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Abstract—Microwave imaging has been suggested as a promising
modality for early-stage breast cancer detection. In this paper, we
propose a statistical microwave imaging technique wherein a set of
generalized likelihood ratio tests (GLRT) is applied to microwave
backscatter data to determine the presence and location of strong
scatterers such as malignant tumors in the breast. The GLRT is
formulated assuming that the backscatter data is Gaussian dis-
tributed with known covariance matrix. We describe the method
for estimating this covariance matrix offline and formulating a
GLRT for several heterogeneous two-dimensional (2-D) numerical
breast phantoms, several three-dimensional (3-D) experimental
breast phantoms, and a 3-D numerical breast phantom with a
realistic half-ellipsoid shape. Using the GLRT with the estimated
covariance matrix and a threshold chosen to constrain the false
discovery rate (FDR) of the image, we show the capability to detect
and localize small (<0.6 cm) tumors in our numerical and exper-
imental breast phantoms even when the dielectric contrast of the
malignant-to-normal tissue is below 2:1.

Index Terms—Array signal processing, biomedical electromag-
netic imaging, breast cancer detection, clutter, FDTD methods,
generalized likelihood ratio test (GLRT), microwave imaging, mi-
crowave measurements, tissue phantoms, ultrawide-band (UWB)
radar.

I. INTRODUCTION

DETECTING breast cancer in its earliest stages is looked
upon as the best hope for successful treatment of the dis-

ease [1]. The limitations of conventional X-ray mammograms
[1], [2] are well-recognized and in response to these limitations
several complementary modalities for breast cancer are under
investigation. Active microwave imaging is one promising al-
ternative screening technology that is nonionizing, noninvasive,
and does not require breast compression. For this modality,
low-power electromagnetic waves that are transmitted into the
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breast undergo scattering or selective heating/absorption due to
the dielectric contrast between malignant tumors and normal
breast tissue at microwave frequencies [3]–[5]. The received
signals are processed to extract information about the tissue
dielectric-properties distribution or other tissue characteristics
of the breast.

Current research in active microwave breast imaging can
be divided into three categories: hybrid microwave-induced
acoustic imaging [6]–[8], microwave tomography [9]–[16], and
ultrawideband (UWB) radar techniques [17]–[27]. In the hybrid
approach microwave signals are transmitted into the breast to
heat tumors and ultrasound transducers detect the pressure
waves generated by tumor expansion. In tomographic image
reconstruction, a nonlinear inverse scattering problem is solved
to recover an image of the dielectric properties in the breast.
In contrast to the image recovery goal of tomography, the
proposed UWB radar approach solves a simpler computational
problem by seeking only to identify the presence and location
of significant scatterers such as malignant breast tumors. In
the UWB radar approach, high bandwidths and large antenna
apertures are used to improve spatial resolution at microwave
frequencies.

Previously UWB radar investigations have used beam-
forming techniques of varying complexity to synthetically
focus scattered signals toward a point in the breast and calcu-
late the corresponding scattered energy. Images obtained by
beamforming are maps of the focused backscatter energy as a
function of position where strong scatterers such as malignant
tumors are identified as high-energy regions in the image. One
method for creating a synthetic focal point is confocal imaging
which employs simple delay-and-sum beamforming [17]–[24].
While confocal processing is computationally inexpensive, it
does not account for dispersive propagation effects in breast
tissue or fractional time delays and the simple filter design has
limited ability to discriminate against artifacts and noise. An
alternative focal technique, microwave imaging via space-time
(MIST) beamforming [25]–[27], uses filters that compensate
for dispersion and fractional time delays. The filters solve a
penalized least-squares problem such that signals originating
from a candidate tumor location are passed with approximately
unit amplitude and linear phase while the white noise gain is
constrained. This filter design dramatically improves clutter
suppression and spatial discrimination compared to the earlier
delay-and-sum beamformers.
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In this paper we approach the UWB radar problem of de-
termining whether a tumor exists at a candidate location as a
hypothesis testing problem. Hypothesis testing is widely used
in radar applications to make optimal decisions concerning
target presence or classification. We consider a statistical
framework, formulating our tests as likelihood ratios (see for
example [28]) which requires some assumptions about the
distribution of the data. A simple Gaussian-distributed model is
proposed to describe the data; however, we assume that the data
model has some unknown parameters that must be estimated.
The parameter estimates are substituted into the probability
distributions for each hypothesis and the resulting generalized
likelihood ratio test (GLRT) is used to detect a tumor at a
candidate location in the breast. Some related examples where
a GLRT has been employed to perform target detection include
detecting buried mines from ground penetrating radar (GPR)
data [29] and detecting neural activity from fMRI data [30].
The key contributions of this paper are 1) the use of a statistical
model for the clutter generated by heterogeneous breast tissue;
2) the application of hypothesis testing to determine tumor
presence and location in breast phantoms; and 3) an analysis of
the GLRT sensitivity to errors between the assumed and actual
signal.

The remainder of the paper is organized in five sections. In
Section II we present the assumed model for the data and for-
mulate a GLRT for the problem of UWB microwave breast
cancer detection. In Section III we describe the numerical and
experimental breast phantoms that are used to evaluate the capa-
bility of the GLRT to detect tumors from microwave backscatter.
The procedures used to obtain signal templates and the clutter
covariance matrix used in the GLRT are given in Section IV.
Sample images constructed by applying the GLRT to data ob-
tained from several numerical and experimental breast phan-
toms are provided in Section V. Finally, Section VI addresses
the performance of the GLRT under matched and mismatched
scattering scenarios.

Lower and upper case boldface symbols denote vectors and
matrices, respectively, while superscripts and denote the
matrix transpose and inverse, respectively.

II. FORMULATION OF THE GENERALIZED

LIKELIHOOD RATIO TEST

Our multiple hypothesis testing problem for detecting malig-
nant tumors in the breast tests a binary hypothesis for each voxel
(or pixel in 2-D) of an image. When the null hypothesis is ac-
cepted, the corresponding voxel is assigned a zero value to re-
flect the absence of a tumor. Conversely, when the null hypoth-
esis is rejected, a positive value is assigned to the voxel to reflect
the presence of a strong scatterer such as a malignant tumor. The
resulting pseudo image indicates locations of detected tumors in
the breast where large voxel values suggest relatively high con-
fidence in the decision to reject the null hypothesis, that is, de-
clare the presence of a tumor. In this section we present a model
for the data, formulate a GLRT, and describe the procedure for
constructing images of detected tumors based on the GLRT.

