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Symmetric diblock copolymer thin films confined between homogeneous
and patterned surfaces: Simulations and theory

Qiang Wang, Shyamal K. Nath,a) Michael D. Graham, Paul F. Nealey,
and Juan J. de Pablob)

Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691

~Received 15 November 1999; accepted 13 March 2000!

We have investigated the ability of a simple phenomenological theory to describe the behavior of
symmetric diblock copolymer thin films confined between two hard surfaces. Prior knowledge of
the morphology in the confined films is crucial for applying this theory to predict the phase diagram
of such systems. Taking advantage of our observations in Monte Carlo simulations, we use the
theory to construct phase diagrams for thin films confined between patterned-homogeneous
surfaces, and obtain good agreement with our results of simulations. Two conditions are essential
for obtaining long-range ordered perpendicular lamellae: a lower stripe-patterned surface with the
surface pattern periodLs comparable to the bulk lamellar periodL0 , and an upper neutral or weakly
preferential surface. We have also examined the undulation of perpendicular lamellae between two
hard surfaces. For the cases of two homogeneous~preferential! surfaces and patterned-preferential
surfaces, our calculations using the phenomenological theory indicate that the amplitudes of the
undulation are on the same order of magnitude as observed in our Monte Carlo simulations, and are
one order of magnitude larger than previously reported. The theory, however, is unable to capture
the shape of the undulation. For the case of patterned-neutral surfaces, we find that an earlier
analysis is unable to yield the undulations that would stabilize the perpendicular lamellar
morphology. We have addressed this issue and obtained undulations that are consistent with our
observations from Monte Carlo simulations. ©2000 American Institute of Physics.
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I. INTRODUCTION

Recently, the study of diblock copolymer thin films h
attracted significant interest because of their potential ap
cations in nanofabrication. Much of the research in this a
has been carried out on symmetric diblock copolyme
which in the bulk form lamellar structures at temperatu
below the order–disorder transition~ODT!. For some appli-
cations ~e.g., nanolithography!, it is desirable to generat
macroscopically ordered~over microns! lamellar structure
perpendicular to a substrate. The purpose of this work i
investigate under which circumstances such structures
occur.

It has been established that for symmetric diblock
polymer thin films confined between two strongly prefere
tial surfaces, the equilibrium morphology consists of lam
lae oriented parallel to the surfaces, with the preferred blo
segregating to the corresponding surfaces.1–11 This reduces
the surface–block interfacial energy. In the case of para
lamellae confined between two hard~impenetrable! surfaces,
the confined lamellar periodL may vary from the bulk value
L0 to accommodate the frustration between surface sep
tion D andL0 . Such stretching or compressing of lamellae
accompanied by an elastic free energy penalty associ
with chain conformational entropy.

As surface preference becomes less specific, an a
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tional increase in the frustration betweenD andL0 can lead
to a perpendicular orientation of the lamellae wi
L'L0 .4,5,8–18 Since in this case both A and B blocks a
present near the surfaces, the surface–block interfacial
ergy can be relatively high if the surfaces are not complet
neutral, which is often the case in experiments. It has b
pointed out5,9–11,17–19that in perpendicular lamellae confine
between two homogeneous and~weakly! preferential sur-
faces, undulations of the A–B interface can be caused by
surface-induced segregation of preferred blocks near the
faces; these could reduce the surface–block interfacial
ergy and thus stabilize the perpendicular morphology.

Perpendicular lamellae have been observed experim
tally between two homogeneous surfaces when the sur
preference is neutral or weak; transmission electron mic
copy ~TEM! or field emission scanning electron microsco
~FESEM! images show that the orientation of such lamel
is short-ranged~tens to hundreds of nanometers!.4,12,13More
recently, experiments,20 Monte Carlo simulations,21 and the-
oretical calculations22–30 have shown that macroscopical
ordered perpendicular lamellae can be obtained by dep
ing symmetric diblock copolymers on stripe-pattern
chemically heterogeneous surfaces, where the surface pa
periodLs is comparable to the bulk lamellar periodL0 .

To better understand the behavior of symmetric diblo
copolymer thin films confined between two hard surfaces,
have performed extensive Monte Carlo simulations that h
provided us with valuable insights regarding the morpholo
of such systems.5,21 The simulation results have served as

an
6 © 2000 American Institute of Physics
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guide to propose plausible solutions for theoretical calcu
tions. In this work we examine the ability of a simple ph
nomenological theory to describe the behavior of symme
diblock copolymer thin films confined between two hard s
faces. For a given morphology of the system in the stro
segregation limit, this theory can be used to estimate the
energy in terms of elastic contributions~associated with
chain conformational entropy!, block–block interfacial con-
tributions, surface–block interfacial contributions, and be
ing contributions~if the A–B interfaces in lamellae are no
flat!. Our hope is that such a theory could be used to ra
nalize and describe the results of our recent simulation
confined copolymers.

Various forms of the phenomenological theory cons
ered in this work for symmetric diblock copolymers ha
appeared in the literature.31–35 Turner built on earlier work
on this theory by adding surface–block interaction terms
study the phase diagram of symmetric diblock copolym
thin films confined between two homogeneous surfac7

where he only considered the parallel symmetric and a
symmetric lamellar morphology between the two surface7

Walton et al. extended Turner’s study by considering t
perpendicular lamellar morphology.8 Independently, Kikuchi
and Binder proposed a similar theory to compare the stab
of parallel symmetric lamellae and perpendicular lamel
between two identical~homogeneous! surfaces.15 For similar
systems, Matsen11 and Geisingeret al.17 compared the pre
dictions of this theory with self-consistent field calculatio
and found only qualitative agreement. The phenomenolo
cal theory does not take hard-surface effects5 into account,
and is unable to predict in a unique manner the formation
perpendicular lamellae between neutral surfaces.36

Prior knowledge of the morphology in confined films
crucial for applying the phenomenological theory. Starti
from a random~disordered! state, our Monte Carlo simula
tions for patterned-homogeneous surfaces21 have yielded
various types of morphology~depending on the surface con
figuration!, thereby providing the essential information f
applying the theory. Recently, Pereira and Williams us
that theory to calculate phase diagrams for symme
diblock copolymer thin films confined between patterne
homogeneous surfaces.27–29 Some types of morphology ob
served in our recent Monte Carlo simulations, however, w
not considered in their work. Based on the observations fr
such simulations,21 in this work we use the phenomenolog
cal theory to construct the phase diagram of symme
diblock copolymer thin films confined between patterne
homogeneous surfaces.

In related work, Pereira and Williams used the sa
theory to examine the undulations of A–B interfaces in p
pendicular lamellae confined between two homogeneous
preferential surfaces,19 patterned-preferential surfaces,37 and
patterned-neutral surfaces.38 Such undulations are caused b
the preference of the homogeneous surface to one of the
blocks, or the incommensuration betweenLs andL0 , both of
which are difficult to control in experiments. The undulatio
could have adverse effects for applications in nanolithog
phy. The phenomenological theory considered here invo
a number of simplifications and approximations which a
Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to A
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necessary to render its solutions tractable. It is therefore
interest to revisit Pereira and Williams’ calculations, a
compare the results of theoretical predictions with those
Monte Carlo simulations5,21 which are more computationally
demanding but are free of the simplifications and approxim
tions of the theory. We find that for some systems our fin
ings differ from those reported in earlier work.

II. MODELS

A. Phenomenological theory

In the strong segregation limit, where lamellar structu
of period L are well-developed and the thickness of A–
interfaces is vanishingly small, the free energy of symme
diblock copolymer thin films is assumed to consist of fo
contributions: the elastic free energy of the lamellae~associ-
ated with chain conformational entropy!, the block–block
interfacial energy, the surface–block interfacial energy, a
the bending free energy of the lamellae if the A–B interfac
in the lamellae are not flat. The elastic free energy
diblock copolymer chain in the lamellae of periodL can be
written as

f el5aL2, ~1!

wherea is a constant whose value depends on the total n
ber of segments in a diblock copolymer chain~denoted byN
here! and the distribution of the chain ends in the lamella
According to Semenov, who assumed a distribution of ch
ends that minimizes the elastic free energy of the inner
gion of a micelle,31 a is found to be

a5
p2kBT

32Nl2
, ~2!

wherekB is the Boltzmann constant,T the absolute tempera
ture, andl the Kuhn length of a segment. By assuming th
chains terminate at the interfaces between adjacent chain
ers, Semenov31 and others7,32 have found

a5
3kBT

8Nl2
. ~3!

