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Symmetric diblock copolymer thin films confined between homogeneous
and patterned surfaces: Simulations and theory
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We have investigated the ability of a simple phenomenological theory to describe the behavior of
symmetric diblock copolymer thin films confined between two hard surfaces. Prior knowledge of
the morphology in the confined films is crucial for applying this theory to predict the phase diagram
of such systems. Taking advantage of our observations in Monte Carlo simulations, we use the
theory to construct phase diagrams for thin films confined between patterned-homogeneous
surfaces, and obtain good agreement with our results of simulations. Two conditions are essential
for obtaining long-range ordered perpendicular lamellae: a lower stripe-patterned surface with the
surface pattern periods comparable to the bulk lamellar peridg, and an upper neutral or weakly
preferential surface. We have also examined the undulation of perpendicular lamellae between two
hard surfaces. For the cases of two homogenéoeserential surfaces and patterned-preferential
surfaces, our calculations using the phenomenological theory indicate that the amplitudes of the
undulation are on the same order of magnitude as observed in our Monte Carlo simulations, and are
one order of magnitude larger than previously reported. The theory, however, is unable to capture
the shape of the undulation. For the case of patterned-neutral surfaces, we find that an earlier
analysis is unable to yield the undulations that would stabilize the perpendicular lamellar
morphology. We have addressed this issue and obtained undulations that are consistent with our
observations from Monte Carlo simulations. ZD0O0 American Institute of Physics.
[S0021-960600)70322-9

I. INTRODUCTION tional increase in the frustration betweBnandL, can lead
to a perpendicular orientation of the lamellae with
Recently, the study of diblock copolymer thin films has | ~|_,.458-18 Sjnce in this case both A and B blocks are
attracted Significant interest because of their pOtential applipresent near the SurfaCES, the surface—block interfacial en-
cations in nanofabrication. Much of the research in this aregrgy can be relatively high if the surfaces are not completely
has been carried out on symmetric diblock copolymerspeytral, which is often the case in experiments. It has been
which in the bulk form lamellar structures at temperaturespoimed o117 1%hat in perpendicular lamellae confined
below the order—disorder transitid®DT). For some appli- petween two homogeneous afaeakly) preferential sur-
cations (e.g., nanolithography it is desirable to generate faces, undulations of the A—B interface can be caused by the

macros((j:'opllcally ordelrjecﬂover _Ir_nhlcron$ Iamellflrhgtructukre? surface-induced segregation of preferred blocks near the sur-
perpendicular to a substrate. The purpose of this work is t(i’aces; these could reduce the surface—block interfacial en-

investigate under which circumstances such structures Cat?rgy and thus stabilize the perpendicular morphology

oceur. Perpendicular lamellae have been observed experimen-
It has been established that for symmetric diblock co- P P

o . tally between two homogeneous surfaces when the surface
polymer thin films confined between two strongly preferen- . ] o .
tial surfaces, the equilibrium morphology consists of lamel-Preference is n_eutral or weak, fransmission electr_on micros-
lae oriented parallel to the surfaces, with the preferred block opy (TEM) or field emission scanning glectron microscopy
segregating to the corresponding surfacé$ This reduces (FESEM images show that the orientation of Sgﬁg lamellae
the surface—block interfacial energy. In the case of parallef® short—rangecﬂ.tenslt%g hundreds of ngnomgt)e‘igél "“More
lamellae confined between two haiithpenetrablgsurfaces, €Cently, experimen _étl)\/lonte Carlo simulations, and the-
the confined lamellar period may vary from the bulk value °retical caIcuIatu_m? have shown that macroscopically
L, to accommodate the frustration between surface separ@rdered perpendicular lamellae can be obtained by deposit-
tion D andL,. Such stretching or compressing of lamellae isi"d Symmetric diblock copolymers on  stripe-patterned
accompanied by an elastic free energy penalty associatédiemically heterogeneous surfaces, where the surface pattern

with chain conformational entropy. periOd Ls is Comparable to the bulk lamellar perith@.
As surface preference becomes less Specificy an addi- To better understand the behavior of Symmetric diblock

copolymer thin films confined between two hard surfaces, we

have performed extensive Monte Carlo simulations that have
dCurrent address: Molecular Simulations Inc., 9685 Scranton Road, San P