Multichannel data is obtained via a monostatic radar para-
digm in which the breast is illuminated with an UWB pulse from

one antenna array element and backscatter data is recorded at
the same antenna. This is repeated for antenna positions. The
observation vector from channel is a length-
time series which may contain backscatter contributions of the
following nature: antenna reverberation, reflections from the
skin-breast interface, clutter due to the heterogeneous dielec-
tric properties of normal breast tissue, backscatter from pos-
sible tumors, and noise. The first two contributions dominate
the backscatter and hinder tumor detection unless they are re-
moved. We preprocess the data with the artifact removal algo-
rithm proposed by Bond et al. [25]. This data-adaptive algorithm
is based on the assumption that the unwanted artifacts (antenna
reverberation and reflection from the skin-breast interface) in all
channels possess similar but not identical time evolutions. Con-
sequently the artifact in channel can be accurately estimated
and removed using a filtered combination of all other channels.

After artifact removal, the channel time series of received
backscatter, , is assumed to contain only signal ,
clutter , and noise components

(1)

where is a vector parameterization of the
physical characteristics of the scattering scenario, and the index

corresponds to the true scattering scenario for the data. The
signal vector denotes a normalized time series of the
backscatter signal due to the scattering scenario parameterized
by . If no scatterers are present then the scale factor
is zero. The parameterization of the backscattered signal de-
fined by may describe any relevant features of the scattering
problem including the scatterer location, size, shape, and den-
sity. For ease of exposition we assume scatterer location is the
sole parameter in as we develop the GLRT in this section.
That is, we assume that the tumor size, shape, density, etc., are
perfectly known. In Section VI, we consider additional scat-
tering parameters for the GLRT.

Let where denotes the th candidate
tumor location from a set of locations. Then formulate a set of

binary hypothesis tests where the null hypothesis asserts
that no tumor is present at location , and is the alternative
hypothesis

(2)

Each location is tested independently of all other locations. This
strategy is appropriate for detecting single tumors or multiple
tumors that are spatially separated, assuming negligible interac-
tion between them. That is, in the multiple tumor case we as-
sume scattering effects are approximately linear. This assump-
tion is reasonable for clinical screening applications where dis-
tinguishing two tumors that occur very close together in the
breast is less of a concern than detecting their presence. By
testing each candidate tumor location independently, the com-
putational expense is kept low and is proportional to the number
of test locations.

Space-time column vectors for the data, signal, clutter, and
noise are formed by stacking the time-series column vectors for
each channel, that is . We assume that the

deterministic signal vector is perfectly known
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but the amplitude factor is deterministic and unknown. The
clutter and noise are assumed to be Gaussian distributed as

where denotes the Gaussian distribu-
tion with mean and variance . We assume that the covariance
structure is known but the power level, , is unknown. This
Gaussian assumption for clutter is reasonable since the clutter
arises from multiple independent scattering paths within the het-
erogeneous breast tissue. Invoking the Central Limit Theorem
[31], the sum of the scattering returns is Gaussian distributed in
the limit. Then the backscatter data and the signal vectors are
whitened by the following linear transformations:

(3)

(4)

The GLRT test statistic is given by the likelihood ratio of the
two hypotheses using the maximum likelihood estimates of the
unknown parameters and . For the given data model, the
likelihood ratio reduces to the ratio of the unbiased variance
estimates under the null and alternative hypotheses raised to the

power [28]

(5)

where the projection matrix
projects the whitened data

onto the rank-1 subspace spanned by the whitened signal
vector , and the orthogonal projection matrix

projects the whitened data onto the rank-
complementary subspace. It will be convenient for selecting
the threshold and for analysis purposes to express (5) with
the following equivalent test:

(6)

When the test statistic or exceeds the threshold or ,
respectively, the null hypothesis is rejected, that is, a scatterer is
detected at location .

The thresholds and are selected to control the false dis-
covery rate (FDR) of the image as suggested by Benjamini and
Hochberg [32]. The FDR is defined as the expected proportion
of falsely rejected null hypotheses in an image which notably
quantifies the error rate of the whole image rather than the error
rates of each individual test. Details on calculating the threshold
for a specified FDR are given in [32].

The threshold calculation for a given FDR requires that the
distribution of the test statistic under the null hypothesis is
known. The equivalent test given by (6) is most convenient

for threshold selection since the distribution of is known.
Under the null hypothesis the test statistic is centrally
F-distributed, while under the alternative hypothesis it is
noncentrally F-distributed with noncentrality parameter
[28]. In both cases the degrees of freedom are for the
numerator and for the denominator. Note that
these distributions hold when the test location coincides with
the actual tumor location, that is . Performance of the
GLRT under the matched case and mismatched
cases ( where ) is discussed in Section VI.

Images of detected scatterers are constructed by performing
the test (6) for a set of candidate tumor locations. For each loca-
tion , the corresponding voxel value is assigned on a loga-
rithmic scale as follows:

(7)

While the test statistic and threshold do not have physical
interpretations, the selection of a FDR and its corresponding
threshold effectively standardizes the test so that the perfor-
mance of different statistical tests with the same error rate can
be directly compared [28]. Selecting a value for the FDR is
arbitrary, but in general smaller values increase the threshold.
We let for all of the tests in this paper.

III. DATA ACQUISITION

Data for UWB radar techniques is acquired from a patient
in either supine or prone position with an array of broad-band
antennas placed either above or surrounding the breast, re-
spectively. Each antenna in the array sequentially transmits
an UWB microwave pulse into the breast and measures the
resulting backscatter. In this paper we obtain backscatter data
from numerical and experimental breast phantoms to illustrate
the feasibility of detecting small tumors in the breast using the
GLRT. The UWB pulses span the 1 to 11 GHz frequency range
with a spectral peak at 6 GHz and the backscattered waveforms
are pre-processed to remove the early-time artifact [25].

