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Multicanonical parallel tempering
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We present a novel implementation of the parallel tempering Monte Carlo method in a
multicanonical ensemble. Multicanonical weights are derived by a self-consistent iterative process
using a Boltzmann inversion of global energy histograms. This procedure gives rise to a much
broader overlap of thermodynamic-property histograms; fewer replicas are necessary in parallel
tempering simulations, and the acceptance of trial swap moves can be made arbitrarily high. We
demonstrate the usefulness of the method in the context of a grand-multicanonical ensemble, where
we use multicanonical simulations in energy space with the addition of an unmodified chemical
potential term in particle-number space. Several possible implementations are discussed, and the
best choice is presented in the context of the liquid—gas phase transition of the Lennard-Jones fluid.
A substantial decrease in the necessary number of replicas can be achieved through the proposed
method, thereby providing a higher efficiency and the possibility of parallelization20@2
American Institute of Physics[DOI: 10.1063/1.1456504

I. INTRODUCTION denote their respective thermodynamic conditions. In the
particular case of a grand-canonical ensemble, the probabil-
Advanced Monte Carlo simulation techniques can facili-ity of accepting an individual trial move from configuration
tate the study of complex systems considerably. Two classas to n at reduced inverse temperaty@e= 1/kgT; and chemi-
of methods that have proven to be particularly useful arecal potentialu; is given by
parallel tempering techniqués (sometimes also called

multiple Markov chaing and multicanonical techniqués® pi=min{1,exfd — Bi(En—Em)+ Bisi(Na—Nm) I}, (1)
A recent review of these methods can be found in thavhereN, denotes the number of particles in replizaThat
literature? of accepting an individual trial move from configuratioro

In parallel tempering, several independent replicas of an at temperaturd’; and chemical potentigk; is given by
system are simulated simultaneously. Each reglicasimu- .
lation boy can experience different thermodynamic-state  Pi=MiNtL.exid— Bj(Em—En)+ Bjuj(Nm=No) 1. (2)
conditions (e.g., temperature, pressure, or chemical potena swap move can be viewed as a “double-move,” for which
tial). Neighboring systemén the sense that their state points the acceptance probability is the productppfand p;:
are not too distant from each othesre allowed to inter- )
change configurations from time to time, subject to specific ~ Pij=MiML.exd = Bi(En—Em) — Bj(En—Ey)

acceptance criteria. These so-called “swap” moves can im- + Bipi(Ny—Np) + Bi st (N— N T}
prove sampling of configuration space considerably, particu- _ i
larly in systems having rugged energy landscapes. Replicas =min{1,exg —(B8i— Bj))(En—Ep)
of tem which cl to a gl tate, for example,
a system which are close glassy s r examp - (Bii— Bi) (Ng— N T1- 3)

may exchange their way “up” in, say, temperature, to states
where energy barriers are easier to overcome; they can sub- From Eg.(3) it can be seen that swap trial moves are
sequently come back to low temperatures to yield an uncormenly accepted if some degree of overlap exists between the
related configuration. probability distribution functions(or histogramg corre-
More specificallyt independenteplicas of the same sys- sponding to neighboring state poirits replicag. One short-
tem are simulated under different thermodynamic conditionsgoming of parallel tempering is that the number of replicas
C;,C,,...,.C;, where theC; denote combinations of inten- required for an effective simulation increases with the size of
sive variables(e.g., temperature and chemical potential the simulated system. This is a result of the central limit
which differ from replica to replica. Conventional Monte theorem, which shows that the width of thermodynamic-
Carlo trial moves are conducted in each replida sample  property histograms scales @l %, thereby decreasing the
configuration space. In addition, trial swap moves involvingextent of overlap between histograms corresponding to
two replicasi andj are also attempted; in these trial moves, neighboring replicas.
entire conformations are interchanged. The acceptance crite- Parallel tempering simulations improve sampling by
ria for a trial swap can be derived from the product of theshuttling configurations from regions of low temperature or
elementary moves which are used to construct it. We ushigh chemical potential to regions of high temperature or low
subscriptam andn to denote the configurations pertaining to chemical potential, where a system can relax more easily.
two distinct replicas, or simulation boxesandj are used to They have the added feature that each of the replicas gener-
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ates useful information(e.g., thermodynamic quantities, exp(— BE)

