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Al-free 980 nm InGaAs/InGaAsP/InGaP laser structures grown by low-pressure metalorganic
chemical vapor depositioilLP-MOCVD) have been optimized for high cw output power by
incorporating a broad waveguide design. Increasing the optical-confinement layer total thickness
from 0.2 to 1.0um decreases the internal loss fivefold to 1.0—1.5 trnand doubles the transverse
spot size to 0.6um (full width half-maximum. Consequently, 4-mm long, 10@m-aperture
devices emit up to 8.1 W front-facet cw power. cw power conversion efficiencies as high as 59% are
obtained from 0.5-mm long devices. Catastrophic-optical-mirror-dani@@MD) power-density

levels reach 15.0-15.5 MW/cnand are found similar to those for InGaAs/AlGaAs facet-coated
diode lasers. ©1996 American Institute of Physid$S0003-695(96)01237-5

Diode lasers with reliable operation in the 980 nm wave-quantum efficiency(i.e., highT, and T, values.* As previ-
length range are needed for applications such as pumgusly reported, the use of a double-quantum-wéDQW)
sources for solid-state lasers or rare-earth-doped fiber amplinGaAs active region together with high-band-gap InGaAsP
fiers, and medical therapy. The growth of InGaAsP alloys(E;=1.62 eV} optical-confinement layers, leads to 0.98
lattice-matched to a GaAs substrate is very attractive as apm diode lasers with relatively temperature insensitive char-
aluminum-free alternative to the conventional AlGaAs-basedicteristics. Given a certain COMD power-density value, high
materials. The aluminum-free InGa#®/InGaP/GaAs mate- cw output powers can be attained by making devices of large
rial system has several advantages over the GaAs/AlGaAgansverse spot size. The subsequent decrease iftrames-
material system for the realization of reliable, high-powerversg optical confinement factord”, can be offset by in-
diode laser sourcesl) the low reactivity of InGaP to oxy- creasing the device cavity length, in structures of low
gen facilitates regrowth for the fabrication of single-modeinternal loss,a; (<2 cm *).8° Thus, a large optical spot
index-guided structure’s’ (2) higher electricat® and thermal  sjze can be obtained with little penalty in threshold-current
conductivity’ compared with AlGaAs(3) potential for im- density or efficiency.
proved reliability® and (4) potential for growth of reliable The Al-free DQW laser structure with a broad wave-
diode lasers on Si substratesiere, we report on the opti- guide is shown in Fig. (B). The structures are grown by
mization of InGaAs/InGaAsP/InQaP strained-layer quantumow.-pressurd50 mbay MOVPE in an Aixtron A-200 system
well laser structures by using the broad-waveguideon nominally exact(100) GaAs substrateb Details of the
concept;® for maximizing the cw output power. As a result, 5rowth conditions have been previously givifihe material
record cw performance8.1 W front-facet power, cavity g eyaluated by fabrication and characterization of wide-
lengthL =4 mm; and 59% wallplug efficiency,=0.5 mm  gyjpe (100 xm) devices. The stripe contact is formed by

are obtained from broad-ar¢h00-uwm wide stripg devices. chemically etching through thp™ GaAs cap layer outside
Catastrophic optical mirror damag€OMD) values from

LR/HR facet-coated devices under cw operatior., ~15
MW/cm?) are found to be similar to those for InGaAs/

. - te InGaP cladding layer
AlGaAs facet-coated lasers, indicating that the quantum-well S ‘
matgrial (i.e., strained-layer !nGaA,;and_ not the cle}dding/ T . /}:g??ézio?gge%nt
confinement layers material, primarily determines the g | | | | 020G goAS