The simulated normal and malignant tissue properties of the
phantoms are chosen to achieve a reasonable match to the di-
electric properties of the corresponding tissue types. Most im-
portantly, the dielectric contrast between the tissue simulants
are chosen to mimic the contrasts observed between different
biological tissues at microwave frequencies. We expect breast
tissue composition to vary between patients, ranging from very
fatty to extremely dense. This wide range of possible normal
breast tissue compositions will result in a wide range of dielec-
tric contrasts between malignant and normal tissue from pa-
tient to patient. We therefore consider a number of phantoms
with contrasts ranging from 5:1 to represent the baseline mostly
fatty breast scenario, down to less than 2:1 to represent the
extremely dense breast scenario [25], [27]. We also consider het-
erogeneously dense scenarios in two-dimensional (2-D) numer-
ical phantoms by increasing the variability of dielectric proper-
ties values used to represent normal breast tissue. The reduced
contrast phantoms present a challenging but important scenario
since there is considerable evidence to suggest that dense breast
tissue is a strong risk factor for breast cancer [33].
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Fig. 1. Two-dimensional MRI-derived numerical model of a heterogeneously
dense breast with a 2-mm-diameter tumor centered at (5.0 cm, 3.1 cm). The dots
on the skin surface represent antenna positions. (Source: [25]).

A. Two-Dimensional Numerical Breast Phantoms

The numerical breast phantom shown in Fig. 1 is a 2-D spa-
tial profile of dielectric properties representing the sagittal cross
section of an anatomically realistic breast for a patient in the
supine position [20], [25]. Dispersive properties of breast tissue
are modeled using single-pole Debye models for the dielectric
constant and conductivity in the phantom and the spatial vari-
ation is achieved by linearly mapping pixel intensity from a
breast magnetic resonance image (MRI) to a range of dielec-
tric properties representative of normal breast tissue [20]. A
2-mm-thick skin layer ( S/m) covers
the breast and the immersion medium is matched to the dielec-
tric properties of skin although the properties of the immersion
medium have little impact in this case since the antennas are
placed right on the skin surface. Cylindrical tumors like the one
shown in Fig. 1 are synthetically introduced in the numerical
breast phantom by increasing the dielectric properties values to
represent malignant tissue, and S/m
at 6 GHz (subscript denotes malignant breast tissue), at the
desired tumor site. The tumor shown is 2 mm in diameter and
is centered under the antenna array at a depth of 3.1 cm. The
black dots on the surface of the breast represent the elements
of a conformal antenna array. The antenna elements are mod-
eled as infinite line-sources which are sequentially excited by a
110-ps differentiated Gaussian pulse. We compute the simulated
backscatter data received at each antenna using the finite-differ-
ence time-domain (FDTD) method to solve Maxwell’s equa-
tions [34].

We consider a range of breast tissue compositions with
ten 2-D numerical phantoms that represent various scenarios
of breast tissue density and variability. Table I summarizes
the average dielectric properties used for each 2-D numerical
breast phantom where the normal tissue properties are varied
to achieve different densities and variabilities while holding
the malignant tissue properties constant. The values of the
dielectric constant and conductivity for normal breast
tissue (subscript denotes normal breast tissue) range over the
specified percent variation about the average value. The final
column in Table I indicates the minimum malignant-to-normal
dielectric contrast at 6 GHz which ranges from the baseline
case of 4.7:1 down to the extremely dense case of 1.18:1.

TABLE I
SUMMARY OF THE DIELECTRIC PROPERTIES FOR TEN 2-D NUMERICAL

BREAST PHANTOMS REPRESENTING A WIDE RANGE OF NORMAL

BREAST TISSUE COMPOSITIONS

TABLE II
SUMMARY OF THE DIELECTRIC PROPERTIES FOR THREE EXPERIMENTAL

BREAST PHANTOMS REPRESENTING A RANGE OF MALIGNANT-TO-NORMAL

TISSUE DIELECTRIC CONTRASTS

B. Three-Dimensional Experimental and Numerical Breast
Phantoms

The experimental phantom setup emulates a system configu-
ration where a patient is in a supine position with a 2-D planar
antenna array placed near the surface of the naturally flattened
breast [27]. The breast phantom consists of a large rectangular
container filled with a liquid fat simulant ( and

S/m at 6 GHz), a thin dielectric slab representing
skin ( with a loss tangent of 0.016 at 1 GHz), and a
synthetic tumor suspended in the fat simulant. As noted in [27],
these materials mimic the expected dielectric contrast rather
than the absolute dielectric properties. The tumor is cylindrical
in shape with height and diameter equal to 4 mm and the dielec-
tric properties of the tumor are varied as we describe in the next
paragraph. A single UWB antenna (described and characterized
in [35]) is sequentially repositioned in the horizontal plane to
synthesize a 2-D antenna array placed above the skin. We use
the fat simulant as the immersion medium for the antenna since
the current UWB antenna operates best in a high-impedance,
low-loss environment.

Different contrasts between malignant and normal tissue sim-
ulants are most conveniently achieved in the experimental breast
phantoms by changing the properties of the malignant tissue
simulant rather than changing the normal tissue simulant as we
did in the 2-D phantoms. No heterogeneity is modeled by the
normal breast tissue in this experimental breast phantom, so the
dielectric contrast is simply defined by the ratio at 6
GHz. We consider the three experimental breast phantoms sum-
marized in Table II with contrasts ranging from the baseline
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Fig. 2. Three-dimensional numerical breast phantom with realistic ellipsoidal
contour. A portion of the phantom is cut away for illustration purposes, revealing
a 4-mm-diameter spherical tumor in the otherwise homogeneous interior. A
single UWB antenna is scanned around the pendulant breast in a circular manner
at three different depths.

case of 5.17:1 down to the challenging reduced-contrast case
of 1.50:1.

The UWB antenna is sequentially scanned in 1-cm incre-
ments to 49 different positions in a 6-cm 6-cm array. The
synthesized input pulse is a 110-ps modulated Gaussian pulse.
Complete details on the experimental materials and measure-
ment procedure are reported in [27].

In addition to the three-dimensional (3-D) experimental
phantoms, we also obtain data from a 3-D numerical phantom
representing a patient in the prone position as illustrated in
Fig. 2. Notably, the 3-D numerical phantom differs from the
experimental phantom in its realistic breast shape modeled by
half of the ellipsoid , where is
the depth direction and we let cm and cm.
A layer of skin ( S/m) approximately
2 mm thick covers the homogeneous dispersive breast interior
( S/m at 6 GHz). A 4-mm-diameter spher-
ical tumor ( S/m at 6 GHz) is introduced
into the phantom at ( cm, cm, cm) as
shown by the cut away depiction of the phantom. The single
antenna shown in Fig. 2 is a numerical replica of our experi-
mental UWB antenna [35]. The immersion medium assumed
in the FDTD model mimics the immersion medium used in
the experimental phantom and as with
the experimental data acquisition, the antenna is sequentially
repositioned to represent an array with a total of 24 locations
around the pendulant breast. We position the antenna at three
depths, 2.65 cm, 4.15 cm, and 5.65 cm, and for each depth the
antenna position is rotated around the breast in 4current 5
increments.