structure about the system of interest. Multicanonical simu-  (E)car= 2 W—(E)Hmc(E)E 6
lations follow an entirely different strategy to overcome . me

high-energy barriers between neighboring, local free-energywhere the brackets denote a canonical ensemble average.
minima: The acceptance criteria for the transition between The two methods, parallel tempering and multicanonical
two states are manipulated in such a way as to artificiallysimulations, have several attributes of their own. It is there-
lower such barriers. The conventional energy distribution foffore of interest to explore the possible advantages of a com-
a canonical ensemble involves two contributions: the densitpined method, in which parallel tempering would be used to
of states()(E) and a Boltzmann, exponential energy weighthave independent random walkers in different parts of the
of the form exjp— BE]. On the one hand, the density of statesenergy landscape, and multicanonical Monte Carlo would be
increases rapidly with energy and system size and, on themployed to reduce the number of necessary replicas. This
other hand, the exponential energy term leads to a supprework investigates such a combination. Ideas similar in spirit
sion of high-energy states when the energy exceeds the therere pursued by Sugitet al.'® and Calvo and Doy#&' Sugi-

mal energy significantly. The product of the density of statega’s work, however, only considered single-molecule simula-
and the Boltzmann weight therefore results in a Gaussiartions. It is unclear whether the Sugig al. approach would
like energy distribution. In multicanonical simulations, the be of use in a many-body system. The work of Calvo and
conventional Boltzmann weight is replaced by a different,Doye proposes a scheme that differs from ours in that it
non-Boltzmann weightwyg, which is conceived in such a involves exchanges between one multicanonical trajectory
way as to result in a flat energy distribution. A flat distribu- and multiple tempering replicas. Furthermore, that work is
tion would be desirable for two reasons: from a statistical-also limited to single molecules or small atomic clusters, and
mechanics point of view, realizing a perfectly flat energytherefore does not address many of the issues that arise in
distribution is equivalent to calculating the density of statesnany-body, condensed phases.

of the systentor its microcanonical-ensemble partition func-

tion); the logarithm of this quantity is the entropy. From a || MULTICANONICAL PARALLEL TEMPERING

more technical point of view, realizing a flat energy distribu-

tion ensures that all states are sampled with comparable fre- In this work, we have chosen to implement a multica-
quency, thereby improving statistics. nonical sampling scheme through a so-caliedbrella po-

For concreteness, the following discussion is restrictedential £(E), which is added to the energy in the grand ca-
to one-dimensional distributions depending only on energynonical ensemble. Our multicanonical weights are of the
the extension to multidimensional cases is straightforwardform
The probabilityp(E) of finding the system of interest in a Wi E,N)=exf — B(E+ £(E))+ BuN]. )

given energy state can be expressed in the form
The factor exp{ B&E)) changes the distribution from Bolt-

P(E)=Q(E)W(E). (49 zmann to one possible type of multicanonical. In order to

Equation(4) is valid regardless of the weights(E): differ- satisfy Eq.(5), the ideal umbrella potentig(E) should be of

ent weights characterize different ensembles. For a canonin® form

cal, NVT-ensemblewy,(E) = exp(— BE). In multicanonical &E)=—E+TYE). 8
simulations a final set of weights is calculated in such a Wayl_
as to makep(E) flat, i.e., independent d&. A perfectly flat
distribution could be generated if the following weights were
employed

his would lead to purely entropic sampling in that all en-
ergy states would be visited with equal frequency, according
to 1/Q(E).

Unfortunately, the entropy of a system to be simulated is
not knowna priori; the calculation of¢é must therefore be

w(E)= Q(E) exp( — S(E)/Kg), (3 carried out through a self-consistent, iterative process. A se-

ries of simulations are conducted; the umbrella potential is

whereS(E) is the entropy as afunct.ion of energy. In view of ggjusted in such a way as to render the energy landscape
the form of Eq.(5), simulation techniques in which different corresponding to each simulation successively flatter, i.e., the
energy states are sampled yvith uniform probability are some+yeights” of formerly poorly visited states are augmented,
times referred to as entropic sampling methods. and those of more heavily visited states are reduced.