Diego, California 92121. provided us with 2\/1aluablg |nS|ghts regarding the morphology
D Author to whom correspondence should be addressed. of such system3?! The simulation results have served as a
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guide to propose plausible solutions for theoretical calculanecessary to render its solutions tractable. It is therefore of
tions. In this work we examine the ability of a simple phe-interest to revisit Pereira and Williams’ calculations, and
nomenological theory to describe the behavior of symmetricompare the results of theoretical predictions with those of
diblock copolymer thin films confined between two hard sur-Monte Carlo simulatioms®* which are more computationally
faces. For a given morphology of the system in the stronglemanding but are free of the simplifications and approxima-
segregation limit, this theory can be used to estimate the fregons of the theory. We find that for some systems our find-
energy in terms of elastic contribution@ssociated with ings differ from those reported in earlier work.

chain conformational entropyblock—block interfacial con-

tributions, surface—block interfacial contributions, and bend-

ing contributions(if the A—B interfaces in lamellae are not Il MODELS

flat). Our hope is that such a theory could be used to ratio-

nalize and describe the results of our recent simulations oft- Phenomenological theory

confined copolymers. In the strong segregation limit, where lamellar structures
Various forms of the phenomenological theory consid-of period L are well-developed and the thickness of A-B

ered in this work for symmetric diblock copolymers have jnterfaces is vanishingly small, the free energy of symmetric
appeared in the literatufé-* Turner built on earlier work  diblock copolymer thin films is assumed to consist of four
on this theory by adding surface—block interaction terms tQ:ontributions: the elastic free energy of the lamellassoci-

study the phase diagram of symmetric diblock copolymerated with chain conformational entropythe block—block

thin films confined between two homogeneous surfices nterfacial energy, the surface—block interfacial energy, and
where he only considered the parallel symmetric and antithe bending free energy of the lamellae if the A—B interfaces
symmetric lamellar morphology between the two surfdces.in the lamellae are not flat. The elastic free energy per

Walton et al. extended Turner's study by considering the diblock copolymer chain in the lamellae of periadcan be
perpendicular lamellar morpholodyindependently, Kikuchi  written as

and Binder proposed a similar theory to compare the stability

of parallel symmetric lamellae and perpendicular lamellae fo=al?, (1)
between two identicahomogeneoyssurfaces: For similar wherea is a constant whose value depends on the total num-
systems, Matsén and Geisingeet al'” compared the pre- o, of segments in a diblock copolymer chéitenoted byN
dictions of this theory with self-consistent field calculations here and the distribution of the chain ends in the lamellae.

and found only qualitative agreement. The phenomenologinccording to Semenov, who assumed a distribution of chain
cal theory does not take hard-surface effe@t$o account,  gnds that minimizes the elastic free energy of the inner re-

and is unable to predict in a unique manner the formation Obion of a micelle®! a is found to be
perpendicular lamellae between neutral surfé€es.

Prior knowledge of the morphology in confined films is kg T
crucial for applying the phenomenological theory. Starting &= W
from a random(disorderedl state, our Monte Carlo simula-
tions for patterned-homogeneous surfatesave yielded wherekg is the Boltzmann constant, the absolute tempera-
various types of morpholog§depending on the surface con- ture, andl the Kuhn length of a segment. By assuming that
figuration, thereby providing the essential information for chains terminate at the interfaces between adjacent chain lay-
applying the theory. Recently, Pereira and Williams usecers, Semend¥ and others32 have found
that theory to calculate phase diagrams for symmetric
diblock copolymer thin films confined between patterned- 3kgT
homogeneous surfacés:2° Some types of morphology ob- A= SN2 )
served in our recent Monte Carlo simulations, however, were
not considered in their work. Based on the observations fromf\s pointed out by Semenov, using Eg) instead of Eq(2)
such simulation&® in this work we use the phenomenologi- raises the elastic free energy by a factor of#2?* Note,
cal theory to construct the phase diagram of symmetrid‘lowever, that as we shall see below the valua dbes not
diblock copolymer thin films confined between patterned-affect thedimensionlessree energy of the system and the
homogeneous surfaces. dimensionlessdifferential equations derived later. For a