As pointed out by Semenov, using Eq.~3! instead of Eq.~2!
raises the elastic free energy by a factor of 12/p2.31 Note,
however, that as we shall see below the value ofa does not
affect thedimensionlessfree energy of the system and th
dimensionlessdifferential equations derived later. For
diblock copolymer with different end-to-end distances of t
A and B blocks, denoted byDA andDB respectively, Eq.~1!
becomes

f el58a~DA
2 1DB

2 !. ~4!

The A–B interfacial energy per chain in lamellae of p
riod L can be calculated from the block–block interfac
tensionsAB.0 according to

f AB5
2sAB

rL
, ~5!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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wherer is the number density of chains in the system, a
where it is assumed that A–B interfaces are flat. Surfa
block interfacial energies can be calculated from the co
sponding surface–block interfacial tensions in a similar w

In the strong segregation limit, the characteristic per
of lamellae in the bulk,L0 , can be obtained by minimizing
with respect toL the total free energy per chain in the bul
which consists of the elastic free energy given by Eq.~1! and
the A–B interfacial energy given by Eq.~5!. This leads to

L05S sAB

ar D 1/3

. ~6!

Note that both Eqs.~2! and ~3! give a}1/N. As in Ref. 32,
by assuming a constant number density of segmentsrs

5rN, we can recover the scaling of the bulk lamellar peri
L0 with chain lengthN, namely,L0}N2/3, which is consis-
tent with experimental findings.39 ~For largeN, sAB is inde-
pendent ofN.32! In addition, by substituting Eq.~6! into Eqs.
~1! and ~5!, we get the ratio of the elastic free energy to t
A–B interfacial energy in the bulk,

f el~L0!

f AB~L0!
5

1

2
. ~7!

Note that this ratio is independent ofa.
According to Wang,35 if the A–B interfaces in a lamella

morphology are not flat, the bending free energy per ch
arising from a curvaturec can be estimated as

f bend5ãc2L4, ~8!

whereã5 3
64a.

B. Monte Carlo simulations

Our Monte Carlo simulations are performed in an e
panded grand-canonical ensemble in the framework o
simple cubic lattice. Detailed descriptions can be found
Refs. 5 and 21. Only a brief summary is given here.

A rectangular simulation box of dimensionsLx , Ly , and
Lz is employed. Periodic boundary conditions are impose
the x and y directions. Two flat surfaces are introduce

FIG. 1. Configuration of the patterned-homogeneous surfaces. Both sur
are hard and flat. The stripes on the lower patterned surface have the
width Ls/2 and alternatively prefer A and B blocks of the copolymer~de-
noted by sA and sB stripes, respectively!. The upper homogeneous surfac
is either neutral or preferential to one of the two blocks.
Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to A
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through the lattice sites atz50 andz5Lz11, respectively
~see Fig. 1!. These lattice sites are not allowed to be occ
pied by polymer segments. Diblock copolymers are theref
confined to a thin-film geometry of thicknessD5Lz21.

In the simulations, we only consider repulsion betwe
nearest-neighbor A–B pairs separated by one lattice
(eA–B.0), and we seteA–A5eB–B50. Interactions between
vacancies~unoccupied lattice sites! and polymer segment
are also set to zero. Three kinds of sites populate the
faces: sA, sB, and sH, whose nature depends on the typ
surface–block interaction. For simplicity, we setesA–A

5esB–B5esH–A50, esA–B.0, esB–A.0, and esH–B>0. For
the case of two homogeneous and preferential surfaces s
ied in this work, the surfaces consist of either sA or sB sit
For the case of patterned-homogeneous surfaces, the u
homogeneous surface consists of sH sites. WhenesH–B50,
the upper surface is neutral, with no preference for eithe
the two blocks; whenesH–B.0, the upper surface repels
blocks, and is therefore preferential to A blocks. The che
cally heterogeneous surfaces are patterned with stripes
allel to thex axis, as shown in Fig. 1. The stripes consist
alternating sA~light regions! and sB~dark regions! sites. All
stripes have the same widthLs/2, whereLs is the period of
the surface pattern.

We perform Monte Carlo simulations in a variant of th
expanded grand-canonical ensemble method proposed b
cobedo and de Pablo.40 The chemical potential and temper
ture of the simulated system are specified prior to a simu
tion. The confined copolymers are therefore in equilibriu
with a bulk phase having the same chemical potential
temperature, and the density of the system is allowed to fl
tuate during the simulation. In addition to molecule displac
ments by reptation moves and local~crankshaft and kink-
jump! moves, we employ growing/shrinking move
performed four segments at a time to gradually insert/rem
chains from the system. To facilitate transitions, configu
tional bias is used for these growing/shrinking moves, le
ing to an acceptance rate of about 20%.5 A standard Me-
tropolis algorithm is employed in our simulations. On
Monte Carlo step~MCS! consists of 0.83Lx3Ly3Lz trials
of reptation, local and growing/shrinking moves, each
which occurs with the same probability. In general, we d
card the first 100 000 MCS for equilibration, then make a r
of at least 500 000 MCS while collecting data every 5 MC

We study symmetric diblock copolymers of chain leng
N524. We set the reduced temperature to beT*
[kBT/eA–B52.3. We also set the reduced chemical pote
tial at m* [m/(kBT)541.5, wherem is the chemical poten-
tial of the system. These conditions lead to a density of
confined films ~percentage of occupied lattice sites! of
around 0.8. In the bulk, the ODT of the diblock copolymer
betweenT* 52.8– 3.0;5 our system is therefore in the inte
mediate segregation regime. The characteristic period
lamellae in the bulk under the above conditions was e
mated to beL0512.5

es
me
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III. RESULTS AND DISCUSSION

A. Phase diagrams of symmetric diblock copolymer
thin films confined between patterned-homogeneous
surfaces

Our Monte Carlo simulations have revealed the ex
tence of various types of morphology in thin films confin
between patterned-homogeneous surfaces.21 Armed with
these results, we construct the phase diagrams of the sy
using the phenomenological theory described above,
compare them with simulations.

1. Morphology and free energy of confined films

Figure 1 shows the configuration of the patterne
homogeneous surfaces. For simplicity, we set the surfa
block interfacial tensions for the lower stripe-patterned s
face to bessA–A5ssB–B5s, and ssA–B5ssB–A5sm.s.
The upper homogeneous surface is either neutral or pre
ential to one of the two blocks. The interfacial tensions b
tween the homogeneous surface and the two blocks are
noted by sAH and sBH , respectively. The diblock
copolymers are confined between the two surfaces and
a film thicknessD.

Here we assume that all interfaces in the system are
and thereforef bend50. As shown in Fig. 2, based on ou
Monte Carlo simulation results, we consider eight types
morphology between the patterned-homogeneous surfa
These are:

~a! Perpendicular lamellae of bulk periodL0 , denoted by
uuu.

~b! Perpendicular lamellae complying with the lower su
face pattern, denoted byuuus .

~c! Checkerboard morphology, denoted by1@m#, where
m is the number of layers of chains perpendicular to
surfaces in the confined film. We assume that e
chain layer has the same thicknessD/m.

~d! Mixed morphology of perpendicular lamellae compl
ing with the lower surface pattern near the pattern
surface, and perpendicular lamellae of periodL0 near
the upper surface. Such morphology is denoted
uuus-uuu. We useh to denote the ratio of the height of th
lower morphology toL0 . When LsÞL0 , the smaller
the h, the lower the free energy of th
uuus-uuu morphology. However, our simulation resul
indicate thath in this morphology is almost constan
regardless ofD andLs .21 Therefore, in this paper, we
simply specifyh51/4 for this morphology.