COMD value. @ quantum well (75 &)
The cw output power of a diode laser is generally limited

by either thermal rollover or COMD. Thermally limited

power saturation can be eliminated by designing laser struc-

tures to have high total power conversion efficiencies, low P S ’

threshold-current density, and weak temperature sensitivity (b) ‘ |

for both the threshold current and the external differential

FIG. 1. (a) Schematic diagram of double-quantum well Al-free laser struc-

" ture with broad-waveguide desigfi) field intensity profile for a waveguide
Electronic mail: mawst@engr.wisc.edu width, t., of 1.0 um.
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FIG. 2. Calculated equivalent transverse spot siZE; as a function of the C
urrent, A

waveguide widtht. . I" is the optical confinement factor andis the quan-

tum well width. FIG. 3. cw light-current characteristics and wall plug efficiency for a laser

structure witht,=0.6 um; L=1 mm; LR/HR: 3%/95%.
the 100um-wide stripe, and defining a metal contact open-

ing using a Si@Q mask. Devices of various cavity lengths are quantum efficiencies and an increased output power at
characterized under low-duty cyckd.199 pulsed-current  conp The low internal loss in this structure is the result of
operation to extract material parameters such as the threshgldy, e optical overlap with the heavily doped confinement
current density,Jy,, the internal cavity lossy;, the internal |5y 0r¢ - and possibly from reduced field interaction with the
efficiency, 7, and the characteristic —temperature o e |nGaAsP/INGaP interfaddHowever, further studies
coefficients for threshold currentfo, and external differen- required to determine quantitatively the contribution of
tial quantum efficiencyl, . For cw measurements, devices a1 interface to the internal loss. HR/AR%/95% coated

are m_ounted junctlon—§|de down on elthgr copper or d'amonﬂevices { =1 mm, W= 100 zm) mounted junction down on
heatsinks operateq with a thermoelectric cooler. _ diamond heatsinks operate to 6.0 W cw output poffég.

We hgve previously rc_eportéda_n Iager structures with 3) at 18 °C, with a maximum wallplug efficiencyy,, of
O.2—,_um-th|ck InGaAsP optpal cavny width. The qalculated 51%. The maximuny, value occurs at 1.7 W in good agree-
equivalent(transversespot sized/T’, is shown in Fig. 2 for  ant with theory'® The series resistance is measured to be
InGaAg/InGgAsP/InGaP strgctures as a functlon of the optine jow as 0.1, with the COMD power density at the front
c_al cavity width,t., wherel‘ IS the(transvers)appncal CON" facet estimated to be 15 MW/@mThe COMD level is cal-
finement factor andl is the quantum wef) width. A 0.2- 15464 for the internal power density at the fad®f,
um-thick optical cavity minimizesl/T" (see Fig. 2, resulting
in the lowest threshold-current density. However, since the p, =p_[(1-R)/(1+R)], (1)
equivalent spot sized/T", is minimized, the structure is not
optimal for high cw output-power operation. The internal whereP s the density of the power emitted from the facet,
loss for these structures is relatively high-7 cmi'!), al- andR is the facet(powe reflectivity. The COMD power
though similar to that reported by othéfs'! Devices density for the uncoated devices with Qu@r-wide confine-
(L=1000 wm, w= 100 xm) with uncoated facets mounted ment region$is calculated to be 8.6 MW/chInterestingly,
junction down on diamond heatsinks, operate cw to an optithe COMD valug(15 MW/cn?) for the facet-coated devices
cal power of 3.0 W(both facety, limited by COMD. is only a factor of~2 larger than for the uncoated devices.