IV. GLRT IMPLEMENTATION FOR EXAMPLE

BREAST PHANTOMS

In our formulation of the GLRT test statistic (6), we assume
that the signal vectors and clutter-plus-noise covariance
matrix are known. In this section we discuss the procedures

used to obtain the signal vectors and clutter-plus-noise covari-
ance matrix for the GLRT examples in this paper.

A. Signal Vectors

We obtain signal vector analytically assuming that
a single cylindrical (in 2-D) or spherical (in 3-D) scatterer is
located at a specified position in an otherwise homogeneous
medium. We will often refer to these analytically obtained
signal vectors as signal templates. In the simple scattering
scenario described, the analytical solutions for the backscatter
as a function of position depend only on the scatterer diameter
and the dielectric properties for the scatterer and surrounding
medium. Let be a frequency-
dependent vector summarizing a scattering scenario where
and are the dispersive dielectric constant and conductivity
of the surrounding medium, and are the dispersive
dielectric constant and conductivity of the scatterer, and is
the diameter of the scatterer. Then for an image with voxels,
the set of parameter vectors used for detection is given
by

(8)

where is the position of the th candidate tumor location (or
equivalently the th voxel location). It is straightforward to in-
clude additional parameters in .

The 2-D backscatter signal templates are obtained for an in-
finite-length dielectric cylinder centered at , oriented parallel
to an electric-current line source located at . The analytical
expression for the backscattered electric field at sensor is given
by

(9)

where is the distance between the th scatterer position
and th antenna position, is the permeability of free space,

denotes the th-order Hankel function of the second
kind, and denotes the th-order Bessel function. The prime

indicates a derivative with respect to the argument of the
function. The arguments of the Hankel and Bessel functions
are given by and , where is the
diameter of the scatterer, and and are the frequency-
dependent wave numbers for the surrounding and scattering
media, respectively.

For 3-D scattering we obtain analytical backscatter solutions
for a plane wave incident on a dielectric sphere. If the plane
wave propagates in the direction of and we model the
plane wave source as a uniform sheet of current centered at
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then the expression for the co-polarized component of the
backscattered electric field is given by (see [36])

(10)

where is the th-order

spherical Hankel function of the second kind and
is the th-order spherical Bessel function.

In the 3-D numerical phantom, the antennas are immersed
in a medium with dielectric properties that differ from those of
normal breast tissue. Thus the propagating plane wave travels
through multiple media, a fact which should be accounted for
in the signal templates. In the 3-D numerical phantom, we use
(10) to model the propagation of a plane wave in normal breast
tissue and the scattering effects of the tumor. Then we separately
model the propagation effects of a plane wave in the immersion
and skin media for the respective round-trip distances traveled.
The composite propagation model is obtained by multiplying
the three frequency-domain propagation models for the three
media. This analytical solution neglects any reflections at the
immersion medium-skin and skin-breast interfaces. Since we
are assuming plane waves normally incident on planar interfaces
and since we are not concerned with signal amplitudes (recall
that we estimate the signal amplitude from the data in the GLRT)
we expect this simplified propagation model to be sufficient.

The 2-D numerical and 3-D experimental setups also involve
propagation through multiple media, but for these phantoms we
approximate the propagation effects with a single homogeneous
medium since the propagation path is predominantly through
the breast medium. For the 2-D numerical case this is true be-
cause the antennas are located on the surface of the thin skin
layer so the immersion medium has negligible effect on the
fields that propagate into the breast. This is also true for the 3-D
experimental case since the immersion medium and the fat sim-
ulant are the same and have identical propagation effects.

Time-domain signal templates are obtained from the
propagation and scattering models described in this section by
performing an inverse discrete Fourier transform (IDFT) on the
electric field for a set of DFT frequencies spanning 1–11 GHz.

B. Clutter Covariance Matrix

Our formulation of the GLRT in Section II assumes that
the clutter-plus-noise component of the backscattered signal
is Gaussian distributed with covariance matrix . Let

be a decomposition of the clutter covariance

matrix into clutter and noise covariance matrices, respec-
tively. We assume that the noise component is white, that is

. For the 3-D experimental and numerical phantoms,
the normal breast tissue is homogeneous and will not produce
any significant random scattering or clutter in the backscatter
data, so we model only the white Gaussian noise component
in these cases. That is, for the 3-D breast phantoms.
The 2-D MRI-derived numerical breast phantoms, however, do
produce a random clutter component in the backscatter due to
the variability of the normal breast tissue composition from one
patient to the next. In the following discussion we describe the
method used to model the clutter covariance matrix for the 2-D
numerical breast phantoms.

The clutter is completely characterized by its covariance ma-
trix since it is assumed to be zero-mean Gaussian distributed.
The full space-time clutter covariance matrix has dimensions

and approximately free parameters.1 For
typical values of and the number of
parameters in the full space-time clutter matrix is far too large
for reliable estimation in practical scenarios. Hence, we gen-
erate a simplified space-time clutter covariance matrix model by
assuming: (1) the clutter observed in channel is independent
of the clutter observed in channel for , and (2) the clutter
observed in channel is distributed identically to the clutter in
channel . The first assumption relies on the presence of attenu-
ation, which causes the clutter in each channel to be dominated
by heterogeneity in the immediate vicinity of the antenna. The
second assumption requires that the degree of heterogeneity in
the vicinity of each antenna be similar. Thus, the covariance ma-
trix is assumed to take on a block diagonal form with identical
blocks representing the temporal covariance of the clutter. With
these assumptions, only the temporal covariance ma-
trix must be estimated. We estimate via the sample co-
variance matrix constructed using observations of the
clutter time-series as follows:

(11)

The space-time clutter covariance matrix is thus

. . .
(12)

The inverse square-root of the clutter-plus-noise covariance ma-
trix is a whitening operator for
the backscatter data in the GLRT. The matrix inversion of
is well-defined even for singular since the noise covariance
term acts at a regularization parameter.

