Inter- and intragrain transport measurements in YBa$_2$Cu$_3$O$_{7-x}$ deformation textured coated conductors

D. M. Feldmann$^{a)}$ and D. C. Larbalestier

Applied Superconductivity Center, University of Wisconsin-Madison, Madison, Wisconsin 53706

D. T. Verebelyi, W. Zhang, Q. Li, and G. N. Riley

American Superconductor, 2 Technology Drive, Westborough, Massachusetts 01581

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

(Received 13 August 2001; accepted for publication 4 October 2001)

Using photolithography, links for transport measurement have been placed across individual Ni grain boundaries and within individual Ni grains on several coated conductor samples. The typical Ni grain size is $\sim 50 \mu m$, while the YBa$_2$Cu$_3$O$_{7-x}$ grains are submicron in size. It is found that the intragrain J_c (0 T, 77 K) can exceed 5 MA/cm2, thus showing that present coated conductor J_c values are not significantly limited by the intragrain J_c. Inter- and intragrain J_c values ranged from one-half to more than four times full-width measured values, demonstrating that current percolates through the conductor. The misorientation angle dependence of J_c fits well with previous studies of YBCO grown on substrates such as rolling assisted biaxially textured substrates (RABiTS$^{a)}$). Using photolithography, links for transport measurement have been placed across individual Ni grain boundaries and within individual Ni grains on several coated conductor samples. The typical Ni grain size is $\sim 50 \mu m$, while the YBa$_2$Cu$_3$O$_{7-x}$ grains are submicron in size. It is found that the intragrain J_c (0 T, 77 K) can exceed 5 MA/cm2, thus showing that present coated conductor J_c values are not significantly limited by the intragrain J_c. Inter- and intragrain J_c values ranged from one-half to more than four times full-width measured values, demonstrating that current percolates through the conductor. The misorientation angle dependence of J_c fits well with previous studies of YBCO grown on substrates such as rolling assisted biaxially textured substrates (RABiTS$^{a)}$).

Coated conductors (CCs) using deformation textured substrates (RABiTS$^{a)}$) are one of the most suitable conductor forms for applications at 77 K. These substrates are inherently polycrystalline and produce a network of grain boundaries (GBs) in the YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) layer.1,2 Magneto-optical (MO) studies demonstrate that the vast majority of these GBs have a J_c value less than that of the intragrain regions. Under applied transport currents, MO imaging of the self-field shows a strong GB influence and a clear illustration of percolative current flow.2,3 The self-field studies have shown that J_c is usually limited in a local region by a small fraction of GBs, and that the majority of the sample is carrying a current much less than its local J_c. Here we expand upon that earlier work by quantifying the inter- and intragrain J_c values of several CC samples. This study shows that the intragrain J_c is not the limiting factor in present CC technology, and the $J_c(\theta)$ dependence of GBs in YBCO CCs fits well with previous studies of YBCO grown on [001] tilt SrTiO$_3$ (STO) bicrystals.4,5

Standard optical photolithography and dry etching was used to pattern inter- and intragrain links in several CC samples. All samples consisted of a deformation textured Ni substrate with a Ni/Co$_{1-x}$ electron backscatter Kikuchi pattern (EBKP) analysis was used to determine the GB misorientation angle θ. Where possible this was done in the YBCO layer; however, due to poor EBKP quality most angles were measured in the YSZ. We admit this may not be a true representation of the GB angle in the YBCO. X-ray diffraction and recent EBKP studies10 have shown that in general, there is an improvement in the c-axis alignment of the YBCO relative to the YSZ layer, and this results in a reduction of θ. Table I lists several properties of the samples and patterned links investigated. At least two links were patterned per sample, but not all links were suitable for study due to multiple GBs per link or complex GB geometries. Figure 1(a) is a scanning electron microscope (SEM) image of the pair of links patterned in sample No. 3. In this case, both links are entirely within the same Ni grain. However, as can be seen in Table I, their J_c values are quite different. The J_c of the 1.3 MA/cm2 link was limited by a large a-axis grain, highlighted in Fig. 1(b), that extends more than halfway across the link. The YBCO grains are submicron in size. The two intragrain links of sample No. 4 were also within a single Ni grain. There is a 20% difference in the J_c of these two links, but a SEM investigation revealed no reason for the difference. The links in Table I yield a large spread in $J_c(77 \text{K}, 0 \text{T})$ of 0.4–5.1 MA/cm2. This is in contrast to the full width $J_c(77 \text{K}, 0 \text{T})$ values (where available), which are all ≈ 1 MA/cm2. Thus the links range from one-half to more than 80.

$^a)$Author to whom correspondence should be addressed; electronic mail: feldmann@cae.wisc.edu

DOI: 10.1063/1.1425952
four times full width J_c values. This demonstrates that full width J_c values must be the result of multiple current paths of both higher and lower J_c, resulting from variations in the inter- and intragrain J_c. The very high intragrain J_c values strongly suggest that the full width values of Table I are not limited by the intragrain J_c, but rather by the GBs. The full width J_c values of the best samples, though rare, are in the range 2–3 MA/cm2. As all the intragrain links in this study had a J_c that exceeds these values, even the best samples are not being limited solely by the intragrain.

The $J_c(77$ K,1 T) values (where available) for both the inter- and intragrain links are reduced by roughly 1 order of magnitude over the $J_c(77$ K,0 T) values. This is in contrast to the study of Verebelyi et al., where it was found that above 4° GBs were less sensitive to the field than the grains.11 While that study was performed on STO bicrystal substrates and not CC GBs, this study could benefit from additional $J_c(77$ K,1 T) data from intragrain links with θ $>4^\circ$.