Improved performance has been achieved by employin@y contrast, for GaAs/AlGaAs devices, facet-coated devices
a broad waveguide design with an InGaAsP waveguide regenerally have COMD values a factor of 4-5 higher than for
gion whose widtht,, is varied from 0.6 to 1.um (see Fig. uncoated device¥. This is possibly a result of the lower
1). It should be pointed out that, as increases, the first- surface recombination velocify of the InGaAsP confine-
order transverse mode will not lase, since it has a null in thenent layer versus AlGaAs confinement layers.
active region, and thus very smdll. We have confirmed Increasing the optical confinement layer thicknésso
from far-field measurements on devices with-0.6 umthat 1.0 um further decrease$ to 2.4%, and increases the
only the fundamental transverse mode lases.tfFerl.0 um  equivalent spot sizel/T", to 0.55um. As shown in Fig. (b),
devices, one is slightly above the cutoff condition for the94% of the mode energy resides in the undoped InGaAsP
second-order transverse modee., t.,=0.88 um). How-  optical confinement region, resulting in a lowy=1.0-1.5
ever, this mode has higher losses and loWehan the fun- cm™!. Devices with 4 mm cavity lengths an@®%/95%
damental transverse mode, and thus is not likely to lasd.R/HR coatings operate up to 8.1 W cw output power at
Structures with confinement layer thickne$s=0.6 um, 10 °C (Fig. 4). The external differential quantum efficiency
possess low internal losses,= 2.5 cm 1, relatively low op-  reaches values as high as 72%, and the wallplug efficiency,
tical confinement factor’ = 3.4% (compared with 4.6% for 7,, is above 44% from 2 to 8.1 W, with a maximum of 47%
the structure with 0.2em-wide confinement regionand  in the 3.5-4.8 W range. The relative constancynpgfis due
large effective spot sizel/T'=0.42 um, as shown in Fig. 2. to an extremely low series resistangg, value: 0.0X). The
This combination of lowy; andT’, results in high differential characteristic temperature for the threshold currdig, is
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MW/cm?, and are shown in Fig. 5 together with those for

InGaAs/ InGaP / GaAs
104 % =098 pm; t,= 1.0 ym L 60 InGaAs/AlGaAs 100xm-wide-stripe devicé§®as a func-
- tion of the equivalent spot sizel/T". Interestingly, the
8 - F50 R COMD values do not appear to depend on the type of clad-
=z — |20 g; ding or confining layer materials. As a result, facet-coated
56 - 2 Al-free lasers have COMD values similar to that of conven-
z L3048 tional InGaAs/AlGaAs-based lasers. Previously repdrted
Ay - ‘fo broad-waveguide-type GaAs/AlGaAs lasers have lower val-
% _ r20 £ ues for COMD(11 MWi/cn?), possibly a result of InGaAs
2 4 o E having a lower surface recombination velocity compared to
] GaAs. Applying nonabsorbing mirrors, such as ZHSan
0 A —— oxide-free facets should eliminate COMD and allow cw op-
0 2 4 6 8 10 12 eration well above 10 W.
Current, A In conclusion, Al-free InGaAs/InGaAsP/InGaP diode la-

ser structures have been grown by MOVPE and have dem-
onstrated record performances. cw front-facet output power
as high as 8.1 W is achieved from optimized broad-
waveguide double-quantum well lasers with 1@06+wide

measured to be 250 K. The spectra peak and full width a$tripes and 4-mm-long cavity lengths. Devices with shorter,

half-maximum vary from 972.8 to 978.2 nm, and from 1.2 to 0-5-mm cavity lengths, exhibit total power conversion effi-
3.1 nm, respectively as the drive is varied between 0.8 to 5.giencies as high as 59%. COMD values are found to be simi-
A. This indicates a junction temperature rise of orlg0 °C  lar to InGaAs/AlGaAs facet-coated lasers, indicating that the
between threshold and éh5 W cw power level. Shorter cladding/confinement layer materials do not affect COMD.
cavity-length devices, LR/HR20%/95% coated, operate The authors gratefully acknowledge expert technical as-
with wallplug efficiencies as high as 59% at 1.6 W cw outputsistance by M. G. Harvey and R. Matarese.

power. To the best of our knowledge the 59% wallplug effi-

ciency is the highest value reported for any type of strained-

layer InGaAs-active diode lasers. This high value is in part

due to the fact that Al-free diodes have series resistance,
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