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Efficient, high-power, Al-free active-region diode lasers emittinga0.83 um have been grown

by low-pressure metalorganic chemical vapor deposition. Threshold-current densities as low as 220
Alcm?, maximum continuous wavew) power of 4.6 W, and a maximum cw wallplug efficiency

of 45% are achieved from 1 mm long, uncoated devices wigh(@a, sAlg 5)05sP cladding layers.
Further improvement is obtained by replacing ing 5(Gay sAlg5)o 5P cladding layer with thin

(0.1 um) electron-blocking layers of AkGa :As and IpgGasAlgsoesP, and a p-

Ing 5(Gay Alg.1)osP cladding layer. Such devices provide a record-highof 160 K and reach
catastrophic optical mirror damag€OMD) at a record-high cw power of 4.7 \Woth facets The
corresponding COMD power-density levd.7 MWi/cn?)is ~2 times the COMD power-density
level for uncoated, 0.8 L:m-emitting AlGaAs-active devices. Therefore, 0,8ir-emitting, Al-free
active-region devices are expected to operate reliably at roughly twice the power of AlGaAs-active
region devices. ©1997 American Institute of PhysidsS0003-695(97)04302-7

High-power diode lasers emitting in the wavelengthAl-free diode lasers as well as a record-hig§{160 K). Fur-
rangeA=0.8—0.87um are of interest because of important thermore, we have obtained from uncoated, 1®@-stripe
applications such as pump sources for Nd:YAG lasers. Sucllevices record-high continuous wafew) output power(4.7
lasers conventionally use AlGaAs in the active region forW) allowing the determination of the catastrophic-optical-
A=<0.84 um, and thus suffer from short lifetimes and limited mirror damage(COMD) power-density level for uncoated
output powers by comparison to GaAs-active-region devicednGaAsP-active-layer devices in the QuBn band.

The quaternary alloys InGAs)P, lattice matched to GaAs, The structures are grown by low-pressud mbay
offer an attractive alternative to the AlGaAs/GaAs materialmetalorganic vapor phase epitaxyP-MOVPE) at a tem-
system becaus¢l) the potential for better reliability, due to perature of 700 °Qexcept for thep™-GaAs contact layer,
their inherent resistance to the formation of dark-linewhich is grown at 650 °C to increase the Zn incorporation
defect$ and lower surface recombination velocity of In- on exactly oriented100 n*-GaAs substrates. The source
GaAsP compared to AlGaXs(2) a smaller increase in facet materials are trimethylgallium, trimethylindium, arsine,
temperaturk with drive current, and3) the potential for phosphine, and diethylzinc and silane for freand n-type
growing reliable diode lasers on Si substratefowever, the  dopants. The structures are evaluated by characterizing 100-
InGaAsP/GaAs material system has small conduction-bangm-wide stripe lasers formed by chemically etching through
offsets, which cause diode lasers made of such material e p+-GaAS contact |ayer and defining metal-contact open-
suffer from massive carrier leakage. As a result, one obtainfgs with a SiQ mask. Devices of various lengths are tested
a relatively high threshold-current densify,; **°low inter-  ynder pulsed-current operatiéd kHz, 5 us pulse width to

nal efficiency,7; ;>® and low threshold-current characteristic extractdy,, «;, 7;, andT,. For cw measurements, devices
temperatureT, .’ are mounted junction-side down on diamond or Cu sub-

A recent attempt to solve the problem of carrier leaRage mounts and tested in a fixture employing thermoelectric
has been the use of high-band-gap matéAs :Gay As) for  cooling.
the cladding layers which delivered hidly, promising reli- The first laser structure is shown in Fig. 1. The active
ability data, but also relatively high,,. We have designed region consists of a 150 A §,Ga 06Al 08011 quUantum
and fabricated high-power, efficient, Al-free active-regionye|l surrounded by partially ordered 04m Iny:GasP
devices by employing two featurggtigh-band gapcladding optical confinement layers and 1.28n Iny 5(Ga sAl g 5)o P
layers of I §(GasAlososP and the “broad-waveguide” ¢jadding layers. A typical cvii—I curve is shown in Fig. 2
concept'® The former significantly reduces carrier leakage,or a laser emitting ak =0.83 um with uncoated facets, 100-
while the latter insures both a low internal loss coefficient, ;m_wide stripe, and 1-mm-long cavity. The ma;dmum
a; (~2 cm ), since a large fraction of the optical energy oyput power is 4.6 Whoth facets The differential quan-
is contained within the not intentionally dopéice., low 10s$  {m efficiency, 74, is 77% reflecting the lowy; (2 cm™t)
waveguide,” as well as a large transverse spot €& um  ang high ,(84%. Also shown in Fig. 2 is the wallplug
full-width at half-maximum. As a result, we report the low- efficiency, 77,, which reaches a maximum value of 45% at
estdy, (220 Alem? for 1-mm-long devicesfor 0.8 um band,  an output popwer of 1.23 W. This record-higfy for Al-free
0.8-um-band diode lasers reflects lady,, high 74, small
dElectronic mail: wade@cae.wisc.edu temperature sensitivity fady, and 4, and a relatively low
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FIG. 1. Conduction-band edge of an Al-free active-region laser structure
with 0.8-um-wide In, sGa, sP waveguide layer and B(Ga, sAl g 5)0.sP clad-