~e! Mixed morphology of one layer of checkerboard ne
the lower patterned surface, and perpendicular lame
of periodL0 near the upper surface. Such morpholo
is denoted by1@1#-uuu. We assume that in this mor
phology the thickness of the checkerboard layer
L0/2.

~f! Parallel lamellae, denoted by[@m#. Similar to the
1@m# morphology, we assume that each chain laye
the [@m# morphology has the same thicknessD/m.

~g! Mixed morphology of perpendicular lamellae compl
ing with the lower surface pattern near the pattern
surface, and parallel lamellae ofm layers near the up
Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to A
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per surface. Such morphology is denoted byuuus-
[@m#. Again, we denote the height of the lower mo
phology byhL0 , and assume that the thickness of ea
chain layer in the parallel lamellae is (D2hL0)/m.
According to our simulation results,21 we specify h
>1/4 for this morphology.

~h! Mixed morphology of one layer of checkerboard ne
the lower patterned surface, and parallel lamellae
m21 layers near the upper surface. We assume
the thickness of each chain layer in both the check
board and the parallel lamellae isD/m. Such morphol-
ogy is denoted by1@1#-[@m21#. To distinguish it
from the1@m# morphology, we specifym>2 for the
1@1#-[@m21# morphology.

Note that whenLs /L051, the three types of morphologyuuu,
uuus , anduuus-uuu become identical; we useuuus to represent the
morphology.

To calculate the interfacial energy between two m
matched structures with different periodsL0 andLs ~for ex-
ample, the surface–block interfacial energy between

FIG. 2. Morphology between the patterned-homogeneous surfaces (Ls /L0

51.5 in this figure!. Light regions represent A blocks, and dark regio
represent B blocks.~a! Perpendicular lamellae of bulk periodL0 , denoted
by uuu; ~b! Perpendicular lamellae complying with the surface pattern,
noted byuuus ; ~c! Checkerboard morphology, denoted by1@m#, wherem is
the number of the layers of chains perpendicular to the surfaces in
confined film~herem52); ~d! Mixed morphology ofuuus near the patterned
surface anduuu near the homogeneous surface, denoted byuuus-uuu; ~e! Mixed
morphology of1@1# near the patterned surface anduuu near the homoge-
neous surface, denoted by1@1#-uuu; ~f! Parallel lamellae, denoted by[@m#
~herem52); ~g! Mixed morphology ofuuus near the patterned surface an
[@m# near the homogeneous surface, denoted byuuus-[@m# ~herem52);
~h! Mixed morphology of1@1# near the patterned surface and[@m21#
near the homogeneous surface, denoted by1@1#-[@m21# ~herem52).
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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lower patterned surface and the lamellae when theuuu mor-
phology forms!, we define a mismatch ratioq that represents
the average mismatch area per unit length~along they direc-
tion!. The value ofq depends onLs /L0 and the alignment of
the two structures. Note thatquLs /L0

5quL0 /Ls
. Theoretical

calculations ofq are somewhat involved, particularly whe
Ls /L0 is an irrational number, or when different alignmen
of the two structures are considered. In this paper we ca
late the value ofq for Ls /L051;5 with a step of 0.0002
and we only consider the ‘‘left’’ alignment of the two struc
tures of which the first half-periods match with each oth
@refer to Figs. 2~a!, 2~d!, and 2~e!#. We find thatq51/2 for
most values ofLs /L0 , except those listed in Table I. Obv
ously, the larger theq, the higher the interfacial energy. I
some of our Monte Carlo simulations of thin films confin
between patterned-neutral surfaces,21 we observed the trans
posed perpendicular lamellae, whereq51/2. Therefore, 1/2
can be considered as the upper limit ofq for the purposes of
our study. To simplify our calculations, we assume thaq

51/2 for all values ofLs /L0P@ 1
5,5#, except thatq50 at

Ls /L051, q51/3 at Ls /L051/3 and 3, andq52/5 at
Ls /L051/5 and 5. As we shall see below, these ‘‘unusua
values ofq cause some ‘‘spikes’’ in the phase diagrams.

Table II lists the phenomenological free energies for d
ferent types of morphology in the films confined betwe
patterned-homogeneous surfaces withD/L0.1/2, expressed
in the dimensionless form@ f M2(sAH1s)/(Dr)#/ f el(L0),
where f M is the free energy per chain corresponding to
morphologyM, and f el(L0)5aL0

2 is the elastic free energ
per chain in the bulk given by Eq.~1!. We define the dimen-
sionless surface pattern periodp[Ls /L0 , the dimensionless
film thicknessd[D/L0 , and two dimensionless paramete
dP[(sm2s)/sAB.0 anddH[(sBH2sAH)/sAB . Without
loss of generality, we assume thatdH>0, and that A blocks
segregate to the upper surface when parallel lamellae f
near the upper preferential surface~i.e., in the morphology
[@m#, uuus-[@m#, and1@1#-[@m21#). This is consistent
with our Monte Carlo simulation results.21 Note that thea in
Eq. ~1! does not appear in these dimensionless free ener
Therefore, its value does not affect the phase diagrams
structed below.

2. Phase diagram for thin films confined between
patterned-neutral surfaces

For thin films confined between patterned-neutral s
faces, the only types of morphology that were observed

TABLE I. Mismatch ratioq,1/2 for several values ofLs /L0 .

Ls /L0 q

1 0
1.4 17/35
1.8 22/45
2.2 27/55
2.6 32/65
3 1/3
3.4 42/85
3.8 47/95
4.2 52/105
4.6 57/115
5 2/5
Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to A
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our Monte Carlo simulations areuuu, uuus-uuu, 1@m#, 1@1#-
uuu, and uuus .21 Therefore, we only consider these five typ
of morphology to construct the phase diagram.

To establish a connection between the phenomenolog
theory and our Monte Carlo simulations,21 we setdP52 and

dH50. We vary p within @ 1
5,5# and d within ( 1

2,6# in the
phase diagram. For the1@m# morphology,m is chosen to be
the positive integer that minimizes the free energy of
system. The calculated phase diagram is shown in Fig
Note that theuuu morphology coexists at the boundary b
tween theuuus-uuu and the1@1#-uuu morphology atp52. Be-
causeq51/3 atp53, theuuu morphology also coexists with
the 1@1#-uuu morphology atp53. Furthermore, these two

FIG. 3. Phase diagram of symmetric diblock copolymer thin films confin
between patterned-neutral surfaces, calculated from the phenomenolo
theory. We specifydP[(sm2s)/sAB52, wheresm5ssA–B5ssB-A and
s5ssA–A5ssB–B. The open symbols represent the morphology observe
Monte Carlo Simulations~Ref. 21!: h denotesuuu, , denotesuuus-uuu, s

denotesuuus , L denotes1@1#-uuu, andn denotes1@2#.

TABLE II. Phenomenological free energy expressions for different types
morphology in confined films between patterned-homogeneous surf
with D/L0.1/2.

Morphology ~M!

Free energy

HFfM 2
~sAH1s!

Dr GY fel ~L0!J
uuu dH

2d
131

dPq

d

uuus
dH

2d
1

2

p
1p2

1@m#
dH

2d
1

m

d
1

4d2

m2 1
2

p

uuus-uuu
dH

2d
131

q

d
1

p223

4d
1

1

2pd

1@1#-uuu dH

2d
131

q

d
1

1

pd

[@m#
m

d
1

4d2

m2 1
dP

2d

uuus-[@m#
m

d
1

4d2

m2 1
1

2d
1

h

d Sp21
2

pD2 4h

m2F3~d2h!1
h2

d G
(h>1/4!

1@1#-[@m21#
(m>2)

m

d
1

4d2

m2 1
1

2d
1

2

mp
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



is

s

n
ho
tiv
tic
c

m
n
r

o
e
ir
di

lts
t
te
in
ed

e
f.
e
n-

‘in
ie
en
s
ion

re
ri

ld
or
te
am
in

e
a

t

ord-

At

o
-

en-
ver,
rior
ns

r
arlo

r-
or-
od
hat

ck
d-
d

ed
eno-

or-

10001J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 Diblock copolymer between surfaces
types of morphology have alower free energy than the
1@m# morphology on the two vertical lines atp53 shown
in Fig. 3 ~one is fromd50.6786 to 0.7583, and the other
d.1). Similarly, the1@1#-uuu morphology has alower free
energy than the1@m# morphology on the two vertical line
at p55 shown in Fig. 3~one is fromd51.1953 to 1.2902,
and the other isd.1.5).

