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Multicanonical parallel tempering
Roland Faller, Qiliang Yan, and Juan J. de Pablo
Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706

~Received 29 May 2001; accepted 10 January 2002!

We present a novel implementation of the parallel tempering Monte Carlo method in a
multicanonical ensemble. Multicanonical weights are derived by a self-consistent iterative process
using a Boltzmann inversion of global energy histograms. This procedure gives rise to a much
broader overlap of thermodynamic-property histograms; fewer replicas are necessary in parallel
tempering simulations, and the acceptance of trial swap moves can be made arbitrarily high. We
demonstrate the usefulness of the method in the context of a grand-multicanonical ensemble, where
we use multicanonical simulations in energy space with the addition of an unmodified chemical
potential term in particle-number space. Several possible implementations are discussed, and the
best choice is presented in the context of the liquid–gas phase transition of the Lennard-Jones fluid.
A substantial decrease in the necessary number of replicas can be achieved through the proposed
method, thereby providing a higher efficiency and the possibility of parallelization. ©2002
American Institute of Physics.@DOI: 10.1063/1.1456504#
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I. INTRODUCTION

Advanced Monte Carlo simulation techniques can fac
tate the study of complex systems considerably. Two clas
of methods that have proven to be particularly useful
parallel tempering techniques1–5 ~sometimes also called
multiple Markov chains!, and multicanonical techniques.6–8

A recent review of these methods can be found in
literature.9

In parallel tempering, several independent replicas o
system are simulated simultaneously. Each replica~or simu-
lation box! can experience different thermodynamic-sta
conditions ~e.g., temperature, pressure, or chemical pot
tial!. Neighboring systems~in the sense that their state poin
are not too distant from each other! are allowed to inter-
change configurations from time to time, subject to spec
acceptance criteria. These so-called ‘‘swap’’ moves can
prove sampling of configuration space considerably, part
larly in systems having rugged energy landscapes. Rep
of a system which are close to a glassy state, for exam
may exchange their way ‘‘up’’ in, say, temperature, to sta
where energy barriers are easier to overcome; they can
sequently come back to low temperatures to yield an un
related configuration.

More specifically,t independentreplicas of the same sys
tem are simulated under different thermodynamic conditio
C1 ,C2 ,...,Ct , where theCi denote combinations of inten
sive variables~e.g., temperature and chemical potenti!
which differ from replica to replica. Conventional Mont
Carlo trial moves are conducted in each replicai to sample
configuration space. In addition, trial swap moves involvi
two replicasi and j are also attempted; in these trial move
entire conformations are interchanged. The acceptance c
ria for a trial swap can be derived from the product of t
elementary moves which are used to construct it. We
subscriptsm andn to denote the configurations pertaining
two distinct replicas, or simulation boxes;i and j are used to
5410021-9606/2002/116(13)/5419/5/$19.00
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denote their respective thermodynamic conditions. In
particular case of a grand-canonical ensemble, the proba
ity of accepting an individual trial move from configuratio
m to n at reduced inverse temperatureb i51/kBTi and chemi-
cal potentialm i is given by

pi5min$1,exp@2b i~En2Em!1b im i~Nn2Nm!#%, ~1!

whereNn denotes the number of particles in replican. That
of accepting an individual trial move from configurationn to
m at temperatureTj and chemical potentialm j is given by

pj5min$1,exp@2b j~Em2En!1b jm j~Nm2Nn!#%. ~2!

A swap move can be viewed as a ‘‘double-move,’’ for whic
the acceptance probability is the product ofpi andpj :

pi j 5min$1,exp@2b i~En2Em!2b j~Em2En!

1b im i~Nn2Nm!1b jm j~Nm2Nn!#%

5min$1,exp@2~b i2b j !~En2Em!

1~b im i2b jm j !~Nn2Nm!#%. ~3!

From Eq. ~3! it can be seen that swap trial moves a
only accepted if some degree of overlap exists between
probability distribution functions~or histograms! corre-
sponding to neighboring state points~or replicas!. One short-
coming of parallel tempering is that the number of replic
required for an effective simulation increases with the size
the simulated system. This is a result of the central lim
theorem, which shows that the width of thermodynam
property histograms scales asAN21, thereby decreasing th
extent of overlap between histograms corresponding
neighboring replicas.