In related work, Pereira and Williams used the samediblock copolymer with different end-to-end distances of the
theory to examine the undulations of A—B interfaces in perA and B blocks, denoted b , andDg respectively, Eq(1)
pendicular lamellae confined between two homogeneous arRecomes
preferential surface¥), patterned-preferential surfac¥sand f —8a(D2+D2 4
patterned-neutral surfac&Such undulations are caused by er=8a(D3+Dp). @)
the preference of the homogeneous surface to one of the two The A—B interfacial energy per chain in lamellae of pe-
blocks, or the incommensuration betwdeyandL, both of  riod L can be calculated from the block—block interfacial
which are difficult to control in experiments. The undulation tensiono,g>0 according to
could have adverse effects for applications in nanolithogra-
phy. The phenomenological theory considered here involves _20p8
a number of simplificati imati i fas=—1 ®

plifications and approximations which are pL

@
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z through the lattice sites &#=0 andz=L,+ 1, respectively
Homogeneous Surface (sH) (see Fig. 1 These lattice sites are not allowed to be occu-
pied by polymer segments. Diblock copolymers are therefore

L+1 confined to a thin-film geometry of thickneBs=L,—1.

' In the simulations, we only consider repulsion between

sA sB nearest-neighbor A—B pairs separated by one lattice unit
(ep_g>0), and we set,_p= eg_g=0. Interactions between
vacancies(unoccupied lattice sit¢sand polymer segments

y are also set to zero. Three kinds of sites populate the sur-

L Patterned Surface faces: sA, sB, and sH, whose nature depends on the type of

FIG. 1. Configuration of the patterned-homogeneous surfaces. Both surfacgyrface_bIOCk interaction. For simplicity, we seta_a
are hard and flat. The stripes on the lower patterned surface have the sarfe€sg_g= €sq_pn=0, €sa_g>0, €55_>0, and eg_g=0. For

width L4/2 and alternatively prefer A and B blocks of the copolynde- the case of two homogeneous and preferentia| surfaces stud-

noted by sA and sB stripes, respectiyelyhe upper homogeneous surface . d in thi k th f ist of eith A B sit

is either neutral or preferential to one of the two blocks. ied In this work, The surtaces consist of eitner SA or sb sries.
For the case of patterned-homogeneous surfaces, the upper
homogeneous surface consists of sH sites. Whgng=0,

wherep is the number density of chains in the system, armthe upper surface is neutral, with no preference for either of
where it is assumed that A—B interfaces are flat. Surface-N® two blocks; whereg;_g=>0, the upper surface repels B

block interfacial energies can be calculated from the correPI0Cks, and is therefore preferential to A blocks. The chemi-
sponding surface—block interfacial tensions in a similar waycally heterogeneous surfaces are patterned with stripes par-
In the strong segregation limit, the characteristic periodallel to thex axis, as shown in Fig. 1. The stripes consist of
of lamellae in the bulkL,, can be obtained by minimizing alternating sA(light regions and sB(dark regiongsites. All
with respect td. the total free energy per chain in the bulk, stripes have the same width/2, whereL is the period of
which consists of the elastic free energy given by @9land  the surface pattern.
the A-B interfacial energy given by E¢5). This leads to We perform Monte Carlo simulations in a variant of the
expanded grand-canonical ensemble method proposed by Es-
ZAB (6) cobedo and de Pabf§.The chemical potential and tempera-
ap ture of the simulated system are specified prior to a simula-
Note that both Eqs(2) and (3) give a=x1/N. As in Ref. 32, tion. The confined copolymers are therefore in equilibrium
by assuming a constant number density of segments with a bulk phase having the same chemical potential and
=pN, we can recover the scaling of the bulk lamellar periodtemperature, and the density of the system is allowed to fluc-
Lo with chain lengthN, namely,L,>N?", which is consis-  tuate during the simulation. In addition to molecule displace-
tent with experimental findingS. (For largeN, oag is inde-  ments by reptation moves and loc@rankshaft and kink-
pendent oN.>?) In addmon_, by subsututmg Ed6) into Egs. jump moves, we employ growing/shrinking moves
(1) ar?d(S)' we get the r_at|o of the elastic free energy to theperformed four segments at a time to gradually insert/remove
A-B interfacial energy in the bulk, : I I .
chains from the system. To facilitate transitions, configura-
fa(lo) 1 7 tional bias is used for these growing/shrinking moves, lead-
2" ™ ing to an acceptance rate of about 20%. standard Me-

