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Abstract: We extend the torque per unit velocity 
method for estimating the modal damping of subsyn- 
chronous oscillations to  general power systems with 
thyristor switching devices. This allows damping of SSR 
by thyristor controlled series capacitors to be obtained 
from time domain simulations of only the electrical part 
of the system. Our method generalizes to  the case of mul- 
tiple torsional modes with the same natural frequency. 
A new method is used to estimate the damping and fre- 
quency of the swing mode. Torque per unit velocity 
methods are easier than exact eigenvalue analysis and 
testing on the IEEE first benchmark SSR model shows 
excellent agreement with exact eigenvalue analysis. 
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1. Introduction 
Subsynchronous resonance (SSR) is a phenomenon in 

which an electrical system compensated with series ca- 
pacitors interacts with generator shafts to cause shaft 
fatigue or breakage. SSR in power systems without 
thyristor switching devices can be accurately analyzed 
by eigenvalue analysis (e.g. [l]), torque per unit velocity 
methods [2,3,4,5,6] and time domain simulation. Each 
of these approaches has strengths and weaknesses. Time 
domain simulation is accurate, applies to large, detailed 
system models and can be used to  study large signal 
effects. However, estimating the damping of the various 
system modes can be difficult, especially when one of the 
modes is unstable. Complementary to  time domain sim- 
ulation and yielding different insights are the methods of 
eigenvalue analysis and torque per unit velocity. These 
methods are confined to small signal stability, but they 
both yield modal dampings Eigenvalue analysis is exact 
but requires a linearized model of the entire electrome- 
chanical system to he developed The torque per unit 
velocity method is a good approximation due to Bowler, 
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Hedin, Kilgore and others which only requires steady 
state simulation of the electrical part of the system. 

A flexible AC transmission system such as the thyris- 
tor controlled series capacitor (TCSC) offers the possi- 
bility of power flow control together with suppression of 
SSR instabilities [7,8,9,10]. Thus it is necessary to ana- 
lyze SSR in power systems with thyristor switching de- 
vices. The time variations and nonlinearities caused by 
the thyristor switchings can be overcome in time domain 
simulations such as EMTP, but they pose a challenge 
to  the eigenvalue and torque per unit velocity methods. 
Eigenanalysis of the IEEE first benchmark model for 
SSR with a TCSC was achieved in [ l O , l l ]  by comput- 
ing the Jacobian of the Poincare map. Although this 
approach is general and exact, it would be arduous to 
form and solve the linearized system equations for Iarge 
multimachine systems with controlled thyristor switch- 
ing devices. 

(1) Justify and validate the extension of the torque per 
unit velocity method to general multimachine power sys- 
tems with thyristor switching devices. This provides a 
practical alternative for estimating the damping of SSR 
modes. 
(2) Generalize the method to treat the case of multiple 
torsional modes having the same natural frequency in a 
multimachine system. 
(3) Present a new method for estimating the damping 
and frequency of the swing mode. 
The paper focuses on presenting and illustrating torque 
per unit velocity methods achieving these objectives. 
Heuristic derivations are sketched in the Appendix and 
the methods are rigorously derived in [11,12] using an 
eigenvalue perturbation technique. 

The objectives for this paper are threefold: 

2. SSR analysis without switching devices 
This section reviews the torque per unit velocity 

method for balanced power systems with no switching 
devices. When the power system operates under sym- 
metrical and balanced three phase conditions, Park’s 
transformation of the electrical system can be used to 
obtain system equations whose coefficients do not vary 
with time. Linearizing these equations yields a time in- 
variant linear system. 