Parallel tempering simulations improve sampling
shuttling configurations from regions of low temperature
high chemical potential to regions of high temperature or l
chemical potential, where a system can relax more ea
They have the added feature that each of the replicas ge
9 © 2002 American Institute of Physics
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ates useful information~e.g., thermodynamic quantities
structure! about the system of interest. Multicanonical sim
lations follow an entirely different strategy to overcom
high-energy barriers between neighboring, local free-ene
minima: The acceptance criteria for the transition betwe
two states are manipulated in such a way as to artifici
lower such barriers. The conventional energy distribution
a canonical ensemble involves two contributions: the den
of statesV(E) and a Boltzmann, exponential energy weig
of the form exp@2bE#. On the one hand, the density of stat
increases rapidly with energy and system size and, on
other hand, the exponential energy term leads to a supp
sion of high-energy states when the energy exceeds the
mal energy significantly. The product of the density of sta
and the Boltzmann weight therefore results in a Gauss
like energy distribution. In multicanonical simulations, th
conventional Boltzmann weight is replaced by a differe
non-Boltzmann weight,wNB , which is conceived in such a
way as to result in a flat energy distribution. A flat distrib
tion would be desirable for two reasons: from a statistic
mechanics point of view, realizing a perfectly flat ener
distribution is equivalent to calculating the density of sta
of the system~or its microcanonical-ensemble partition fun
tion!; the logarithm of this quantity is the entropy. From
more technical point of view, realizing a flat energy distrib
tion ensures that all states are sampled with comparable
quency, thereby improving statistics.

For concreteness, the following discussion is restric
to one-dimensional distributions depending only on ener
the extension to multidimensional cases is straightforwa
The probabilityp(E) of finding the system of interest in
given energy state can be expressed in the form

p~E!5V~E!w~E!. ~4!

Equation~4! is valid regardless of the weightsw(E); differ-
ent weights characterize different ensembles. For a can
cal, NVT-ensemble,wNVT(E)5exp(2bE). In multicanonical
simulations a final set of weights is calculated in such a w
as to makep(E) flat, i.e., independent ofE. A perfectly flat
distribution could be generated if the following weights we
employed

w~E!5
1

V~E!
5exp~2S~E!/kB!, ~5!

whereS(E) is the entropy as a function of energy. In view
the form of Eq.~5!, simulation techniques in which differen
energy states are sampled with uniform probability are so
times referred to as entropic sampling methods.

To calculate properties using a uniform-energy, or m
ticanonical sampling technique, energy histogramsHmc(E)
are generated during the course of the simulation. These
tograms provide estimates of the probability of finding a co
figuration having energyE in a multicanonical ensemble
they can subsequently be ‘‘reweighted’’ in order to gener
results in one of the more conventional ensembles. The
called multicanonical weights, which dictate the samplin
are denoted bywmc(E). Their construction is discussed lat
in this work. Taking the internal energy as an example,
have
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E

exp~2bE!

wmc~E!
Hmc~E!E, ~6!

where the brackets denote a canonical ensemble averag
The two methods, parallel tempering and multicanoni

simulations, have several attributes of their own. It is the
fore of interest to explore the possible advantages of a c
bined method, in which parallel tempering would be used
have independent random walkers in different parts of
energy landscape, and multicanonical Monte Carlo would
employed to reduce the number of necessary replicas.
work investigates such a combination. Ideas similar in sp
were pursued by Sugitaet al.10 and Calvo and Doye.11 Sugi-
ta’s work, however, only considered single-molecule simu
tions. It is unclear whether the Sugitaet al. approach would
be of use in a many-body system. The work of Calvo a
Doye proposes a scheme that differs from ours in tha
involves exchanges between one multicanonical trajec
and multiple tempering replicas. Furthermore, that work
also limited to single molecules or small atomic clusters, a
therefore does not address many of the issues that aris
many-body, condensed phases.

II. MULTICANONICAL PARALLEL TEMPERING

In this work, we have chosen to implement a multic
nonical sampling scheme through a so-calledumbrella po-
tential j(E), which is added to the energy in the grand c
nonical ensemble. Our multicanonical weights are of
form

wmc~E,N!5exp@2b~E1j~E!!1bmN#. ~7!

The factor exp(2bj(E)) changes the distribution from Bolt
zmann to one possible type of multicanonical. In order
satisfy Eq.~5!, the ideal umbrella potentialj(E) should be of
the form

j~E!52E1TS~E!. ~8!

This would lead to purely entropic sampling in that all e
ergy states would be visited with equal frequency, accord
to 1/V(E).

