restoration was obtained when applied to the
small neighborhood range, but restoration deteriorated as the neighborhood
range was increased.
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The Weiner filter is always superior to the inverse filter and its advantage
increase as the SNR decrease. In addition, an improved method for deriving
the Weiner filter in the spatial domain was developed.

Magnitude-only filters were applied to zero phase degradation. Ensemble
averaging was used for the power spectrum estimation. Examples with
different window size and overlap were presented. Optimal window size and
overlap for improvement of frequency resolution and statistical resolution were
obtained for the pictures tested.

Finally, magnitude-only and phase-only synthesis techniques were
compared. High geometry pictures may be reconstructed from magnitude-
only synthesis. For continuous tone pictures, phase-only synthesis was found
to be preferred. A good image restoration may be found by the true phase
spectrum and an estimated magnitude spectrum. The magnitude spectrum of
an image may be exactly found by the Fourier transform of its phase spectrum.
It was demonstrated that a phase-only matched filter is superior to other
matched filters in Horner efficiency, peak height and discrimination ability. In
the low SNR condition, the classical matched filter was shown to be more

robust than phase-only matched filters.
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APPENDIX

It is important to realize that Fourier transform matrix W discussed above is
a transform matrix for matrix diagonalization and to understand some of its
important properties.

Let's begin with a 3 elements circulant matrix He,

Qm
]
= =
w
= i~ -
W kN
= N~ -
W

1

and the eigenvalue of H is the DFT of its first row,
Mk) = DFT {h;, hy, hg} = 3 h(j) ei2*K/N

notate W as e 27K/ N, which will be a matrix as well,

11 1
W=11 w w?
1 w2 wt

and the inverse Foﬁrier transform can be notated as the inverse matrix such as
W = (1/N) ei2®i/N, then the result of A(k) would be,

A1) =h; + hy + hy

M2) = hy + h, W + hy W?

A(3) = hy + h, W2 + h, W*

The diagonalization of matrix is of great interest, which is represented as
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AHA*=)
where A is the unitary transform, which means A* = [A]'t = [A], where " is
the complex conjugate, ! is the matrix's transpose, ! is the inverse matrix and A
is the diagonal matrix. So multiply A on both sides,

AHATA=AH=\AA

since
A1) 0 0
A= 0 M2 O
0 0 A(3)
then
hi+hy+h, h+hy+h, h +h,+h,
AW=|h+h,Weh, W W h,+h,Weh, W) W’(h,+h2W+h3W)
hy+h,W+h, W W(hl+h2W+h3W) W(h,+h2W+h3W)
and

hythyvhy hy+hyWehyWe by +hy We+hy WA
A W= h3+h1+h2 h3+h1W4h2W2 h3+h1W+h2W
hy*hyvhy hyrhyWeh\WE hy+hy WE+h, WA

Please note W is wrapped around and modulated by N=3, for example, W8
= Wo+2 = W2, and W= W31 = W. Itis obvious to see that the results of {A
W} and {W H} are transposes with each other. Let's go back to the above

expression.
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AHA*=)
taking the transpose on both sides. Since A is the diagonal matrix and its
transpose remains unchanged, A and A* are symmetric matrices, so their
transposes remain unchanged. Thus

AH'A* =)
With the above expression, it turns out that the diagonalization matrix A is the
Fourier transform matrix W. This important conclusion may help to find a fast
matrix operation to be implemented by DFT or faster FFT based on their
eigenvalues.

Since W H W* = A may be written as W H = A W, according to the
definition that if A X = A X, then X is the eigenvector of matrix A. So W is the
eigenvector of matrix H.

There is one important property from the above result,

WHW!=rorH=W!lAW

taking the transpose on both sides,
H=wliw

then taking the complex conjugate on both sides again,
H = W] A (WT'

since H is a real matrix, so H' = H! and

W1 = (1/N) [W] and [W]" = N [W]
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H: = WA WL

The transpose of a circulant matrix is the transform of the complex conjugate
of its diagnal matrix A. We also can directly verify that Ht = H".

The circulant matrix can be viewed as a set of delay operators {D ... }, such as

D%=h, D!= hy, and D? = h,. Then

D° D' p?
H. = (D? D D!
D! D* p°
and its complex conjugate would be,
D° D! D2
H(; = |D2 D° D-!
D! p? po

Since HC* is circulant, the wraparound will result in: D? = h, D= hs and D
= h2.

hl h 3 h 2
He = |hy hy by
h 3 h2 hl
Obviously, it is the transpose of the original matrix, so

H =Ht