The basic idea, of the torque per unit velocity method 
is to trace the effect of a small sinusoidal mechanical dis- 
turbance of a generator rotor through the electrical net- 
work and determine the electromagnetic torque which 
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acts either regenerativeiy (negative damping) or degen- 
eratively (positive damping) on the initial displacement, 

Suppose that the mode of interest has subsynchronous 
frequency wz and the small disturbance of the rotor is 
represented by an input of eJwst to the linearized electri- 
cal system. Then the electromagnetic torque response to 
this input has the form AT = A'T(jw,)eJwst. The phasor 
A'T( jwz)  is a constant and the electromagnetic torque re- 
sponse AT has the same frequency as the input because 
the linearized electrical system is time invariant. The 
damping of the torsional mode can then be estimated 
from A'T( jwi ) .  The method works by cleverly exploiting 
the weak coupling from the electrical to the mechanical 
system. 

3. SSR analysis wi th  switching devices 
This section explains how thyristor switching devices 

cause the system linearization to be time varying and 
the response of the electrical system to subsynchronous 
rotor oscillations to be complicated. Whenever some 
thyristors are conducting and other thyristors are off, 
the 3 phase network is instantaneously unbalanced and 
this causes the system to be periodically time varying 
even when Park's transformation is used. Unbalanced 
electrical networks without switching devices have been 
proposed for SSR mitigation [13] and these also lead to 
a periodically time varying system. When these systems 
are linearized about their periodic steady state a linear 
periodically time varying system results. That is, the co- 
efficients of the linear system vary periodically with time 
at some frequency WO. The effect of the time varying 
linear system is that the steady state torque response to 
small rotor input eJWt has the general form (see [14]): 

ATz = Ax(.7w,)e3"'t + gother(t) (1) 
where the term A'&(jW,)eJWst is the response at fre- 
quency w and gother (t) contains the remaining frequency 
components of the response. While A'&(juz) can be 
thought of as the fundamental frequency part of the re- 
sponse, the term gother(t) is quite complicated; for ex- 
ample, if WO and w are not in an integer ratio, gother(t) 
is not even periodic in t ! 

Frequency domain analysis of SSR in systems contain- 
ing thyristors has been attempted for the Kayenta sys- 
tem in [9] and for the Slatt substation in [7,8]. In the 
Kayenta system, the frequency response of a TCSC was 
measured using time domain simulation. For the Slatt 
system, the effect of the TCSC was evaluated by repre 
senting the TCSC by a linear transfer function obtained 
from simulations. A frequency domain analysis of the 
TCSC was also carried out in [15]. These studies mea- 
sured the response of the TCSC only at the frequency 
of the input and other frequency components involved in 
the response were not discussed. 

4. Description of system 
This section describes the assumptions about the elec- 

trical system and the equations of the generator shafts. 
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We consider a general multimachine power system which 
contains thyristor switching devices and their controls. 
The system is assumed to be operating at  a periodic 
steady state (typically with a 60 Hz frequency) and to 
be linearizable about the periodic steady state. 

The electrical parts of the system and its controls are 
modeled in a standard way [l]. Full account must be . 
taken of the thyristor switchings and their controls. For 
example, the thyristors which are off are effectively re- 
moved from the circuit and the thyristors switch off when 
their current becomes zero. (See [10,16] for modeling the 
electrical system with detailed representation of thyristor 
switchings and controls.) 

We assume that a simulation of the electrical system 
and controls is available. In particular, this simulation 
must be able to determine the steady state torque re- 
sponse of any generator to a sinusoidal displacement of 
any generator rotor about the steady state operating con- 
dition. Then the steady state torque response to the 
signal eJwst can be evaluated as (response to cosw,t) + 
j(response to sinw,t). 

I Mechanical 
System I 

Figure 1. Electromechanical System Interaction. 

The mechanical turbine-generator rotors of all the gener- 
ators are modeled as lumped masses connected by loss- 
less linear torsional springs. The natural mechanical 
dampings of the shafts are small and are assumed to be 
zero (if the natural dampings are available, we add them 
to the dampings due to the electromechanical interaction 
to get total damping). It is convenient to write the m e  
chanical equations in modal form. The standard modal 
transformation [1,3] is achieved by linearly transforming 
rotor angles and velocities using a matrix whose columns 
represent the mode shapes of all mechanical modes of vi- 
bration. In modal coordinates, the mechanical equations 
become a set of second order oscillators (cf. Fig. 1) and 
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the i th modal equation is 

AX,, = -(KZ/MZ)AXmz - AT,/M, (2) 

A X , ~  is the angular position of mode 2 and Mt and K, 
are the modal inertia and spring constant of mode i. 
The modal frequency (or oscillator natural frequency) 
w, = dWMi is in the subsynchronous range. A SSR 
torsional mode has w, # 0 and a power swing mode has 
w, = 0. 