For each of the 2-D numerical phantoms listed in Table I we
estimate a temporal clutter covariance matrix from
clutter observations obtained from 18 MRI-based FDTD breast
phantoms similar to the one shown in Fig. 1. To isolate the
clutter component in the backscatter waveforms, we subtract

1Note that the clutter in any channel is not wide-sense stationary due to atten-
uation in the breast, so the temporal covariance matrix is not Toeplitz.
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the skin reflection using the corresponding backscatter wave-
forms from an internally homogeneous breast phantom. The
breast phantoms used to generate clutter observations are all
tumor-free and each phantom has a unique tissue structure. The
18 distinct tissue structures are obtained from 6 well separated
sagittal slices selected from the 3-D MRI’s of 3 patients. We ob-
tain 17 independent clutter time-series observations, one at each
of the 17 sensors in the conformal antenna array, for a total of

clutter time series for each of the phantoms described
in Table I. The corresponding clutter covariance matrices are es-
timated for each phantom using (11) and (12).

Assuming that the energy of the additive white noise
is much lower than the clutter energy we let

.

V. RESULTS

In this section we present several example images obtained
by applying the GLRT to backscatter from the numerical and
experimental breast phantoms described in Section III. We in-
troduce very small ( cm) synthetic tumors into the breast
phantoms to represent the small growths of early stage breast
cancer.

A. GLRT-Derived Images for 2-D Numerical Breast Phantoms

For the examples presented in this subsection, we have ap-
plied the GLRT to backscatter data obtained from several 2-D
numerical breast phantoms with dielectric properties described
in Table I. The phantoms may have different tumor configura-
tions, but they are all introduced onto the same MRI-derived
normal breast tissue architecture. The corresponding GLRT’s
are constructed using signal templates parameterized to match
the average scattering properties of the appropriate breast
phantom. That is, we obtain the analytical signal templates
for cylindrical scatterers of the same diameter as the tumors
in the breast phantoms, matching the dielectric properties for
the background and scatterer media to the average values for
normal and malignant tissues of the phantoms in Table I. The
signal templates are further parameterized by the position of
the tumor which is scanned over a 10 cm 4 cm region of the
breast with 1 mm spatial sampling.

Fig. 3(a) depicts a GLRT-derived image of detected scatterers
without clutter whitening, that is , for backscatter from
an breast phantom with a single 2-mm-diameter tumor cen-
tered at cm cm . The phantom
was chosen because of the relatively wide range of variability in
this phantom which introduces a significant clutter component
into the backscatter data. Pixels with positive values of the test
statistic indicate locations where the null hypothesis is rejected,
implying that a scatterer has been detected. The solid black con-
tour lines delineate the threshold. The resulting GLRT image
in Fig. 3(a) is littered with false detections due to the clutter
backscatter in the data, particularly near the surface of the breast
and in the lower left hand corner. The peak test statistic occurs at
(5.0 cm, 2.1 cm) with a peak value 8.9 dB above the threshold.
Although this peak correctly detects and localizes the true tumor
in the breast phantom, the next largest peak in the image occurs
at (0.4 cm, 3.6 cm) with a value 5.8 dB above the threshold. This

Fig. 3. Detection images for simulated backscatter data from an n6 numerical
breast phantom similar to the one shown in Fig. 1. A single 2-mm-diameter
tumor is centered at (5.0 cm, 2.1 cm). The image depicted in (a) was created by
a GLRT that did not use clutter whitening, while the image shown in (b) was
created from a GLRT incorporating clutter whitening.

Fig. 4. Detection image for simulated backscatter data from an n1 numerical
breast phantom with a single 2-mm-diameter tumor centered at (8.0 cm, 2.1 cm).

detected region, along with several other regions of false de-
tections throughout the image, is due to the clutter backscatter.
In contrast, Fig. 3(b) depicts the corresponding GLRT-derived
image when the clutter covariance matrix of (12) is incorporated
into the GLRT. The false detections are greatly reduced in com-
parison to Fig. 3(a) and the detected scatterer at (5.0 cm, 2.1
cm), which coincides with the true tumor location, dominates
the image with a peak value 9.1 dB above the threshold. The
few remaining regions of falsely detected scatterers in Fig. 3(b)
are due to clutter, but the test statistics in these regions have rel-
atively low values of 3.7 dB and below. These low-level false
detections due to clutter are also detected for the corresponding
tumor-free phantom.

Fig. 4 depicts a detection image for a breast phantom ex-
hibiting the baseline contrast ( in Table I). For this phantom
the single 2-mm-diameter tumor is placed off axis at (8.0 cm,
2.1 cm). The location of the peak test statistic in the image co-
incides exactly with the center of the modeled tumor and the
peak value is 14.8 dB above the threshold. Note that the peak
value is much higher for this phantom than for the phantom
due to the difference in dielectric contrast for the two phantoms.
Smaller peaks or “sidelobes” of the signal occur in this image
just above and below the detected scatterer, but the pixel values
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Fig. 5. Detection image for simulated backscatter data from an n1 numerical
breast phantom with two tumors vertically separated by 1.5 cm. The lower tumor
is centered at (5.0 cm, 3.1 cm).

Fig. 6. Detection image for simulated backscatter data from an n1 numerical
breast phantom with a 6-mm-diameter tumor centered at (5.0 cm, 2.3 cm).

in the sidelobes are within a few dB of the threshold value. Note
that false detections due to clutter have been successfully sup-
pressed in this image.

The GLRT is also capable of detecting multifocal tumors as
shown in Fig. 5. For this example the backscatter data is col-
lected from an breast phantom containing two 2-mm-diam-
eter tumors that are vertically aligned and centered at (5.0 cm,
1.6 cm) and (5.0 cm, 3.1 cm). Two dominant peaks are ap-
parent in the GLRT image corresponding to the two tumors in
the breast phantom. The locations of the two dominant peaks
in the detection image coincide exactly with the true centers
of the tumors in the phantom and the peak values are 11.0 dB
for the shallow tumor and 10.3 dB for the deep tumor. Again,
the clutter response has been suppressed below the threshold
throughout the imaging region and only low-level sidelobes are
present above and below one of the detected scatterers.

In the next example, we modify the GLRT for a larger di-
ameter tumor, mm, and obtain backscatter from an
breast phantom containing a 6-mm-diameter tumor centered at
(5.0 cm, 2.3 cm). Fig. 6 depicts the resulting detection image.
The global peak occurs exactly at the center of the modeled
tumor with a peak value of 17.7 dB. Since the backscatter signal
from the larger diameter tumor has greater magnitude than be-
fore, the mainlobe of the detected scatterer encompasses a larger
region and more pixels around the peak exceed the threshold.
The sidelobe that occurs below the detected scatterer is deeper
than it was for the 2-mm-diameter tumors, but it is still rela-
tively low level. We show in Section VI that the sidelobes occur
at predictable locations. The two small low-level regions that are
detected just above the main peak are most likely due to a com-
bination of the clutter remnants after whitening and the upper
sidelobe of the detected scatterer.