Unfortunately, the entropy of a system to be simulated
not knowna priori; the calculation ofj must therefore be
carried out through a self-consistent, iterative process. A
ries of simulations are conducted; the umbrella potentia
adjusted in such a way as to render the energy landsc
corresponding to each simulation successively flatter, i.e.,
‘‘weights’’ of formerly poorly visited states are augmente
and those of more heavily visited states are reduced.

Our starting point is a grand-canonical, multidime
sional parallel tempering simulation where we setj (0)(E)
50 over the entire energy range. Upper indices refer to
eration numbers. We use one single, globalj(E) for all rep-
licas. Otherwise, an uncontrolled bias would lead to incorr
estimates of the histograms and ultimately incorrect resu
After a few thousand simulation cycles, we analyze the g
bal energy histogram derived from all the replicas

H~E!5(
i

Hi~E!, ~9!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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whereHi(E) is the energy histogram collected in replicai.
This histogram is now ‘‘Boltzmann inverted’’@Eq. ~10!#, i.e.,
its logarithm is multiplied bykBT to obtain an estimate o
the corresponding weight. The current value ofj (n)(E) is
then updated according to

j~n11!~E!5j~n!~E!1bmax
21 ln H~E!2bmax

21 ln H~E!. ~10!

The third term in Eq.~10! is a constant, and it corresponds
the average over all of the lnH(E); it drops out of any ac-
ceptance criteria. Its sole purpose is computational e
ciency. It allows the umbrella potentials to increase as w
as decrease between iterations~its omission leads to more
iterations!.

Different replicas are simulated at different tempe
tures; we must therefore choose the particular temperatu
which to perform the operations involved in Eq.~10!. Note
that if all the replicas were at the same temperature,
Boltzmann inversion would yield the free-energy differen
between iterationsn andn11. In our case, however, it is
corrective procedure for the weights employed in the sim
lation, which were designed to produce a flatter distributi
We find that inversion at the minimum temperature~which
corresponds to the maximumb, denoted bybmax! provides
an optimum choice. At first glance, inverting every hist
gram at the temperature at which it was generated and ad
up the resulting umbrellas would appear to be the b
choice. This implementation was successful in the sense
it leads to flatter distributions, but it doubled the number
iterations required to achieve the same accuracy as tha
tained by inversion at the lowest temperature. This is du
the fact that the error of the histograms is highest in
flanks. Adding up two umbrellas with large errors but corre
temperature is less efficient than adding up the histogram
different temperatures and inverting the global histogra
Tests conducted by inverting at intermediate temperatu
always overestimated the low-temperature barriers, lead
to insufficient sampling in formerly highly frequented area
In some cases the histograms were even shifted to c
pletely new areas; Fig. 1 illustrates that effect. In that cas
low-temperature replica (T50.79) was shifted into a region
of little interest by inverting at a temperature in the middle
the range covered by all the replicas (T51). The region of
little interest corresponds in this case to energies, which
only relevant at much lower temperatures; the energies
we set out to sample were no longer visited. Alternatively,
even lower temperature~lower than the minimum tempera
ture of the simulation! could be used for inversion; in tha
case, however, the efficiency of the algorithm deteriora
considerably, as not even the lowest-temperature histog
becomes sufficiently flat.

In the first iteration, the Boltzmann weight2b iE
1b im iN is exchanged by2b i(E1j (1)(E))1b im iN. The
change of weights between two successive iterationsn and
n11 can therefore be expressed as
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~n11!~E!5

wmc
~n!~E!

V8~E!

5wmc
~n!~E!exp$2b@j~n11!~E!2j~n!~E!#%

5w~0!~E!exp$2bj~n11!~E!%, ~11!

wherew(0) denotes the original, grand canonical ensem
weight@i.e.,w(0)5exp(2bE1bmN)#. For the swap moves in
the Metropolis criteria of Eq.~3!, the energyE is inter-
changed with the umbrella-corrected energy,E1j(E).

III. RESULTS FOR THE LENNARD-JONES FLUID

The Lennard-Jones fluid provides a standard test for
study of new methods, partly because highly accurate d
are available for comparison.5,12,13In this work, we apply the
multicanonical parallel tempering method described abov
determine its vapor–liquid phase behavior. The interact
potential is given by

G~r !54eF S s

r D 12

2S s

r D 6G , r ,r c52.5s, ~12!

G~r !50, r>r c . ~13!