AT, is the modal torque; it is the torque fed back 
to  the zth mode. The modal inertias Mt are large so 
that the electromagnetic acceleration AT,/M, is small 
(typically two orders of magnitude smaller than other 
terms in (2)). The smallness of AT,/M, also causes the 
SSR modal frequency to remain very close to  the rotor 
natural frequency. 

5. Modal damping formulas for SSR modes 
This section presents and explains formulas for es- 

timating the damping of SSR modes in general multi- 
machine power systems with thyristor switching devices. 
The natural mechanical dampings of the machines are 
assumed to be zero throughout. We first compute the 
damping of the torsional SSR mode z whose subsyn- 
chronous frequency w, is distinct (well separated) from 
other modal frequencies. In the open loop, i.e., without 
the feedback term AT,/M,, the steady state response of 
the oscillator described by equation (2) is Axml = eJwtt .  
It follows that the open loop modal eigenvalue is QW,,  the 
open loop modal damping is zero and modal frequency 
is w,. If the term AT,/M, is now inchded, it will act to 
either stabilize or destabilize this response. Recall from 
equation (1) of Section 3 that the modal torque has the 
form 

AT, = A X ( j w ~ ) e ~ " ' ~  -t- gother(t) 

where A'&( jwZ)  is the response of AT, a t  frequency w, 
and gother ( t )  contains the other frequency components. 
According to the Appendix and [11,12], A x ( j w , )  can be 
used to estimate the closed loop modal damping y, with 

(3) 

Formula (3) is accurate to first order in the small quan- 
tity ATz/M, [11,12]. To this accuracy, the other fre- 
quency components gother(t) do not appear in formula 
( 3 )  and have no effect on the damping estimate. The 
term gother(t) also has no effect on the damping estimates 
of other torsional modes [11,12]. 

For time invariant systems, Ax( (gw, )  is the phasor of 
the torque response in modal coordinates and ( 2 )  agrees 
with the result presented in [3] for a single machine power 
system without switching devices (in the notation of [3] , 
A'&(QW~) = Q%ATe( jwz ) ) .  

We now compute the dampings of two or more tor- 
sional modes having the same natural frequency. This 

case can occur when a natural frequency of one genera- 
tor turbine system coincides with a natural frequency of 
another generator turbine system. We assume that the 
first two torsional modes have the same nonzero natural 
frequency so that w1 = w2; the analysis for more than 
two such modes is similar. Now there are two indepen- 
dent modes having natural frequency w l ;  in general, the 
first two oscillators will participate in both modes. This 
implies that the output of both oscillators must be taken 
into account in determining the damping of these SSR 
modes. Let A Z , ( j w k )  be the response of AT, at  fre- 
quency w, due to the kth oscillator input Z m k  = 

(As before, the frequency components not a t  frequency 
wk can be neglected.) Define the matrix 

) B = - (  1 A Z l ( j ~ l ) / ( ~ l W l )  A7i2( jLJ2)/(A4lWl)  
2J A l z l ( jWl ) / ( J42W2)  A722(jW2)/(M2W2> 

(4) 
Then [11,12] prove that the damping estimates of the 
first two torsional modes are the real parts of the eigen- 
values of B. (If w1 # w2 and the frequency separation 
w1 - w2 is more than the bandwidth of each oscillator's 
response, then the off diagonal terms of B are zero and 
the multiple mode case reduces to  two instances of for- 
mula ( 3 ) .  However, if w1 # W Z ,  but w1 is close to w2, 
then the practical computation of B can yield nonzero 
off diagonal terms and the multiple mode method ap- 
plies.) The computation for k torsional modes with the 
same frequency is similar except that B becomes a k x k 
matrix. 