Our simulation results are also shown in Fig. 3; differe
open symbols represent different observed types of morp
ogy. From Fig. 3 we can see that there is good qualita
agreement between our simulation results and theore
predictions. Note, however, that there are some discrepan

on morphology at (p,d)5( 2
3,1) and~1.5,1!.

Pereira and Williams studied the phase diagram of sy
metric diblock copolymer thin films confined betwee
patterned-neutral surfaces in Ref. 27 and 28, where they
stricted their study to the caseLs /L0,1, and where they
only considered the morphology of perpendicular lamellae
different periods forming throughout the entire film. Th
‘‘diblock-stripe’’ model they used is similar to ours, but the
methodology artificially imposes periodic boundary con
tions on the morphology with a periodnLs/2 along the di-
rection in which the surface is patterned~the y direction in
our notation!. This might lead to some unexpected resu
For example, in Ref. 27 and 28 it was concluded tha
stripe-patterned surface can induce some ‘‘incommensura
morphology, i.e., perpendicular lamellae of unequal spac
or even inverted bilayers, where an A–B lamella is follow
directly by another A–B lamella rather than a B–A~each
lamella consists of one layer of copolymer chains!. However,
we have compared under the same conditions the free en
of all the ‘‘incommensurate’’ morphology reported in Re
28 with that of theuuu morphology studied here; we hav
found that theuuu morphology always has a lower free e
ergy. Note that in some cases theuuu morphology may not
even be the morphology with the lowest free energy~the uuus
or the uuus-uuu morphology may be more stable!.

In a recent paper, to validate the presence of the ‘
commensurate’’ morphology, Pereira and Williams stud
symmetric diblock copolymer thin films confined betwe
patterned-neutral surfaces with several hundreds of stripe
direct numerical integration of a dynamic evolution equat
given by the Cahn–Hilliard formalism.41 However, since that
study was restricted to one dimension and only conside
the morphology of perpendicular lamellae of different pe
ods~forming throughout the entire film!, the formation of the
uuus-uuu morphology was excluded. This morphology cou
have a lower free energy than the ‘‘incommensurate’’ m
phology under certain conditions. Furthermore, as poin
out by the authors, the sinusoidal profiles of the order par
eter indicate that their results are not quantitatively valid
the strong segregation limit.41 We therefore believe that th
existence of the ‘‘incommensurate’’ morphology remains
open question.

3. Phase diagram for thin films confined between
patterned-preferential surfaces

In this case we setdP52 andd52, and varyp within

@ 1
5,5# and dH within @0,2# in the phase diagram. Note tha
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dH50 corresponds to the patterned-neutral surfaces. Acc
ing to our Monte Carlo simulation results,21 we discard
the 1@m# morphology, and include the[@m#, the
uuus-[@m#, and the1@1#-[@m21# morphology for theo-
retical consideration.

The calculated phase diagram is shown in Fig. 4.
dH50, theuuu morphology coexists with the[@4# morphol-
ogy ~except atp51/5 and 1/3!, and the1@1#-uuu morphol-
ogy coexists with the1@1#-[@3# morphology~except atp
53 and 5!. Note thatd52 for the phase diagram; similar t
the case of two neutral surfaces,36 since the phenomenologi
cal theory does not take hard-surface effects5 into account, it
cannot predict in a unique manner the formation of perp
dicular lamellae near the upper neutral surface. Howe
this can be compensated, in some sense, if we apply p
knowledge of the morphology obtained from our simulatio
to exclude the[@m#, the uuus-[@m#, and the1@1#-[@m
21# morphology atdH50 ~parallel lamellae have neve
been observed near a neutral surface in our Monte C
simulations5,21!.

In Fig. 4, for theuuus-[@m# morphology,m51 with h
51.5, m52 with h51, andm53 with h50.5 coexist atp
51. Because of the ‘‘unusual’’ values ofq at p51/5, 1/3, 3,
and 5, theuuu morphology has alower free energy than the
[@4# morphology on the vertical lines atp51/5 ~from dH

50 to 2/5! and 1/3~from dH50 to 2/3! shown in Fig. 4; the
1@1#-uuu morphology has alower free energy than the
1@1#-[@3# morphology on the vertical lines atp53 ~from
dH50 to 1/3! and 5~from dH50 to 1/5, not shown in Fig.
4!; the uuu morphology coexists with the1@1#-uuu morphol-
ogy atp53.

Our simulation results are also shown in Fig. 4; diffe
ent open symbols represent different observed types of m
phology. Again, from Fig. 4 we can see that we have go
qualitative agreement with theoretical predictions. Note t
there is a discrepancy on morphology at (p,d)5(1.5,2).

In their study of the phase diagram of symmetric diblo
copolymer thin films confined between patterne
homogeneous surfaces,29 Pereira and Williams considere

FIG. 4. Phase diagram of symmetric diblock copolymer thin films confin
between patterned-preferential surfaces, calculated from the phenom
logical theory. We specifydP52 andd52. For theuuus-[@m# morphology,
the value ofm is given in the figure. The open symbols represent the m
phology observed in Monte Carlo simulations~Ref. 21!: h denotesuuu, n

denotesuuus-uuu, s denotesuuus , L denotes1@1#-uuu, v denotes[@4#, ,

denotesuuus-[@m#, andx denotes1@1#-[@3#.
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the following five types of morphology:uuus , uuu, [@m#,
uuus-[@m# ~these four types of morphology are also cons
ered in this paper!, anduuu-[@m# ~this morphology has neve
been observed in our simulations and in their ph
diagrams29!. Since other types of morphology (uuus-uuu,
1@m#, 1@1#-uuu, and1@1#-[@m21#) are observed in ou
Monte Carlo simulations,21 they should be considered in the
oretical work.

B. Undulation of perpendicular lamellae

We have seen that there is qualitative agreement
tween the phase diagrams predicted by the phenomeno
cal theory and our Monte Carlo simulation results for th
films confined between patterned-homogeneous surface
this section, we revisit the undulation of perpendicular lam
lae between two hard surfaces using the same theory,
make quantitative comparison between the theory and
simulations.

1. Undulation between two homogeneous and
preferential surfaces

Let us first consider the case of perpendicular lame
confined between two homogeneous, hard, flat, and pre
ential surfaces. As in Ref. 19, the two surfaces are locate
z50 andz5D, respectively. We assume that perpendicu
lamellae of periodL0 form along they direction. Because o
the surface preference, the A–B interfaces in the perpend
lar lamellae undergo a displacementu(z) from the undis-
torted reference state, as illustrated in Fig. 5. The interfa
between adjacent chain layers, however, are assumed
invariant. To keep the morphology of perpendicular lam
lae, we specifyuu(z)u,L0/4. Assumingui(z)52ui 11(z)
for two adjacent chain layersi and i 11, as in Ref. 19, we
consider one A–B lamella~consisting of one layer of copoly
mer chains! of unit length in thex direction. Following the
assumptions in Ref. 19, namely, that chain trajectories
perpendicular to the A–B interface and that chains termin
at the interfaces between adjacent lamellae, the elastic
energy of an A–B lamella per unit length in thex direction
can be written as@from Eq. ~4!#,

FIG. 5. Illustration of an A–B perpendicular lamella near the upper h
surface. The lower surface~not shown! locates atz50. Thex direction is
perpendicular to the page. The dotted line represents the A–B interfa
the undistorted state.~Here the upper surface prefers the A blocks, i.e.,dH

.0.) The two dashed lines represent the invariant interfaces between
cent chain layers. It is assumed that chain trajectories are perpendicu
the A–B interface and that the chains terminate at the interfaces betw
adjacent chain layers.
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Fel58ar
L0

2 E
0

D

~DA
2 1DB

2 !dz, ~9!

where:

DA~z!5
L0/41u~z!

cosu~z!
,

DB~z!5
L0/42u~z!

cosu~z!
, ~10!

u~z!5arctanuz ,

and whereuz represents du(z)/dz. Substitution of Eqs.~6!
and ~10! into Eq. ~9! gives

Fel5
sAB

2 E
0

D

~11uz
2!F1116S u

L0
D 2Gdz. ~11!