Figure 2 plots the θ dependence of the J_c data from Table I with data from studies using [001] tilt boundary YBCO films grown on single crystal substrates. The $J_c(\theta)$ dependence of the GBs in this study and those using (STO) bicrystal substrates all fit very well to an exponential decay with a critical angle θ_c of 2°–3°. The intergrain J_c values from Table I are slightly higher (for a given θ) than those of the STO bicrystals. This is possibly due to the fact that θ was largely measured in the YSZ buffer layer, and θ in the YBCO may be less8 by 0.5°–1.5°. While the similarity between the CC and bicrystal data of Fig. 2 may not be surprising, it is interesting to consider that all of the bicrystals were [001] tilt boundaries, and θ represents pure in-plane misorientation. Even though there can be a high degree of c-axis alignment in the grains of CC substrates, EBKP analysis shows that CC GBs generally consist of both tilt and twist components, and θ represents the total misorientation between grains, not just in-plane misorientation. Despite this and other potential differences between the CC and bicrystal GBs, the most significant factor in determining J_c appears to be θ. There is a moderate variation of the intragrain data in Fig. 2, but not significantly more than is generally seen in YBCO films grown on single crystal substrates. Also, the intragrain data represent films of different thickness and deposition method, and each Ni grain acts as its own single crystal template (with varying vicinal angle and surface quality), so some variation of the intragrain J_c is not unexpected. All intragrain J_c values are high, comparable to the best reproducible values obtained on single crystal substrates. The close correlation between the $J_c(\theta)$ dependence of the CC

![FIG. 1. SEM images of sample No. 3 after patterning. (a) Image of both links of sample No. 3. The tracks run horizontal with three voltage taps coming off the top. This same structure was patterned on all the samples. (b) A close-up of the link on the left in (a), showing the reason for the reduced J_c of the link. An a-axis grain, indicated by the arrow, extends more than halfway across the link.](http://apl.aip.org/apl/figures/fig1.jpg)

![FIG. 2. Plot showing $J_c(\theta)$ dependence for various inter- and intragrain links. Black circles are from pulsed laser deposition (PLD) YBCO on STO bicrystals from Verebelyi et al. (Ref. 4). Open squares are also PLD YBCO on STO, supplied by G. Daniels (University of Wisconsin). The gray triangles are from Table I.](http://apl.aip.org/apl/figures/fig2.jpg)

TABLE I. Comparison of properties of the samples and links in this study. All J_c values were measured at 77 K.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>YBCO thickness (nm)</th>
<th>Full width (nm)</th>
<th>Full-width J_c $\times 10^6$ A/cm2</th>
<th>θ intragrain</th>
<th>Link J_c (0 T) $\times 10^6$ A/cm2</th>
<th>Link J_c (1 T) $\times 10^6$ A/cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>310</td>
<td>3.3</td>
<td>1.26</td>
<td>intra</td>
<td>5.1</td>
<td>0.62</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>3.3</td>
<td>0.85</td>
<td>2.8°</td>
<td>3.0</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>380</td>
<td>5</td>
<td>N/A</td>
<td>intra</td>
<td>>3.5</td>
<td>0.41</td>
</tr>
<tr>
<td>4</td>
<td>380</td>
<td>5</td>
<td>N/A</td>
<td>intra (a-axis grain)</td>
<td>1.3</td>
<td>0.10</td>
</tr>
<tr>
<td>5</td>
<td>380</td>
<td>5</td>
<td>0.9</td>
<td>intra</td>
<td>3.8</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>380</td>
<td>5</td>
<td>0.8</td>
<td>intra</td>
<td>3.1</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Downloaded 10 Apr 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp
GBs and the STO bicrystals implies that application of STO bicrystal studies to CCs is merited.

The consequence of the percolative nature of current flow in CCs and the fact that GBs and not the intragrain will nearly always limit J_c means that a sharp substrate texture is paramount to obtaining high J_c tapes. An intragrain J_c of 5.1 MA/cm2 in a CC of modest full width $J_c \approx 1.26$ MA/cm2 implies that local texture is the greatest factor separating "typical" samples from the "best" samples, not film (or intragrain) quality. One question such emphasis on texture raises is "what is the upper limit to J_c in a CC?" From the plot of Fig. 2, a J_c value of 2–3 MA/cm2 is roughly equivalent to that of a 3$^\circ$ GB. While many GBs greater than 3$^\circ$ certainly exist in the "best" samples, such J_c values indicate an extremely high degree of substrate texture. It is uncertain that substrate textures can be sharpened to a significantly greater degree than those that already produce samples in the range of 2–3 MA/cm2. Another means of increasing CC J_c values is to improve GB properties. While this has been demonstrated in high angle GBs12 and in low angle GBs at low temperatures,13 it has yet to be shown in low angle GBs at 77 K.

In summary, the high intragrain J_c values demonstrate that films of excellent quality can be grown on a metal substrate. The derived $J_c(\theta)$ dependence indicates that GBs are the most significant factor limiting full width J_c values in CCs, and that current flow is percolative. This study and previous MO studies$^{1-3}$ corroborate each other well on these points. Maintaining good texture over long lengths will be critical to producing commercial tapes, but as pointed out by Verebelyi et al.11 the influence of the GBs in a CC is reduced at high fields, and the application may dictate the degree of texture required.

The authors thank G. Daniels (University of Wisconsin) for helpful discussions and for supplying data for Fig. 2. The authors also thank Pat Camus (ThermoNORAN) for helping with GB angle measurement. This work was supported by the Air Force Office of Scientific Research, the Department of Energy, and the NSF-funded MRSEC on Nanostructured Materials.