6. Damping formulas for the swing mode 
This section presents special formulas and iterative 

methods to estimate the damping of a swing mode. To 
avoid the complications of multiple swing modes, only 
the single generator case is treated. As is apparent from 
the derivations in the Appendix and [la], formula ( 3 )  for 
SSR modes does not apply to  the swing mode. Instead 
the swing modal eigenvalue y is estimated by 

where A?;l(jO) is the zero frequency or constant part 
of the modal torque response to an input Ax,, = 
eJot = 1. Aq( jO) /Mi  is a real number. Moreover, 
for typical power systems, A'&(jO) is positive and y = 
d-A'&(jO)/Mi is purely imaginary. Thus we esti- 
mate the closed loop frequency of swing mode as p = 
dAZ(jO)/M, and the closed loop damping of the swing 
mode as zero. p is typically in the range 1 - 2 Hz. 

To better estimate both the damping and frequency 
of the swing mode, we use an iterative technique [12]. 
Let AT, = A Z ( j p ) e J o t  +gother( t )  be the response to  the 
input Axmz = e'@. Let the estimate of the closed loop 
modal eigenvalue after IC iterations be y[k] = a['] fjP['"I. 
Start with the open loop eigenvalue estimate y[O] = 0 
and compute the kth closed loop eigenvalue estimate as: 
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per unit velocity methods. These results are also vali- 
dated by time domain simulations in EMTP [lo]. The 
larger errors in the SSR and swing modes occur far from 
zero damping and these modes are estimated accurately 
when their damping is small. This is to be expected be- 
cause the method effectively perturbs about the small 
natural mechanical damping. 

( X ( j p [ k ] )  is used in the right hand side of (6) because 
for practical power systems Q is much smaller than /3 so 
that AX(j#kl) is well approximated by AX(jp[lc]).) We 
have found the iteration to  converge to a good estimate 
of the swing mode damping in about three iterations. 

7. Illustration of using the damping formulas 
The electrical torque response A7(jwz) used in the 

formulas of Sections 5 and 6 can be computed by us- 
ing a simulator. (System simulation is usually required 
for other purposes anyway such as checking large sig- 
nal performance.) The electrical part of the system used 
to compute the steady state electrical torque response 
is typically stable with well damped modes. Therefore 
it is straightforward to  compute the steady state torque 
response from simulation. This advantage applies even 
when the entire electromechanical system is unstable. 

We now give an example of estimating damping of 
torsional modes and the power swing mode for the IEEE 
SSR first benchmark model [17] with a TCSC as the 
thyristor conduction angle a varies. The electrical part 
of the system is shown in Fig. 2. There are five tor- 
sional modes TM1 through TM5 for the mechanical sys- 
tem with respective frequencies 16, 20, 25, 32 and 47 
Hz and a rigid body mode TMO corresponding to power 
swings of the system. The TM4 mode is highly unstable 
when the series capacitor compensation level is 29% of 
the combined transmission and transformer impedances. 
Each phase of the TCSC consists of a fixed capacitor 
with a parallel connected thyristor controlled reactor as 
shown in Fig. 2. 

Figure 2. IEEE First Benchmark Model with TCSC. 

The thyristor switch on times are determined by the 
equal distance firing synchronization method, though our 
methods in this paper are valid for general thyristor fir- 
ing control schemes. The case CJ = 0' corresponds to  
blocking the thyristors. Detailed system description and 
parameter values are provided in [17,10]. 

Figure 3 shows the net damping of the modes TMO 
through TM4. (The mode TM5 damping is zero through- 
out and obscured by the horizontal axis of Fig 3.) Neg- 
ative modal damping implies modal instability. The cir- 
cles are the estimates of this paper and the solid lines 
are obtained by exact eigenanalysis using the methods of 
[lo]. (The net modal damping was obtained by adding 
the natural modal damping to  the modal damping due 
to  SSR.) We refer to [lo] for discussion of the results; the 
purpose of this section is to demonstrate the close repro- 
duction of the results of exact eigenanalysis with torque 

29% compensation 

10 20 30 40 
Conduction angle o (degrees) 

Figure 3 .  Modal Dampings. 