In this case the curvature is given byc5uzz.19,35 Therefore,
the bending free energy of an A–B lamella per unit length
the x direction is@using Eq.~6!#

Fbend5
3sAB

128 E0

D

~uzzL0!2dz. ~12!

The A–B interfacial energy of an A–B lamella per un
length in thex direction is

FAB5sABE
0

D
A11uz

2dz. ~13!

The surface–block interfacial energy of an A–B lamella p
unit length in thex direction is:

Fsur f5~sAS2sBS!u~0!1~sAH2sBH!u~D !, ~14!

where subscripts S and H represent the lower and upper
mogeneous surfaces, respectively. The total free energy o
A–B lamella per unit length in thex direction is therefore

FT5Fel1Fbend1FAB1Fsur f . ~15!

After introducing dimensionless variables,s5z/L0 , f
5u/L0 , F5FT /(sABL0), and dS5(sBS2sAS)/sAB , and
ignoring all constants, we arrive at the following expressi
for the dimensionless free energy of an A–B lamella per u
length in thex direction,

F5E
0

dF8 f 21
1

2
f s

218 f 2f s
21~A11 f s

221!1
3

128
f ss

2 Gds

2dSf ~0!2dHf ~d!. ~16!

Note that the value ofa in Eq. ~1! does not affect this ex-
pression for thedimensionlessfree energy, and therefor
does not affect the corresponding Euler–Lagrange equat
derived below. To obtain a linear Euler–Lagrange equati
we now assume thatf (s)!1 and thatf s(s)!1, and Taylor
expand the integrand in Eq.~16! to second order. We ge

F5E
0

dF8 f 21 f s
21

3

128
f ss

2 Gds2dSf ~0!2dHf ~d!. ~17!

Unfortunately, in Ref. 19 a factor of12 was apparently omit-
ted in the right-hand side~RHS! of Eqs.~9! and ~11!, and a
factor of 1

4 was omitted in the RHS of Eq.~12!; different
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coefficients were therefore obtained in this equation and
corresponding linear Euler–Lagrange equation~given be-
low!.

To minimize the free energy under the volume co
straint,

E
0

d

f ~s!ds50, ~18!

we define a functional,

F~ f , f s , f ss!5F1LE
0

d

f ~s!ds, ~19!

where L is a Lagrange multiplier. MinimizingF with re-
spect tof (s) gives us the following linear Euler–Lagrang
equation:

3

64
f ssss22 f ss116f 52L. ~20!

As in Ref. 19, the following fixed boundary conditions a
employed to represent the hard surface confinement,42

f s~0!5 f s~d!50. ~21!

The natural boundary conditions for minimizingF are

f sss~0!5
64

3
dS, f sss~d!52

64

3
dH . ~22!

The factor 64
3 was omitted in these natural boundary con

tions in earlier work,19 which is probably the reason wh
small amplitudes were reported for undulations. Our solut
is

f ~s!5Fexp~h1s!2
exp~h1d!21

h1d GA1

1Fexp~2h1s!1
exp~2h1d!21

h1d GA2

1Fexp~h2s!2
exp~h2d!21

h2d GA3

1Fexp~2h2s!1
exp~2h2d!21

h2d GA4 , ~23!

whereh154A2, h254A 2
3, and

A15
64

3

dS1dH exp~h1d!

h1~h2
22h1

2!@exp~2h1d!21#
,

A25
64

3

dSexp~2h1d!1dH exp~h1d!

h1~h2
22h1

2!@exp~2h1d!21#
,

~24!

A352
64

3

dS1dH exp~h2d!

h2~h2
22h1

2!@exp~2h2d!21#
,

A452
64

3

dSexp~2h2d!1dH exp~h2d!

h2~h2
22h1

2!@exp~2h2d!21#
.

We recalculate the undulation of the A–B interfac
in the perpendicular lamellae,f (s), for the three cases
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(dS521, 1, and 2;dH521 andd54 in all the cases! stud-
ied in Ref. 19. Our results are shown in Fig. 6. We can
that near these surfaces with relatively strong preference
one of the two blocks, if perpendicular lamellae could for
throughout the entire film, the amplitude of the undulatio
defined asA5u f (d)u, would be on the order of 1021, one
order of magnitude larger than reported in the literature19

Note, however, that our Monte Carlo simulations show th
due to the relatively strong surface preference, para
lamellae actually occur in all three cases. The number
chain layers in the parallel lamellae is either 8~in the case of
dS521), or 9~in the cases ofdS51 and 2!. Figure 7 shows
a representative configuration of the system from a simu
tion for the casedS51.

For a direct comparison to our simulation data, we c
culate using the above solution the undulation of the A
interfaces in perpendicular lamellae confined between
weakly preferential surfaces, i.e.,dS5dH520.5 ~symmetric
surfaces whered51.5) anddS52dH520.5 ~antisymmetric
surfaces whered52). Perpendicular lamellae were observ
in Monte Carlo simulations for these two cases.5 From the

FIG. 6. Undulation of the A–B interface in perpendicular lamellae confin
between two homogeneous and preferential surfaces, calculated ford54
anddH521 using the fixed boundary conditions Eq.~21!. For the strongly
preferential surface (dS52), the thick dashed line~near the lower surface!
represents the region where the solution does not satisfy the hard su
confinement expressed in Ref. 42. Our Monte Carlo simulations show
parallel lamellae actually form in all these cases due to the relatively str
surface preference.

FIG. 7. Representative configuration of the system from a Monte C
simulation for two homogeneous and preferential surfaces withdS51 (d
54 anddH521). The six surfaces of the simulation box are shown in t
figure. Light regions represent A blocks and dark regions represen
blocks. Due to the relatively strong surface preference, parallel lame
with nine chain layers form within the confined film.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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assumptionui(z)52ui 11(z) we get a simple relation to
convertf (s) to the order parameter profile along thez direc-
tion, rA(z)2rB(z),5

rA~z!2rB~z!54r f ~z/L0!, ~25!

wherer is the total percentage of lattice sites occupied by
and B segments in the system, taken from the simula
data. The results are shown in Fig. 8. We can see that
phenomenological theory predicts the correct order of m
nitude of the amplitudes of the undulations. However, it
unable to describe the peaks in the order parameter pro
near the surfaces shown by simulations~at z55 and 15 in
the case of symmetric surfaces, and atz55 and 21 in the
case of antisymmetric surfaces, as shown in Fig. 8!. Similar
peaks were also observed in Monte Carlo simulations in
framework of the bond fluctuation model18 and self-
consistent field calculations.10,11,17,18

We note here that Eq.~16! can also be minimized with
out assumingf (s)!1 and f s(s)!1. This gives rise to the
following nonlinear Euler–Lagrange equation:

3

64
f ssss2@~11 f s

2!2~3/2!11116f 2# f ss116~12 f s
2! f 52L.

~26!

The boundary conditions are unchanged. Equation~26! can
be solved numerically@together with the volume constrain
Eq. ~18!#. We find that for the above case~symmetric and
weakly preferential surfaces!, where perpendicular lamella
were observed in Monte Carlo simulations, the numeri
solution is almost identical to the analytical solution of t
linear Euler–Lagrange equation. Sinceu f (s)u,0.03 and
u f s(s)u,0.1 in that case, the two solutions are almost und
tinguishable in Fig. 8. This confirms that the Taylor expa
sion is valid for smallf (s) and f s(s).