To calculate properties using a uniform-energy, or mul- oy starting point is a grand-canonical, multidimen-
ticanonical sampling technique, energy histogram&(E)  sjonal parallel tempering simulation where we g€V(E)
are generated during the course of the simulation. These his= g gyer the entire energy range. Upper indices refer to it-
tograms provide estimates of the probability of finding a con-gration numbers. We use one single, glopdt) for all rep-
figuration having energye in a multicanonical ensemble; |icas. Otherwise, an uncontrolled bias would lead to incorrect
they can subsequently be “reweighted” in order to generatgstimates of the histograms and ultimately incorrect results.
results in one of the more conventional ensembles. The sQxfier a few thousand simulation cycles, we analyze the glo-

are denoted bw,,(E). Their construction is discussed later

in this work. Taking the internal energy as an example, we H(E)= H.(E 9
e (B)=20 Hi(E), ©)
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whereH;(E) is the energy histogram collected in replica -1800
This histogram is now “Boltzmann invertedEqg. (10)], i.e.,

its logarithm is multiplied bykgT to obtain an estimate of

the corresponding weight. The current value &P (E) is ~2000 ¢
then updated according to w
-2200
g D(E) = E(E)+ BraxNH(E) ~ Bradn H(E). (10)
-2400 : ‘
0 1 2 3 4 5
100000 MC sweeps
The third term in Eq(10) is a constant, and it corresponds to : — |
the average over all of the H(E); it drops out of any ac- 200 |
ceptance criteria. Its sole purpose is computational effi-
ciency. It allows the umbrella potentials to increase as well
as decrease between iteratioiits omission leads to more w700y
iterations.

Different replicas are simulated at different tempera- ~1200 T * .
tures; we must therefore choose the particular temperature at o &g%%@;@%@
which to perform the operations involved in EQ.0). Note *x ¥

i i -1700 : : ‘
that if all the replicas were at the same temperature, the 0 1 2 3 4 5

Boltzmann inversion would yield the free-energy difference
between iterations andn+1. In our case, however, it is a

corrective procedure for the weights employed in the simu
lation, which were designed to produce a flatter distribution

100000 MC sweeps

FIG. 1. Upper: Energy of the lowest temperature replita0.79) as a
function of Monte Carlo sweeps. Circles: Inversion temperaliité"=1,
stars:T"™e"=T;,=0.79. After 250 000 step&lotted ling the first umbrella

We find that inversion at the minimum temperatuvehich
corresponds to the maximug, denoted byB,,.,) provides
an optimum choice. At first glance, inverting every histo-

is incorporated in the simulation. The high inversion temperature umbrella
leads to a complete suppression of sampling of the relevant energies. Lower:
Same as the upper figure, but for the replicd at1.03. For clarity we only
show data every 25 cycles.

gram at the temperature at which it was generated and adding
up the resulting umbrellas would appear to be the best
choice. This implementation was successful in the sense that
it leads to flatter distributions, but it doubled the number of
iterations required to achieve the same accuracy as that at-
tained by inversion at the lowest temperature. This is due to =w{M(E)exp{— B[ V(E)— £M(E)]}

the fact that the error of the histograms is highest in the © (n+1)

flanks. Adding up two umbrellas with large errors but correct =w o (E)exp{— & V(E)}, (11
temperature is less efficient than addlng up the hiStOgramS Qf[herew(o) denotes the originaL grand canonical ensemble
different temperatures and inverting the global histogramweight[i.e., w(®)=exp(— BE+ BuN)]. For the swap moves in
Tests conducted by inverting at intermediate temperatureshe Metropolis criteria of Eq(3), the energyE is inter-
always overestimated the low-temperature barriers, leadinghanged with the umbrella-corrected energy; £(E).

to insufficient sampling in formerly highly frequented areas.