All data are reported in standard dimensionless units~dis-
tances are measured ins, energies and temperature ine!. The
box length isL58s; the grand canonical ensemble is us
as the parent ensemble for the simulation. The multicano
cal umbrellas are one-dimensional and are only functions

FIG. 1. Upper: Energy of the lowest temperature replica (T50.79) as a
function of Monte Carlo sweeps. Circles: Inversion temperatureTinvert51,
stars:Tinvert5Tmin50.79. After 250 000 steps~dotted line! the first umbrella
is incorporated in the simulation. The high inversion temperature umbr
leads to a complete suppression of sampling of the relevant energies. Lo
Same as the upper figure, but for the replica atT51.03. For clarity we only
show data every 25 cycles.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the energyj5j(E). A two-dimensional implementation o
the umbrella@j5j(E,N)# was also attempted, but this det
riorated the overall performance of the algorithm and is
presented here. After several days of computer time, our t
dimensional implementation of the algorithm had not co
verged. When two-dimensional umbrellas are employed,
initial runs must be much longer to fill the histograms a
reduce their statistical uncertainty. Furthermore, addressi
two-dimensional table~as opposed to a simple vector! hin-
ders computational performance. A possible solution to
problem could perhaps be found through the tw
dimensional generalization14 of the recently proposed Den
sity of States Monte Carlo method.15 That method, however
is in its early stages of development and it is unclear whe
it will work for large systems.

The preliminary runs to produce the umbrella were p
formed with between 50* 103 and 250* 103 MC cycles for
everyj ( i )(E). A swap between neighboring replicas was
tempted every 100 Monte Carlo cycles. The last 60%
these cycles were used to create the energy histogram
inversion in the following step. Equilibration was determin
by the decay of the autocorrelation function of the ener
and by the fact that the histograms did not change sign
cantly over time. The histograms generated using o
20* 103, 50* 103, or 250* 103 Monte Carlo were essentiall
undistinguishable. The correlation time was a few hund
MC cycles, which corresponds to a few successful swa
These findings suggest that in the particular case o
Lennard-Jones fluid~at liquid-like densities!, 20* 103 Monte
Carlo cycles are sufficient to equilibrate the system in
new umbrella for subsequent histogram collection.

The multicanonical weights are initially calculated
outlined above, until a desired swap rate between neigh
ing replicas is achieved; a good acceptance probability
about 5% to 10%. For six replicas, the sought-after over
between neighboring histograms was attained after fou
erations~see Fig. 2!. Note that, by design, the energy hist
grams corresponding to our original choice of state po
~Table I! did not overlap with each other. The temperatu
and chemical potentials were chosen as a subset from ea
parallel tempering simulations with 18 replicas.5 Conven-
tional parallel-tempering swap moves would not work f
that choice. After applying the multicanonical weights, ov
lap between all replica histograms was achieved, ther
leading to a highly effective parallel tempering simulatio

FIG. 2. Energy histograms with and without application of the multicano
cal weights used to calculate the Lennard-Jones phase diagram. Part a
the histograms of the potential energy per replica without multicanon
simulation, part b with application of the multicanonical weights, whi
were produced in four iterations containing 250 000 MC cycles each.
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We performed two independent simulations of 106 steps;
only data produced over the last three quarters of the si
lation were used for analysis. Note that in cases where
used a different inversion temperature to produce the umb
las, or in cases were every histogram was inverted at
temperature~see above!, we did not find any significant
changes in the results; the production of the histogra
however, was considerably slower. As a word of caution,
point out that it is important that the umbrella potentials
based on well-equilibrated histograms. This can cut down
number of iteration steps significantly, especially in the i
tial stages of the process where the weights change dr
cally between successive iterations.

In order to determine the optimal distribution of sta
points, we also performed simulations using four and ei
state points~or replicas! for multicanonical parallel temper
ing simulations. For reference, we also conducted a conv
tional canonical parallel tempering simulation with 12 a
18 state points. Again, the state points were subsets ta
from Ref. 5. A one replica, purely multicanonical simulatio
was attempted for reference; that simulation was not succ
ful in covering the entire region of interest~with a single
replica! and the initial runs did not converge. The number
iterations needed for the calculation of the umbrellas
shown in Table II, along with the time required for produ
tion runs. We find that with four replicas we needed an u
reasonably high number of iterations, and with eight replic
we could not cut down on the number of iterations requir
with respect to six replicas. For the size of our simulat
system it appears that six replicas provide an optimal cho
It is important to emphasize, however, that the optimum