2. Undulation between patterned-preferential surfaces

In this case, the surface atz50 is stripe-patterned alon
the y direction, as shown in Fig. 1. All the stripes have t
same widthLs/2, and alternatively prefer A and B block
The upper surface atz5D is homogeneous and preferenti
to one of the two blocks. Pereira and Williams also stud

FIG. 8. Order parameter profiles along thez direction, calculated from
Monte Carlo simulations~MC! and the phenomenological theory~PM!, of
perpendicular lamellae confined between symmetric and weakly prefere
surfaces (d51.5,dS5dH520.5), and antisymmetric and weakly prefere
tial surfaces (d52, dS52dH520.5).
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the undulation of perpendicular lamellae for this surfa
configuration.37 These authors assumed that perpendicu
lamellae complying with the lower surface pattern for
throughout the entire film. The surface–block interfacial e
ergy for the lower patterned surface was therefore 0. T
assumptions for undulation of Sec. III B 1 were adopte
That is, the A–B interfaces undergo a displacementu(z)
from the undistorted reference state, while the interfaces
tween adjacent lamellae are assumed to be invariant; for
adjacent lamellaei andi 11, ui(z)52ui 11(z); chain trajec-
tories are perpendicular to the A–B interface, and cha
terminate at the interfaces between adjacent lamellae.37

In this case, the elastic free energy of an A–B lame
per unit length in thex direction can be obtained from Eqs
~9! and ~10! by replacingL0 with Ls ,

Fel58ar
Ls

2 E0

D

~DA
2 1DB

2 !dz, ~27!

where

DA~z!5
Ls/41u~z!

cosu~z!
,

DB~z!5
Ls/42u~z!

cosu~z!
, ~28!

u~z!5arctanuz .

The bending free energy of an A–B lamella per unit leng
in the x direction, Eq.~12!, becomes

Fbend5
3sABLs

5

128L0
5 E

0

D

~uzzL0!2dz. ~29!

The A–B interfacial energy of an A–B lamella per un
length in thex direction, Eq.~13!, remains unchanged. Bu
the surface–block interfacial energy of an A–B lamella p
unit length in thex direction, Eq.~14!, becomes:

Fsur f5~sAH2sBH!u~D !. ~30!

By using dimensionless variables and ignoring all consta
we get the dimensionless free energy of an A–B lamella
unit length in thex direction,

F5E
0

dF8p f21
p3

2
f s

218p f2f s
21~A11 f s

221!

1
3p5

128
f ss

2 Gds2dHf ~d!. ~31!

Again, we can see that the value ofa in Eq. ~1! does not
affect this expression for thedimensionlessfree energy, and
therefore does not affect the Euler–Lagrange equation
rived below. Assumingf (s)!1 and f s(s)!1, and Taylor
expanding the integrand in Eq.~31! to second order, we ge

F5E
0

dS 8p f21
p311

2
f s

21
3p5

128
f ss

2 Dds2dHf ~d!. ~32!

In Ref. 37 a factor of12 was omitted in the right-hand sid
~RHS! of Eq. ~27!, and a factor of@1/(4L0

2)# was omitted in

ial
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the RHS of Eq.~29!; different coefficients were therefor
obtained in this equation and the corresponding Eul
Lagrange equation~given below!.

Following a procedure analogous to that presented
Sec. III B 1, we get the following Euler–Lagrange equatio

3p5

64
f ssss2~p311! f ss116p f52L. ~33!

The fixed boundary conditions aref (0)50 and f s(0)
5 f s(d)50. The natural boundary condition isf sss(d)
52 @64/(3p5)#dH . The factor 64/(3p5) in this natural
boundary condition was omitted in earlier work,37 where
small amplitudes were reported for undulations. See App
dix A for our solution.

To compare with Ref. 37, we calculate the undulation
the A–B interfaces in perpendicular lamellae,f (s), for four
different values ofp at dH51 andd51 ~assuming that per
pendicular lamellae form in these cases!; the results are
shown in Fig. 9. We can see that if perpendicular lame
could form throughout the entire film in these cases, the a
plitude of the undulation would be on the order of 1022,
instead of the order of 1023 reported in the literature.37 Fur-
thermore, the amplitude would decrease asp increases; this
is contrary to earlier reports.37 Note, however, that ou
Monte Carlo simulations for the cases ofp51 andp51.5,
with dH51 and d51, show that parallel lamellae actual
form near the upper preferential surface due to the relativ
strong surface preference.21 Figure 10 shows a representativ
configuration of the system from a simulation for the ca
p51.

Our Monte Carlo simulations21 have shown that whenp
deviates far from unity, perpendicular lamellae complyi
with the lower surface pattern cannot be obtained, even n
the patterned surface. For a small value ofp ~e.g., 1

3) the
lower surface pattern would be ignored, while for a lar
value ofp ~e.g., 2! chains near the patterned surface wou
change their orientation to be perpendicular to the surfa
thereby leading to one layer of checkerboard morpholo
On the other hand, our Monte Carlo simulations also indic
that parallel lamellae actually form near the upper prefer

FIG. 9. Undulation of the A–B interface in perpendicular lamellae confin
between patterned-preferential surfaces, calculated fordH51 andd51 us-
ing the fixed boundary conditions Eq.~21!. Our Monte Carlo simulations for
the cases ofp51 andp51.5 (dH51 andd51) show that parallel lamellae
actually form near the upper preferential surface in both cases due to
relatively strong surface preference.
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tial surface when the surface preference is relatively stro
Even for the case of a neutral surface on the top~this case is
discussed in the following section! andp not far from unity
~e.g.,2

3 or 1.5!, where a perpendicular structure is observed
the confined films, the structure actually consists of perp
dicular lamellae complying with the surface pattern near
lower patterned surface, and perpendicular lamellae of pe
L0 near the upper neutral surface.21 Therefore, the basic as
sumption adopted in Ref. 37 and 38, that perpendicu
lamellae complying with the lower surface pattern for
throughout the entire film, is valid only whenp is very close
to unity and the upper homogeneous surface is either ne
or weakly preferential.

To compare the prediction of the phenomenologi
theory with Monte Carlo simulations when perpendicu
lamellae complying with the lower surface pattern actua
occur throughout the entire film, we simulate the cases
weakly preferential surface on the top, i.e.,dH50.5 and 0.25,
with p51 andd51. Figure 11 shows a representative co
figuration of the system from a simulation for the casedH

50.25. Equation~25! is used to convert the predicted und
lation to the order parameter profile. The results are show
Fig. 12. We can see that the amplitude of the undulat
obtained from simulations is larger than that predicted by
theory. More importantly, as in Fig. 8~the cases of perpen
dicular lamellae confined between two homogeneous
preferential surfaces!, the phenomenological theory is aga
unable to describe the peaks~at z53 in Fig. 12! shown by
Monte Carlo simulations.

d

he

FIG. 10. Representative configuration of the system from a Monte C
simulation for patterned-preferential surfaces withp51 (dH51 and d
51). The six surfaces of the simulation box are shown in the figure. Li
regions represent A blocks and dark regions represent B blocks. Perpen
lar lamellae complying with the surface pattern form near the lower p
terned surface, and one layer of parallel lamellae forms near the u
surface due to the relatively strong surface preference.

FIG. 11. Representative configuration of the system from a Monte C
simulation for patterned-preferential surfaces withdH50.25 (p51 and d
51). The six surfaces of the simulation box are shown in the figure. Li
regions represent A blocks and dark regions represent B blocks. Perpen
lar lamellae complying with the lower surface pattern form throughout
entire film.
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3. Undulation between patterned-neutral surfaces

In this case the lower stripe-patterned surface has a
riod Ls>L0 , and the upper surface atz5D is neutral~refer
to Fig. 1!. In a separate paper,38 Pereira and Williams applied
a similar theory to study the undulation of perpendicu
lamellae confined between patterned-neutral surfaces. T
assumed that perpendicular lamellae complying with
lower surface pattern form throughout the entire film. T
surface–block interfacial energy is thereforeFsur f50. Dif-
ferent from the above two cases, whenLs.L0 , these authors
assumed that the A–B interfaces undergo a displacem
u(x,z) from the undistorted reference state to relieve
imposed strainp, and that the interfaces between adjac
lamellae undergo the same displacement as the A–B in
faces. The volume constraint is therefore satisfied autom
cally. If it is assumed that all the second derivatives ofu with
respect tox andz ~i.e., uxx , uxz , anduzz) are small, such an
undulation of the perpendicular lamellae reduces the ef
tive lamellar spacing~perpendicular to the A–B interfaces!
approximately toL5Ls /A(11ux

2)(11uz
2), and DA5DB

5L/4 ~chain trajectories are again assumed to be perpend
lar to the A–B interfaces!. Therefore, the elastic free energ
of an A–B lamella~from x52` to `) is

F̃el5
sABLs

3

2L0
3 E

2`

` E
0

D 1

~11ux
2!~11uz

2!
dzdx. ~34!