These examples illustrate the capability of the GLRT to de-
tect and localize small scatterers in various configurations when

Fig. 7. Summary of GLRT results for 2-D numerical breast phantoms n1
through n10 (described in Table I) with a single 2-mm-diameter tumor centered
at (5.0 cm, 2.1 cm). (a) Peak test statistic value and (b) localization error in the
vertical (Depth) and horizontal (Span) directions for each case.

the scatterers exhibit the baseline contrast of 4.71:1 or the re-
duced-contrast case of 1.82:1. The examples also demonstrate
that the assumed Gaussian clutter model is effective at sup-
pressing clutter throughout the image when incorporated into
the GLRT. We observe that backscatter from larger tumors re-
sults in slightly increased test statistic values compared to the
backscatter from smaller tumors, and similarly, shallow tumors
have higher test statistic values than deep tumors. However, re-
gardless of position, size, or number, all of the tumors in these
examples are clearly detected by the GLRT with the chosen
FDR.

Several more challenging imaging scenarios are presented
for the reduced contrast numerical breast phantoms listed in
Table I. The results of applying the GLRT to the baseline and
the reduced-contrast numerical breast phantoms are summa-
rized by the two plots of Fig. 7. In each case the numerical
breast phantom contains a single 2-mm-diameter tumor placed
at (5.0 cm, 2.1 cm). Fig. 7(a) indicates the values of the peak
test statistic in the GLRT images and Fig. 7(b) indicates the
localization error in both the vertical and horizontal directions
for each of the numerical breast phantoms described in Table I.
For cases through , where the minimum contrast is 1.69:1
or greater, the tumor is detected and localized within 2 mm
of its true location. Case is also correctly detected and
localized within 1 mm of its true location even though the min-
imum contrast for this phantom is only 1.43:1. In cases and

which have contrasts below 1.69:1, the peak test statistic
location occurs several cm away from the true tumor location.
In both of these cases the peak occurs on the far right side of
the image where a relatively high-contrast interface is formed
in the numerical phantom by the spatially varying dielectric
properties near the antenna array. Thus this false detection is
due to a particularly large clutter response analogous to those
evident on the far right side of the detection images shown in
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Fig. 3(a) and (b). Phantoms and represent very low
contrast scenarios corresponding to the challenging case of het-
erogeneously dense breast tissue. The ratio of signal to clutter
power in the backscatter signal for these cases appears to be so
low that the underlying signal component cannot be detected by
the GLRT. Further work and improvement on the clutter model
and GLRT is needed to determine whether successful detection
is possible for the heterogeneously dense cases of and .
However, for all of the other challenging reduced-contrast cases
that we have considered here, our results suggest that the GLRT
using the sample clutter covariance matrix shows promise for
detecting very small tumors and suppressing clutter even when
the dielectric contrast is as low as 1.43:1.

B. GLRT-Derived Images for 3-D Breast Phantoms

Next, we consider the GLRT applied to backscatter wave-
forms from the 3-D experimental and numerical breast phan-
toms. The GLRT’s for the 3-D phantoms are constructed using
analytical signal templates for a 4-mm-diameter spherical tumor
where the dielectric properties of the scatterer and surrounding
medium match the corresponding dielectric properties of the
3-D phantoms. Note that in the experimental case the scatterer
shape does not perfectly match the scatterer shape assumed in
the GLRT templates. We allow this design mismatch because
the cylindrical shape is most convenient for constructing the ex-
perimental phantom and the spherical shape leads to a tractable
analytical solution for the templates. We expect the impact of
the mismatch to be minor since the dimensions of the cylinder
and sphere are comparable and the tumor size is smaller than
the wavelength at the center frequency of the UWB pulse. In
addition to scattering from the spherical tumor, the templates
for the 3-D numerical phantom account for propagation through
multiple layers: the immersion medium, skin, and breast tissue.
The distance from each antenna position to the skin is estimated
(in the direction of the incident field) and the thickness of the
skin is assumed to be 2 mm. These imperfectly approximated
distances as well as the curvature of the skin contour and the
radiation pattern of the antenna will lead to some practical
mismatches between the actual and assumed signals for the 3-D
numerical phantom. The signal templates are further parame-
terized by the position of the tumor which is scanned with
1 mm spatial resolution over a region of the breast phantom.
For the experimental phantoms, this imaging region is the
6 cm 6 cm 5 cm region of the breast phantom directly
below the antenna array. For the 3-D numerical phantom, the
imaging region is 8 cm 8 cm 5.6 cm and centered within
the circular antenna array.

We first present results for the experimental breast phantom
with the intermediate contrast ( of Table II). We obtain exper-
imental backscatter data from a phantom containing a 4-mm-di-
ameter, 4-mm-tall cylindrical scatterer located approximately at
( -span, -span, depth) (0 cm, 0 cm, 2.2 cm). Fig. 8 depicts
the resulting 3-D plot of the thresholded test statistic, where a
portion of the image has been cut away to reveal the spatial pro-
file of the test statistic in the detected regions. The peak value
is 16.6 dB above the threshold and occurs within 3 mm of the
true tumor location. Although the tumor is well-localized by the
peak voxel in this image, multiple sidelobes above and below

Fig. 8. Detection image for experimental backscatter data from an e2

experimental breast phantom with a single 4 mm cylindrical tumor centered
approximately at (0 cm, 0 cm, 2.2 cm).

the true tumor location create some ambiguity in determining
the number of scatterers detected. The sidelobes are due to high
correlation between the signal template at the peak voxel and the
signal templates within the main and sidelobe voxels. This high
correlation occurs because of the low loss and permittivity of
the fat simulant in the experimental phantom and also because
of the oscillating peaks of the modulated Gaussian pulse. Due to
the low dielectric properties, the electrical size of the phantom
and the distance between testing locations is effectively reduced
for the given bandwidth. As a result, the signals are correlated
for larger spatial regions than in the numerical breast phantoms.
The multiple sidelobes occur due to the oscillating nature of the
transmitted pulse.

Fig. 9 summarizes the results of detection for each of the 3-D
experimental phantoms in Table II with a single 4 mm tumor
approximately centered below the antenna array at a depth of
2.2 cm. In each case a scatterer is correctly detected and local-
ized within a few mm of the tumor location, and the peak test
statistic values are all well above the threshold.