These results were obtained by time domain simula- 
tion using the software [la]. Formula (3) was used for the 
damping estimation of the torsional modes and three it- 
erations of (6) were used for the power swing mode. For 
each value of a, the time for computing modal dampings 
was roughly ten minutes on an HPRISC machine. 

8. Conclusions 
This paper derives simple formulas for estimating the 

damping of SSR and power swing modes when the power 
system includes thyristor switching devices. In the elec- 
trical part of these systems, a small sinusoidal perturba- 
tion of a machine rotor at a modal frequency leads to  
a complicated electrical torque response with many fre- 
quency components. However, we show that the damp- 
ing may be estimated from the component of the electri- 
cal torque response at the modal frequency. The formu- 
las extend to the case of multiple torsional modes having 
the same natural frequency. The formulas are heuristi- 
cally derived in the Appendix and rigorously derived in 
[11,12]. The derivation of the formulas justifies the ex- 
tension of the torque per unit velocity method to systems 
with thyristor switchings. 

We also propose a new method to  estimate the damp- 
ing and frequency of the power swing mode and to im- 
prove the estimates by a simple iteration. 

The formulas require the steady state electrical torque 
response of the electrical system to sinusoidal machine 
rotor perturbations to be computed and this can be done 
by time domain simulation. The method is simpler than 
exact eigenanalysis of the entire electromechanical sys- 
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tem and testing on the IEEE SSR first benchmark model 
wi th  a TCSC shows excellent agreement wi th  exact eige- 
nanalysis. 
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Appendix 
The damping estimates ( 3 )  and (5) are informally de- 

rived. See [11,12] for rigorous proofs. The oscillator 
equation (2) of the ith mode is 

AX,, + w:AIc,, = -AT,/M, (A.1) 

The solution to Ax,, + W ? A X ~ ,  = 0 is Axma = 
eJwat. Since (A.l) has the periodically time varying term 
AT,/M,, its solution has the form 

AX,, = e(JwL+y)t(l + g ( t ) )  (A.2) 

where g(t) is periodic with period To = 27r/wo [14]. Since 
the acceleration term AT,/M, is small, the solution (A.2) 
is a small pe r tu rba t ion  of eJw%t and y and g(t) are small. 
It can be shown [12] that Ax,, = eJwSt causes a to rque  
AT, = e J w h t A z ( j w , )  + gother(t). This torque is used to 
approximate the right hand side of (A.l) so that 

Axmz + w,2Axrn, M - (eJw%tAZ(( jwz)  + gother(t))/Mz 

Substitution of the assumed solution (A.2) in  (A.3) and 
dividing by e(Jw~+y) t  gives 

(A.3) 

(JWZ + r)2(1 + d t ) )  + 2(JWZ + y)g(t) + g( t )  + w,2(1+ g(t)) 

-(A%(JW$) f e-Jw'tgother(t))/Mz (A 4) 

M - ( e - y t ~ ~ ( j w , )  + e-(Jwa+y)t gother(t))/Mz 

where the last step follows since y is small .  Now g(t),  g( t )  
and e-Jw"tgothe, ( t )  are periodic functions with average 
value zero and g(t) is small [la]. Taking the average over 
the period TO of both sides of (A.4) and discarding the 
products of small terms yields 

2Jw,y + y2 M -Al, /M, 

In the case of an SSR mode with wz # 0, the smaller 
term y2 is neglected and the modal eigenvalue is j w ,  + 
y rz j w ,  - A ~ / ( 2 j w , M z )  and taking the real part yields 
formula (3). In the case of a swing mode with w, = 0, 
we obtain fo;mula ( 5 )  and hence (6). 
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