In some cases the histograms were even shifted to comy. RESULTS FOR THE LENNARD-JONES FLUID

pletely new areas; Fig. 1 illustrates that effect. In that case, a
low-temperature replical(=0.79) was shifted into a region

of little interest by inverting at a temperature in the middle o . 54313 :
the range covered by all the replicaB=1). The region of are available for comparisart?3In this work, we apply the

little interest corresponds in this case to energies, which ar ult|ca_non|_cal parallel_ tempermg method_descrlbe_d abov«_a to
. . etermine its vapor—liquid phase behavior. The interaction
only relevant at much lower temperatures; the energies tha

we set out to sample were no longer visited. Alternatively, ar’ otential is given by

~ Wrd(E)

(n+1) __mer—7
W Q'(E)

mc

(E)

The Lennard-Jones fluid provides a standard test for the
fstudy of new methods, partly because highly accurate data

even lower temperatur@dower than the minimum tempera- B a\? [o\® B
ture of the simulationcould be used for inversion; in that I'(r)=4e R r<re=2.50, (12)
case, however, the efficiency of the algorithm deteriorates

I'(r)y=0, r=r,. (13

considerably, as not even the lowest-temperature histogram
becomes sufficiently flat.

In the first iteration, the Boltzmann weight B;E
+BiuiN is exchanged by- B;(E+ £Y(E))+ BiuiN. The
change of weights between two successive iteratioasd
n+1 can therefore be expressed as

All data are reported in standard dimensionless ufdts-
tances are measureddn energies and temperaturedn The

box length isL=8¢; the grand canonical ensemble is used
as the parent ensemble for the simulation. The multicanoni-
cal umbrellas are one-dimensional and are only functions of
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2000 2000 TABLE I. Thermodynamic conditions for a grand canonical ensemble tem-
2 _ pering simulation using six replicas. These conditions are taken as starting
g fg points for the multicanonical optimization. These thermodynamic conditions
> z are taken from the literatur@Ref. 5.
£ 1000 £ 1000
g ) -
= z I Ti Mi
£ E4
1 0.79 —4.76
%0 1500 50 Seo0 1500 %0 2 0.86 —4.23
E E 3 1.03 -3.35
4 111 —3.02
FIG. 2. Energy histograms with and without application of the multicanoni- 5 1.20 —2.74
cal weights used to calculate the Lennard-Jones phase diagram. Part a shows 6 0.94 ~3.08

the histograms of the potential energy per replica without multicanonical
simulation, part b with application of the multicanonical weights, which
were produced in four iterations containing 250 000 MC cycles each.

We performed two independent simulations of® 1€eps;
f only data produced over the last three quarters of the simu-
lation were used for analysis. Note that in cases where we
sed a different inversion temperature to produce the umbrel-
as, or in cases were every histogram was inverted at its
temperature(see above we did not find any significant

the energyé=¢(E). A two-dimensional implementation o
the umbrelld é= £(E,N) ] was also attempted, but this dete-
riorated the overall performance of the algorithm and is no
presented here. After several days of computer time, our tw
dimensional implementation of the algorithm had not con . ) . .
verged. When two-dimensional umbrellas are employed, th hanges in the results; the production of the histograms,
initial runs must be much longer to fill the histograms and owever, whas _cqns_|derably slﬁwerHAs a;vo:ld of caut!oln, \k/)ve
reduce their statistical uncertainty. Furthermore, addressing Roint out that it is _|mportant_t at the um refia potentials be
two-dimensional tabléas opposed to a simple vectdrin- based on well-equilibrated histograms. This can cut down the
ders computational performance. A possible solution to thi§‘umber of iteration steps significantly, especially in the ini-
problem could perhaps be found through the tWO_tial stages of the process where the weights change drasti-
dimensional generalizatithof the recently proposed Den- cally between successive jterations. o
sity of States Monte Carlo methd@That method, however In order to determine the optimal distribution of state
is in its early stages of development and it is unclear whethe®'Nts: We also performed simulations using four and eight
it will work for large systems. state pointgor replicas for multicanonical parallel temper-
The preliminary runs to produce the umbrella were per_ing simulations. For reference, we also conducted a conven-

formed with between 5L0° and 256 16° MC cycles for tional canonical parallel tempering simulation with 12 and
every £0(E). A swap between neighboring replicas was at-18 state points. Again, the state points were subsets taken

tempted every 100 Monte Carlo cycles. The last 60% 01)‘rom Ref. 5. A one replica, purely multicgnonical simulation
these cycles were used to create the energy histograms f3f2S attempted for reference; that simulation was not success-
inversion in the following step. Equilibration was determined ul In covering Fh,e_ entire region of intereswith a single

by the decay of the autocorrelation function of the energyrepllc@ and the initial runs did not converge. The number of

and by the fact that the histograms did not change Signiﬁjterations needed for the calculation of the umbrellas is

cantly over time. The histograms generated using onlfhown in Table Il, along with the time required for produc-