The GLRT image shown in Fig. 10 is constructed from data
obtained with the 3-D numerical breast phantom. The peak test
statistic is 2 dB above the threshold and is localized within 2 mm
of the true tumor location. Note that the sidelobes seen in Fig. 8
are not present in this image because the more realistic dielectric
properties used for the fat simulant result in greater loss and
consequently lower spatial correlation in the signal templates.

VI. GLRT PERFORMANCE ANALYSIS

In this section, we investigate the loss in GLRT detection per-
formance as mismatch between the actual and assumed signal
parameterizations is systematically introduced. Mismatch, that
is , occurs as a result of imperfect assumptions in the
GLRT formulation. For example, the signal templates in the
GLRT are constructed using assumed values for the average
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Fig. 9. Summary of GLRT results for 3-D experimental breast phantoms
e1 through e3 (described in Table II). (a) Peak test statistic value and (b)
localization error in the x-span, y-span, and depth directions for each case.

Fig. 10. Detection image for simulated backscatter data from the 3-D
numerical breast phantom of Fig. 2. The transparent breast contour is
superimposed on the detection image to illustrate the relative location of the
detected scatterer.

dielectric properties of normal and malignant breast tissue. In
reality the dielectric properties are spatially dependent within
the breast and may vary considerably from patient-to-patient,
so even if a good estimate of the average dielectric properties
is available, it is still very likely that some spatially-depen-
dent mismatch in dielectric properties will occur. Other likely
sources of mismatch include the shape, size, contrast and loca-
tion of a tumor in the breast. Thus it is important to understand
the performance of the GLRT under mild to severe mismatch
conditions. We begin by showing that mismatch effectively
lowers the signal-to-noise ratio (SNR) of the data and that the
loss in SNR is characterized by the geometric angle between
the actual and assumed signal vectors. Next, we explore the
relationship between GLRT power (the probability of correctly
detecting a scatterer) and our expression for mismatch loss. We

conclude the section with several examples of mismatch using
the 2-D signal templates described Section IV-A. Throughout
this section we assume for simplicity that the data vector, ,
is distributed as (that is, we assume a
single scatterer exists at and the clutter whitening is perfect).

For the test statistic given by (6), both the numerator and de-
nominator have distributions and are independent of one an-
other since the projection matrices and are mutually
orthogonal. The ratio is thus singly-noncentral -distributed

in the matched case and doubly-
noncentral -distributed under mis-
matched conditions . The noncentrality parameters for
these distributions are given by

(13)

(14)

(15)

where

(16)

Here, represents the geometric angle between assumed and
actual signal vectors, and , respectively. As in-
creases on , the numerator noncentrality parameter
decreases and the denominator noncentrality parameter in-
creases, leading to a reduced test statistic in the mismatched
case compared to the matched case. Note that the sum of the nu-
merator and denominator noncentrality parameters equals ,
which represents the SNR for the data. We define a new variable

to denote the loss in the numerator
noncentrality parameter on a logarithmic scale.

For a given and , the probability of correctly detecting
a scatterer using the GLRT is given by

(17)

where is the doubly noncentral F cdf with and
numerator and denominator degrees of freedom, respectively,

and and numerator and denominator noncentrality parame-
ters, respectively. The doubly noncentral F distribution has com-
plex dependence on four parameters making it difficult to in-
tuit the effects of one or more changes in the parameter values.
Therefore we approximate by the singly noncen-
tral F distribution where

[37] to facilitate the performance analysis of
the mismatched GLRT. Now both the matched and
mismatched GLRT’s are described by

(18)

where .
As , the noncentral F distribution approaches a noncen-
tral distribution with one degree of freedom [37]. Noting that

, the noncentral approximation is valid for
sufficiently large, that is
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Fig. 11. Performance of the GLRT when P = 10 and mismatch is
introduced. The solid curves were calculated using [38] to numerically solve
for the doubly-noncentral F distribution in (17), and the dotted curves were
calculated using the normal approximation of (20). Each set of curves (solid and
dashed) are labeled with the value of mismatch loss � that was assumed.

for large . For our UWB radar setup, typical
values of are on the order of 10 and typical values of are
on the order of 100, so is on the order of 1000. Since
is large, we use the approximation in the following analysis.
If we take the square root of the approximation to the test
statistic distribution, then we can analyze the approximate per-
formance of the matched and mismatched GLRT with a conve-
nient Gaussian distribution

(19)

Hence, the probability of detection is approximated by

(20)

where is selected to satisfy a given probability of false alarm,
. The advantage of (20) over (17) lies in the transparent re-

lationship between the probability of correct detection and mis-
match loss. With the Gaussian approximation, mismatch loss
simply shifts the mean of the Gaussian distribution to the left
and the reduction in is straightforward to calculate. In con-
trast, using the doubly noncentral F distribution, mismatch loss
effects both the numerator and denominator of the doubly non-
central F variable, and calculating the reduction in due to
mismatch loss requires costly computational methods or numer-
ical approximations such as the one described in [38].

Fig. 11 shows a plot of as a function of SNR and
mismatch loss for , and .
The solid curves are calculated using (17) where the doubly non-
central F distribution is approximated according to [38] and the
dotted curves are calculated using the Gaussian approximation
for given by (20). The solid and dotted curves are in good
agreement for both the matched and mismatched cases. In the
matched case ( dB), is greater than 0.95 when
SNR is greater than 16 dB. As mismatch is introduced,
increases from zero and the resulting curves are shown for

and dB. Introducing mismatch into the
GLRT approximately translates the matched curve to the
right by and simply scales the mean of the Gaussian dis-
tribution.

Next we present several examples that illustrate the effects of
some common sources of physical mismatch in the GLRT. For
these examples, we use the 2-D signal templates described in

Fig. 12. Mismatch loss as a function of location error for a 2-mm diameter test
scatterer (5.0 cm, 2.1 cm). The location error is the horizontal or vertical offset
between the true scatterer location and the test location.

Section IV.A, whitened by a sample clutter covariance matrix
that is approximately matched to the assumed dielectric proper-
ties of the background medium. Recall that the signal templates
are parameterized in Section IV.A by the scatterer location, scat-
terer diameter, and the dielectric properties of the scatterer and
background medium. We give examples of the mismatch loss in-
curred for location errors alone and for compound errors where
both location and one other scattering parameter are incorrectly
assumed in the GLRT.