In this case, the curvature isc5uxx1uzz.35,38 Thus, the
bending free energy of an A–B lamella~from x52` to `)
is

F̃bend5
3sABLs

5

128L0
5 E

2`

` E
0

DF ~uxx1uzz!L0

~11ux
2!~11uz

2!
G 2

dzdx. ~35!

The A–B interfacial energy of an A–B lamella~from
x52` to `) is

F̃AB5sABE
2`

` E
0

D
A~11ux

2!~11uz
2!dzdx. ~36!

As in Ref. 38, by adding all of the terms above, assum
ux!1 anduz!1 and Taylor expanding the integrand to se

FIG. 12. Order parameter profiles along thez direction, calculated from
Monte Carlo simulations~MC! and the phenomenological theory~PM!, for
perpendicular lamellae confined between a lower stripe-patterned an
upper weakly preferential surface (p51 andd51).
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ond order, and ignoring all constants, the free energy of
A–B lamella ~from x52` to `) can be written as

F̃T5
3sAB

2 E
2`

` E
0

DFp5

64
L0

2~uxx1uzz!
2

2
p321

3
~ux

21uz
2!Gdzdx. ~37!

By making the ansatz thatu(x,z)5cos(jx/L0)g(z), where
g(z) is an unknown function ofz, then integrating over one
period along thex direction, Pereira and Williams38 derived
the following expression for the free energy of an A–
lamella per unit length in thex direction,

FT5
3p5sAB

256L0
E

0

d

@~gss2j2g!22v2~j2g21gs
2!#ds, ~38!

wherev5A64(p321)/3p5. If j50, that is, if the problem is
reduced to two dimensions in they-z plane andu(x,z)
5g(z), then the free energy of an A–B lamella per un
length in thex direction becomes

FT5
3p5sAB

128L0
E

0

d

@gss
2 2v2gs

2#ds. ~39!

Although Eq.~39! differs from Eq.~38! by a factor of 2, they
have the same Euler–Lagrange equation,

gssss2~2j22v2!gss1~j42v2j2!g50. ~40!

The fixed boundary conditions areg(0)50 and gs(0)
5gs(d)50. The natural boundary condition isgsss(d)50.

So far we have basically followed the same proced
and obtained the same Euler–Lagrange equation and bo
ary conditions as in Ref. 38. However, our solution~see Ap-
pendix B! is different from that in Ref. 38. Solving the
Euler–Lagrange equation subject to the above boundary
ditions shows that the free energy given by Eq.~38! @or Eq.
~39! when j50] either has a minimum value of 0@which
means that the undulation of the A–B interfaces~if any!
cannot decrease the free energy of the system#, or does not
have a minimum at all. This is due to the omission of high
order terms in the free energy Taylor expansion, or due to
strict boundary conditiong(0)50. If we allow for a nonzero
value of g(0) at the patterned surface, and use a natu
boundary condition ats50 instead, some undulations migh
exist that are more stable than the undistorted state.
study of such cases, however, is beyond the scope of
paper.

In what follows we partially address this problem b
reducing it to two dimensions and Taylor expanding t
bending free energy given in Eq.~35! to second order. By
using dimensionless variables and ignoring all constants,
get the dimensionless free energy of an A–B lamella per u
length in thex direction,

F5E
0

dF p3

2 S 1

11 f s
2

21D 1~A11 f s
221!1

3p5

128
f ss

2 Gds.

~41!

The corresponding Euler–Lagrange equation is

an
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3p5

64
f ssss2

f ss

~11 f s
2!3/2

1
p3f ss~123 f s

2!

~11 f s
2!3

50. ~42!

The fixed boundary conditions aref (0)50 and f s(0)
5 f s(d)50. The natural boundary condition isf sss(d)50.
This differential equation can be solved numerically f
given p and d. Figure 13 shows the results ford52 and
different values ofp; we can see that the amplitude of th
undulation has a maximum~aroundp51.6) whenp varies.
Figure 14 shows the dimensionless free energies of the
distorted perpendicular lamellaeuuus ~given in Table II!, the
undulated perpendicular lamellae@given by p212/p
12F/(pd)], and theuuus-uuu morphology~given in Table II!
for d52 anddH50 calculated from the phenomenologic
theory. We can see that the undulation of perpendicu
lamellae that we obtain at this level of approximation do
decrease the free energy below the undistorted state. On
other hand, theuuus-uuu morphology has a lower free energ
than the undulated perpendicular lamellae whenp.1.4 ~for
d52); this explains why we have not observed undula
perpendicular lamellae in our simulations for thin films co
fined between patterned-neutral surfaces withp>1.5.21

FIG. 13. Undulation of perpendicular lamellae confined between patter
neutral surfaces, calculated by solving Eq.~42! for d52. The value ofp is
given for each curve in the figure. Symmetric solutions off (s).0 are not
shown in the figure. The open circles represent the undulation of per
dicular lamellae observed in a Monte Carlo simulation forp57/6 andd
52.

FIG. 14. Comparison of the dimensionless free energies of the undisto
perpendicular lamellaeuuus , undulated perpendicular lamellae, and t
uuus-uuu morphology confined between patterned-neutral surfaces withd52,
calculated using the phenomenological theory.
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Interestingly, whenp is close to unity, the undulated
perpendicular lamellae are indeed observed in our Mo
Carlo simulations for thin films confined between patterne
neutral surfaces. Figure 15 shows a representative config
tion of the system from a simulation for the cased52 and
p57/6. From the figure we can see that the lamellae in
vicinity of the lower patterned surface comply with the su
face pattern, and that the undulation of the perpendicu
lamellae occurs in they–z plane, as assumed in our nume
cal solution. The undulation of the A–B interfaces observ
in the simulation is shown in Fig. 13 by open circles. We c
see that the observed undulation has a shape similar to
predicted by the phenomenological theory, but has an am
tude about 50% larger. The tilted lamellae found by Pet
and Muthukumar26 in their two-dimensional self-consisten
field calculations, which have an angle of arcsin(1/p) with
respect to the surface, would give an amplitude of about
under the same surface configuration. Note that theuuus-uuu
morphology is also observed in some other runs in our sim
lations under the same conditions, with the only differen
being the random number generator seeds. This may be
to the large energy barrier between the undulated perp
dicular lamellae and theuuus-uuu morphology that cannot be
overcome by our system in a finite simulation run.

IV. CONCLUSIONS

We have investigated the ability of a simple phenome
logical theory to describe the behavior of symmetric diblo
copolymer thin films confined between two hard surfac
Prior knowledge of the morphology in thin films is cruci
for applying this theory to predict the phase diagram of su
systems. Taking advantage of our observations from Mo
Carlo simulations,21 we have used the theory to constru
phase diagrams for thin films confined between pattern
homogeneous surfaces, and obtained good qualitative ag
ment with the simulations. In view of the simplicity of th
theory, such agreement is both surprising and satisfact
The phenomenological theory does not take hard-surf
effects5 into account, and is therefore unable to distingu
between the unfrustrated parallel and perpendicular lame
near neutral surfaces. This, however, can be compensate
applying prior knowledge of the morphology obtained fro
Monte Carlo simulations.

d-

n-

ed

FIG. 15. Representative configuration of the system from a Monte C
simulation for patterned-neutral surfaces withp57/6 andd52. The six
surfaces of the simulation box are shown in the figure. Light regions re
sent A blocks and dark regions represent B blocks. Undulated perpendi
lamellae are observed in this simulation. The right-hand side of the fig
also displays the lower patterned surface, where light regions represen
stripes and dark regions represent sB stripes.
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For applications to nanofabrication, our objective is
produce long-range ordered~over microns! perpendicular
lamellae. This work shows that the region of parameter sp
in which such morphology can be found is fairly small. Tw
conditions are essential for obtaining this desirable morph
ogy: a lower stripe-patterned surface with the surface pat
periodLs comparable to the bulk lamellar periodL0 , and an
upper neutral or weakly preferential surface.