-
ows
l

TABLE I. Thermodynamic conditions for a grand canonical ensemble te
pering simulation using six replicas. These conditions are taken as sta
points for the multicanonical optimization. These thermodynamic conditi
are taken from the literature~Ref. 5!.

i Ti m i

1 0.79 24.76
2 0.86 24.23
3 1.03 23.35
4 1.11 23.02
5 1.20 22.74
6 0.94 23.98

TABLE II. Number of iterations used for calculation of the umbrellasNu ,
number of iterations times number of replicas (N•Nu), and overall CPU
time TCPU ~in hours! required to simulate the relevant system on a sim
personal computer~800 MHz AMD processor!. For the case of one replica
we were unable to produce an individual umbrella capable of covering
entire coexistence region.

# replicas
N

# iterations
Nu

# of iterations3# replicas
N•Nu

CPU time
TCPU/h

1 .80 .80 .80
4 11 44 76
6 4 24 72
8 5 40 80
12 ¯ ¯ 120
18 ¯ ¯ 180
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



e-
th
m

es
a

is
d
el
th
ire

b
u

m
li

ric
ou
a
ed
er
r
n

n
t
re

ht-
ree-
-

did

ical
a-
r of

imu-
n-
for
rve

re,
of

ns
for
ory
of

t an
sed
f

o-
of
of
sti-

hat

r
i-
es,
l-

Re-
oci-
the

, J.

T
da
ce

5423J. Chem. Phys., Vol. 116, No. 13, 1 April 2002 Multicanonical parallel tempering
likely to vary significantly depending on the particular d
tails of a given system. Of course, the time required for
final production run scales with the number of replicas; fro
this point of view, the proposed algorithm is three tim
more efficient than the original 18-replica multidimension
parallel-tempering simulation of the same system.5

The new method permits coverage of the entire coex
ence region using only six simulation replicas. One ad
tional, important advantage over a traditional parall
tempering simulation resides in the smaller size of
overall system, which reduces drastically memory requ
ments. For systems like glasses or polymers, a large num
of replicas would be necessary for parallel tempering sim
lations; such calculations would require extraordinary co
putational resources, as the amount of memory scales
early with the number of replicas. For a large polyme
system, an individual replica containing several tens of th
sands of interaction sites is already at the limits of a stand
personal computer or workstation. With the combin
parallel-tempering-multicanonical approach proposed h
such systems can be simulated using a smaller numbe
replicas, thereby reducing the computational requireme
considerably~both memory and production run time!.

Figure 3 shows the phase diagram and the coexiste
pressure as a function of temperature calculated using
above-mentioned six replicas. We use multihistogram

FIG. 3. Upper: Calculated Phase Diagram for the Lennard-Jones fluid.
open squares show results of this work. The circles show literature
~Ref. 13!. The solid line is an Ising fit to the data. Lower: Coexisten
~vapor! pressure as a function of temperature for the same system.
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weighting to calculate the other state points,16,17 as there is
good overlap in the histograms the accuracy of the reweig
ing procedure increases. The phase diagram is in good ag
ment with literature data.5,13 The estimated critical tempera
ture and density areTc51.1860.01,rc50.3260.02. These
were obtained by an Ising fit to the reweighted data. We
not apply a finite-size scaling correction.

IV. CONCLUSIONS

We have presented an implementation of multicanon
sampling in the framework of parallel-tempering simul
tions. This combination of methods decreases the numbe
necessary replicas and increases the efficiency of the s
lation. The validity of the new method has been demo
strated in the context of a simple Lennard-Jones fluid,
which high-accuracy literature data for the coexistence cu
are reproduced.

As pointed out in the multicanonical-ensemble literatu
we note that it is important to exercise care in the selection
multicanonical weights. However, when proper precautio
are followed, the result is an effective methodology. Even
simple systems, such as the Lennard-Jones fluid, the mem
and time required to produce results over a wide range
conditions can be decreased by a factor of three withou
overhead to the overall calculation. We expect the propo
formalism to be particularly well-suited for simulation o
systems which, by their very nature, require large sizes~e.g.,
polymers!. An additional, important advantage of the pr
posed method is that it provides a remarkably simple way
parallelizing an umbrella-sampling simulation; to the best
our knowledge, the implementation presented here con
tutes the first version of an umbrella sampling simulation t
is parallelized.
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