; FIG. 3. Comparison betweel, vs inverse cavity length curves for the laser
ding layers. P e y eng

structure in Fig. 1 and other Al-free lasers in the pi@-band(\=0.81 um
for Refs. 1, 4, 7, and 8=0.83 um for Ref. 12; anch=0.875um for Ref.

series resistana®.2 (}). Specifically, the characteristic tem- 5.

perature coefficients fody, and 74, To and T;,! are 120
and 1220 K over the 20—60 °C temperature range. By com a4 X )
parison, the highesT, values reported for completely Al- (A=0.81 um)™" with the notable exception of tensile-
free and 2-mm-long devices is 75 K fdlr:O.875,u,m5 and strained actlv_e-layer devicésAt )\=0._83 pm ar_wd for 1.25-
102 K for A=0.805 um.” Therefore, 1g5Ga,Algo P mm-long devices)y, for the structure in Fig. 1 is 6_5% qf the
cladding layers are highly effective at reducing carrier leak-/OWest value reported for completely Al-free devicésvith
age with little penalty in electrical resistance. the addition of AlGaAs cladding layefse., Ref. 8(\=0.81
For comparison,J,vs inverse cavity length curves are “M)], devices show lowedy, and higherT, (~150 K for
shown for various Al-free 0.8ém-band devices in Fig. 3. As 1-Mm-long devicescompared to Al-free 0.8Jum devices.

can be seen, thi, values obtained for the structure in Fig. 1 However, theirJyvalues are significantly higher than those

are the lowest reported. Due to superior carrier confinemen{or INGaAlP-clad devices. _
To further lessen electron leakage, we studied the struc-

Ji is only 365 A/cm? for 0.5-mm-long devices. The devices T :
from Refs. 1 and 4 ak=0.81 um, and Ref. 5 at 0.87%m ture shown in Fig. 4, where the upper cladding layer of
are completely Al-free with correspondingly small P-Nos(GasAlogosP has been replaced by thif.1 um)

conduction-band offseté.e., large carrier leakag@nd sub-  P~Nos(GasAlogosP and p-AlogCa As layers, and a

sequent highly, values. As expected, the effect is particu- P~Nos(G.sAlo.)osP layer for low thermal and electrical re-
sistance. The results look promising as shown in Figa) 5

and §b) for 1.5-mm-long devicesl, has increased to 160 K

larly noticeable for devices operating at shorter wavelengths
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FIG. 2. cwL-I characteristicgboth facety and wallplug efficiency for a

1-mm-long laser with uncoated facets at 20 °C heatsink temperature usinglG. 4. Conduction-band edge of an Al-free active-layer laser structure with
the structure shown in Fig. 1. p-side Al g:Gay 15AS/INg 5(Gay sAlg5)0 5P carrier-blocking structure.
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~ blockage is not new: It has been propoSedand
1000 T , implemented at long wavelengthé\=1.55 um).

[ ' At 2.35 W per facet, the power is limited by COMD
N [Fig. 5b)] at an internal power density of 8.7 MW/énthat
500 }+ is, 1.7 times that for GaAs-active-layer devitesnfirming

_—
NE N that the surface recombination velocity of InGaAaR-0.83
3 M mm) is lower than that of GaAs. AlGaAs used for 0.gin
g To=160K emission has an even lower COMD than GaAsp that at
= 0 A=0.81 um InGaAsP-active layer devices are expected to
= - have at least twice the COMD of AlGaAs devices and thus

operate reliably at power levels twice as high.

In conclusion, 0.8zm-band Al-free active-region diode
100 L . . \ ) \ . , lasers with novel cladding layers have provided record-high
cw output powers. Two laser structures were studied. The
20 30 40 50 60 first used 1g5(Ga) sAlp5)osP cladding layers and provided

1-mm-long, uncoated devices with,=220A/cnf, 4.6 W

T(°C) maximum cw output power ang, n.=45%. The second

used on thep-side 0.1um-thick carrier-blocking layers of
AlogsGap1sAs and Ins(GaysAlososP followed by an
Ing 5(Gay Al g 1o 5P cladding layer, and thus provided 4.7 W
cw power and a COMD power density twice that of AlGaAs-
active-layer devices. Therefore, these newly developed Al-
free devices have the potential to be significantly more reli-
able than AlGaAs-based 0.81m devices.
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