Following the methods of Pereira and Williams,19,37,38

we have also revisited the undulation of perpendicular lam
lae between two hard surfaces. For the cases of two ho
geneous ~preferential! surfaces and patterned-preferent
surfaces, our calculations using the phenomenological the
indicate that the amplitudes of the undulations are of
same order of magnitude as those observed in our Mo
Carlo simulations, and are one order of magnitude lar
than reported in the literature.19,37 These undulations could
have adverse effects for lithographic applications. Unfor
nately, the theory is unable to capture the shape of the un
lations.

For the case of patterned-neutral surfaces, we find th
second-order expansion of the free energy38 is unable to
yield the undulations that would stabilize the perpendicu
lamellar morphology. In this work, we have addressed t
problem in an approximate manner, and obtained und
tions that can lower the free energy of the perpendicu
lamellae. Such undulations are consistent with results
Monte Carlo simulations.

Our Monte Carlo simulations have provided us w
valuable insights regarding the morphology and the mole
lar structure of the systems of interest. The simulation res
have served as a guide to propose plausible solutions
theoretical calculations. Based on these results, we are
rently pursuing a more refined self-consistent field the
treatment for diblock copolymer thin films confined betwe
patterned-homogeneous surfaces.
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APPENDIX A

Solving the characteristic equation of the homogene
ordinary differential equation to Eq.~33! gives us four roots
h i ( i 51,2,3,4),

h i
25

32~p3116AD!

3p5
, ~A1!

where D522p612p311. Note that p.0 and D,(p3

11)2. If D.0, i.e., 0,p,@(11A3)/2#1/3, the general so-
lution to Eq.~33! is
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f ~s!5A1 cosh~h1s!1A2 sinh~h1s!1A3 cosh~h2s!

1A4 sinh~h2s!2
L

16p
, ~A2!

where

h1,25A32~p3116AD!

3p5
. ~A3!

A1 , A2 , A3 , and A4 are constants to be solved from th
boundary conditions. IfD50, i.e., p5@(11A3)/2#1/3, the
general solution to Eq.~33! is

f ~s!5A1 exp~hs!1A2s exp~hs!1A3 exp~2hs!

1A4s exp~2hs!2
L

16p
, ~A4!

where

h5A32~p311!

3p5
. ~A5!

If D,0, i.e.,p.@(11A3)/2#1/3, the general solution to Eq
~33! is

f ~s!5A1 exp~as!cos~bs!1A2 exp~as!sin~bs!

1A3 exp~2as!cos~bs!1A4 exp~2as!sin~bs!

2
L

16p
, ~A6!

where

a54A~11A3!p311

3p5
, b5

16A2D

3p5a
. ~A7!

Similar to Sec. III B 1, from the volume constraint Eq.~18!
and the four boundary conditions we can solve for theL and
the Ai ( i 51,2,3,4) in each case. The resultant expressi
are too complicated to be listed here~they were obtained by
Mathematica!.

APPENDIX B

From the ansatz thatu(x,z)5cos(jx/L0)g(z) we can re-
strict ourselves toj>0, without loss of generality. We ar
interested in nontrivial solutions for the case ofv.0 ~i.e.,
p.1) andd.0.

Let us consider the casej.0 first. Solving the charac-
teristic equation to Eq.~40! gives ush1,2

2 5j2 and h3,4
2 5j2

2v2, whereh1 , h2 , h3 , andh4 are roots of the character
istic equation. Ifj22v2.0, the general solution to Eq.~40!
is

g~s!5A1 cosh~js!1A2 sinh~js!1A3 cosh~zs!

1A4 sinh~zs!, ~B1!

wherez5Aj22v2.0; A1 , A2 , A3 , andA4 are constants.
Substituting Eq.~B1! into the boundary conditions gives us
system of four linear equations for theAi ( i 51,2,3,4) with
the right-hand side being all zeros. Therefore the nontriv
solution exists only if the determinant of coefficients of a
the Ai ( i 51,2,3,4) on the left-hand side is zero. This giv
us

j tanh~jd!5z tanh~zd!. ~B2!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Sincej.z.0 andd.0, Eq.~B2! cannot be satisfied for an
given strainp.1. Thus only the trivial solutiong(s)50
exists in this case.

If j22v250, the general solution to Eq.~40! is

g~s!5A1 cosh~js!1A2 sinh~js!1A31A4s. ~B3!

Similarly, the condition for a nontrivial solution is

sinh~jd!50, ~B4!

which obviously cannot be satisfied by anyj.0 andd.0.
Thus only the trivial solutiong(s)50 exists in this case.

If j22v2,0, the general solution to Eq.~40! is

g~s!5A1 cosh~js!1A2 sinh~js!1A3 cos~zs!

1A4 sin~zs!, ~B5!

wherez5Av22j2.0. Similarly, the condition to obtain a
nontrivial solution is

j cos~zd!sinh~jd!52z sin~zd!cosh~jd!. ~B6!

Under this condition, the solution is

g~s!5A1c~v,d,s!, ~B7!

whereA1 is anarbitrary constant, and

c~v,d,s!5cosh~js!2
j sinh~jd!1z sin~zd!

j cosh~jd!2j cos~zd!
sinh~js!

2cos~zs!1
j sinh~jd!1z sin~zd!

z cosh~jd!2z cos~zd!
sin~zs!.

~B8!

Note that, sincez5Av22j2, Eq. ~B6! givesj as a function
of v andd only. Substituting Eq.~B7! into Eq. ~38!, we can
get the free energy of an undulated A–B lamellaFT

5A1
2C(v,d), where

C5
3p5sAB

256L0
E

0

d

@~css2j2c!22v2~j2c21cs
2!#ds ~B9!

is a function ofv andd only. SinceA1 is anarbitrary con-
stant, whenC(v,d)>0, the minimum value of the free en
ergy is 0, which means that the undulation cannot decre
the free energy; whenC(v,d),0, by makingA1 infinitely
largeFT would be2`, which means that Eq.~38! does not
have a minimum and therefore cannot represent the free
ergy of the system in this case.

Now let us consider the casej50, which implies that
the problem reduces to two dimensions in they–z plane. The
Euler–Lagrange equation Eq.~40! becomes

gssss1v2gss50. ~B10!

The general solution is

g~s!5A1 cos~vs!1A2 sin~vs!1A31A4s, ~B11!

and the condition for a nontrivial solution is

sin~vd!50. ~B12!

Therefore, we may have undulations of the A–B interfac
whenvd5 j p, wherej is a positive integer. Under this con
dition the undulation of the A–B interfaces is
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u~z!5g~s!5A1@cos~vs!21#, ~B13!

whereA1 is an arbitrary constant. We substitute Eq.~B13!
into Eq. ~39! and find that the free energy of an undulat
A–B lamella is FT50, the same as the undistorted sta
u(z)50. Therefore, in this case the undulation cannot
crease the free energy of the system. We attribute this to
omission of higher order terms in the free energy.@All these
results are derived from the free energy Taylor expansion
second order, Eq.~38! or Eq. ~39! whenj50.#
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H DA sinu < D2z if u~z!.0

DB sin ~2u! < D2z if u~z!,0
.

We find that the solution using Eq.~21! may not satisfy the above equa
tions in some regions in the case of relatively strong surface prefere
for example, the case ofdH521 (dS52 andd54) studied in Sec. III B 1

and in Ref. 19. In Fig. 6 such a region is shown by a thick dashed l
Note, however, that perpendicular lamellae are not actually preferre
this case. Therefore, this problem might be of little practical significan
the fixed boundary conditions Eq.~21! could be sufficient for the solution
to satisfy the above equations when perpendicular lamellae are act
preferred.
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