20+ 10°, 50+ 10°, or 250 10° Monte Carlo were essentially tion runs. We find that with four replicas we needed an un-
undistinguishable. The correlation time was a few hundre(feasonably high number of iterations, and with eight replicas
MC cycles, which corresponds to a few successful swapé’ve could not cut down on the number of iterations required
These findings suggest that in the particular case of ¥/t respect to six replicas. For the size of our simulated
Lennard-Jones fluidat liquid-like densitiel 20+ 10° Monte system it appears that six replicas provide an optimal choice.

Carlo cycles are sufficient to equilibrate the system in thet Is Important to emphasize, however, that the optimum is

new umbrella for subsequent histogram collection.

The multlcanoqlcal We"ghts are |n|t|ally calculatgd aS TABLE 1. Number of iterations used for calculation of the umbrelis,
outlined above, until a desired swap rate between neighbofumber of iterations times number of replica¥-(N,), and overall CPU
ing replicas is achieved; a good acceptance probability i§me Tcpy (in hours required to simulate the relevant system on a simple
about 5% to 10%. For six replicas, the sought-after Ove”a’j)ersonal computg{800 MHz AMD processor For the case of one replica,
bet iahbori hist ttained after f .twe were unable to produce an individual umbrella capable of covering the

e vyeen neig . oring nistograms Wa$ attained arter qur Iéntire coexistence region.
erations(see Fig. 2. Note that, by design, the energy histo-
grams corresponding to our original choice of state points # replicas  # iterations  # of iterations<# replicas ~ CPU time

(Table ) did not overlap with each other. The temperatures N Ny N-N, Tepu/h
and chemical potentials were chosen as a subset from earlier 1 >80 >80 >80
parallel tempering simulations with 18 replicaonven- 4 11 44 76
tional parallel-tempering swap moves would not work for 6 4 24 72
that choice. After applying the multicanonical weights, over- 182 5 f(_) 12?)
lap between all replica histograms was achieved, thereby 14 180

leading to a highly effective parallel tempering simulation.
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13 weighting to calculate the other state poitfts’ as there is

i good overlap in the histograms the accuracy of the reweight-
ing procedure increases. The phase diagram is in good agree-
ment with literature data'® The estimated critical tempera-
ture and density aré.=1.18+0.01, p.=0.32+0.02. These
were obtained by an Ising fit to the reweighted data. We did
not apply a finite-size scaling correction.

IV. CONCLUSIONS

We have presented an implementation of multicanonical
sampling in the framework of parallel-tempering simula-
tions. This combination of methods decreases the number of
0.10 ' ' 0O necessary replicas and increases the efficiency of the simu-

19) lation. The validity of the new method has been demon-
o strated in the context of a simple Lennard-Jones fluid, for
0.08 @ 1 which high-accuracy literature data for the coexistence curve

© are reproduced.
O As pointed out in the multicanonical-ensemble literature,
0.06 | © . we note that it is important to exercise care in the selection of
o multicanonical weights. However, when proper precautions
are followed, the result is an effective methodology. Even for
0.04 O : simple systems, such as the Lennard-Jones fluid, the memory

o o and time required to produce results over a wide range of
o conditions can be decreased by a factor of three without an
0.02 : ‘ overhead to the overall calculation. We expect the proposed

0.9 1.0 1.1 1.2 formalism to be particularly well-suited for simulation of

T systems which, by their very nature, require large siess.,

_ _ polymers. An additional, important advantage of the pro-

FIG. 3. Upper: Calculated Phase _Dlagram for tht_e Lennard-Jones fluid. Thg)osed method is that it provides a remarkably simple way of

open squares show results of this work. The circles show literature dat L. . . .

(Ref. 13. The solid line is an Ising fit to the data. Lower: Coexistence Parallelizing an umbrella-sampling simulation; to the best of

(vapop pressure as a function of temperature for the same system. our knowledge, the implementation presented here consti-
tutes the first version of an umbrella sampling simulation that
is parallelized.

likely to vary significantly depending on the particular de-

tails of a given system. Of course, the time required for theACKNOWLEDGMENTS
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