The first type of mismatch that we consider is an error in the
tumor location. Consider a scenario where coarse spatial sam-
pling is used to generate the image of detected scatterers. If the
sampling grid is too coarse, then a small tumor whose true lo-
cation falls between grid points might not be detected due to a
significant mismatch loss. We justify our 1 mm sampling grid
in this example by letting the true scatterer parameters corre-
spond to a 2-mm-diameter tumor centered under the conformal
antenna array at a depth of 2.1 cm. The permittivity and conduc-
tivity of normal and malignant tissue correspond to the average
dielectric properties of a relatively dense phantom, in Table I.
These are the same conditions used for the image in Fig. 3(b).
The parameters assumed by the GLRT are matched to the true
values except for the scatterer location which is varied in either
the depth or span direction. In Fig. 12 a plot of mismatch loss
as a function of scatterer location error is shown when all other
scattering parameters are perfectly matched. The two curves in
the plot represent location errors in the depth (solid line) and
span (dotted line) directions. As expected, the mismatch loss is
zero when no location error exists and the loss increases over a
main lobe as the location error deviates from zero. For a 1-mm
sampling grid, the largest location error of 0.5 mm, which occurs
half-way between adjacent sample points, introduces less than
0.9 dB loss for depth errors and less than 0.3 dB loss for span
errors. These small losses suggest that even when a tumor falls
half-way between grid sampling points, it is almost as likely
to be detected as when a tumor falls exactly on a grid sampling
point. The curve in Fig. 12 is also useful for distinguishing main
and sidelobe peaks in an image of detected scatterers. The local
minima that are apparent in the mismatch loss for location errors

mm in the depth direction indicate significant correlation be-
tween the templates at these locations and the templates at the
true location, so we expect to see secondary peaks at these loca-
tions in the image of detected scatterers. As predicted, the small
sidelobes seen in Fig. 3(b) that occur below and to the right of
the mainlobe of the detected scatterer are approximately 4 mm
from the peak pixel. The absence of left and top sidelobes is not
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Fig. 13. Mismatch loss as a function of both scatterer location and dielectric
properties of the background medium. The 2-mm diameter test scatterer is
centered at (5.0 cm, 2.1 cm) in a background medium with � = 21:50 while
the true scatterer density and location are varied. Location errors are restricted
to offsets along the depth axis.

Fig. 14. Mismatch loss as a function of both scatterer location and size. The
test scatterer has 6-mm diameter centered at (5.0 cm, 2.1 cm) while the true
scatterer diameter and location are varied. Location errors are restricted to
offsets along the depth axis.

inconsistent with the curves in Fig. 12. In fact those sidelobes do
exist, but have slightly lower test statistic values that fall below
the threshold and thus are not detected. Similarly for Figs. 4, 5,
and 6, the sidelobe locations can be predicted by producing cor-
responding mismatch loss curves for these cases.

Next we consider the case where the GLRT assumes incor-
rect values for the average dielectric properties of normal breast
tissue. We let the true scattering scenario consist of a 2-mm-
diameter tumor at a depth of 2.1 cm centered under the an-
tenna array, and the background medium has dielectric constant

and conductivity S/m at 6 GHz. The as-
sumed scattering scenario is matched to the true scattering sce-
nario except for the scatterer depth and the dielectric properties
of the background medium which we allow to vary. Fig. 13 de-
picts the mismatch loss as a function of location error for each
of three assumed dielectric constants: the dashed line represents
an underestimated density GLRT, and
at 6 GHz; the solid line represents the matched density GLRT,

and at 6 GHz; and the dash-dot line
represents the overestimated density GLRT, and

at 6 GHz. This plot suggests that when the density
and attenuation of normal breast tissue is underestimated, a scat-
terer is still likely to be detected since the mismatch loss has two
local minima at only a few dB loss, but the location of the scat-
terer will appear deeper than the true depth of the scatterer. Con-
versely, if we overestimate the density of normal breast tissue,
the location of the scatterer will most likely appear shallower
than the true depth of the scatterer, but again the mismatch loss
is small and the scatterer is still likely to be detected.

The last type of mismatch that we consider in this section
is the combination of scatterer size and depth errors. Fig. 14

depicts the mismatch loss when both the diameter and depth of
the scatterer are mismatched. The plot illustrates that mismatch
in scatterer size introduces a localization error in the depth axis.
That is, the peak of the test statistic occurs at the incorrect depth,
but as before the scatterer is still likely to be detected since the
mismatch loss is low at a slightly offset location.

VII. SUMMARY

We have explored the feasibility of the GLRT for UWB mi-
crowave detection of strong scatterers in the breast such as ma-
lignant tumors using simulated backscatter from 2-D MRI-de-
rived breast phantoms and a 3-D homogeneous numerical breast
phantom, and experimental backscatter from multilayer phys-
ical breast phantoms. We address the problem of clutter, which
occurs in the backscatter data due to normal heterogeneity of the
breast, with a statistical model to account for the variability in
the structure of normal breast tissue from patient to patient. The
clutter covariance matrix is estimated by a sample covariance
matrix obtained from clutter observations of numerous realistic
numerical breast phantoms. We show that the GLRT together
with the proposed Gaussian clutter model is adept at detecting
and localizing small tumors in numerical breast phantoms. Sev-
eral challenging numerical breast phantoms with reduced ma-
lignant-to-normal dielectric contrast are also considered and the
GLRT successfully detects and localizes 2-mm-diameter tumors
in the realistic numerical breast phantoms with dielectric con-
trasts as low as 1.43:1. Further development of statistical data
models may lead to improvements in detection performance for
the two heterogeneously dense cases considered in this paper
where the tumor was not correctly detected. Our experimental
breast phantoms are homogeneous, so the backscatter data is
clutter-free and modeled by a deterministic signal plus white
Gaussian noise. Again the GLRT is able to accurately detect and
localize multiple small tumors in the phantom, even for reduced
dielectric contrast. For the final phantom that we consider, a 3-D
numerical breast phantom with homogeneous normal tissue, the
small tumor is again correctly detected and well localized in the
image. We conclude with an analysis of the performance of the
GLRT when mismatch is introduced and characterize the loss
in performance by the cosine of the geometric angle between
the actual and assumed signal vectors. For data with high SNR,
moderate to severe levels of mismatch are well tolerated by the
GLRT. Often the result of mismatch is simply a shift in the lo-
cation of the detected tumor and a few dB reduction in the test
statistic value.

We conclude that the Gaussian clutter-based GLRT is
promising as a tool for UWB microwave breast cancer detec-
tion. This method of detection warrants studies using more
realistic 3-D breast phantoms and further development on the
subject of characterization of the scattering properties using the
template parameterization.
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