fas(Lo) 2
Note that this ratio is independent af tropolis algorithm is employed in our simulations. One

According to Wang?® if the A—B interfaces in a lamellar Monte Carlo stegMCS) consists of 0.&L,XLyXL, trials
morphology are not flat, the bending free energy per chait®f reptation, local and growing/shrinking moves, each of
arising from a curvature can be estimated as which occurs with the same probability. In general, we dis-
card the first 200 000 MCS for equilibration, then make a run
of at least 500 000 MCS while collecting data every 5 MCS.
wherea= Za. We study symmetric diblock copolymers of chain length

N=24. We set the reduced temperature to B&
=kgT/ep_g=2.3. We also set the reduced chemical poten-
B. Monte Carlo simulations tial at u* = u/(kgT)=41.5, whereu is the chemical poten-
Our Monte Carlo simulations are performed in an ex-tial of the system. These conditions lead to a density of the

panded grand-canonical ensemble in the framework of £°nfined films (percentage of occupied lattice sitesf
simple cubic lattice. Detailed descriptions can be found in@round 0.8. In the bulk, the ODT of the diblock copolymer is
Refs. 5 and 21. Only a brief summary is given here. betweenT* =2.8—3.07 our system is therefore in the inter-

A rectangular simulation box of dimensiohg, L, and mediate segregation regime. The characteristic period of
L, is employed. Periodic boundary conditions are imposed idamellae in the bulk under the above conditions was esti-
the x and y directions. Two flat surfaces are introduced mated to be_ ,=125

1/3
OaB

0=

fhend=acL?, (8)
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SA sB sA J sB SA sB
(b)

Ill. RESULTS AND DISCUSSION

A. Phase diagrams of symmetric diblock copolymer
thin films confined between patterned-homogeneous
surfaces

Our Monte Carlo simulations have revealed the exis-
tence of various types of morphology in thin films confined
between patterned-homogeneous surfateArmed with
these results, we construct the phase diagrams of the syste
using the phenomenological theory described above, ant
compare them with simulations.

(a)

1./4

1. Morphology and free energy of confined films ©

Figure 1 shows the configuration of the patterned-
homogeneous surfaces. For simplicity, we set the surface-
block interfacial tensions for the lower stripe-patterned sur- _
face to beosa_p=0sg_g=0, and osp_g=0sg_p= >0 Lo/2
The upper homogeneous surface is either neutral or prefer
ential to one of the two blocks. The interfacial tensions be- © ®
tween the homogeneous surface and the two blocks are de
noted by o,y and ogy, respectively. The diblock i

I‘ SA

sA sB sA sB IsA |sB |sA |sB I

copolymers are confined between the two surfaces and hav
a film thicknesD.
Here we assume that all interfaces in the system are flat, ® ()

and thereforef'?e”d_ O As shown in Fig. ,2’ ba,sed on our 1FIG. 2. Morphology between the patterned-homogeneous surfacék
Monte Carlo simulation results, we consider e'ght types ol 5 in this figure. Light regions represent A blocks, and dark regions
morphology between the patterned-homogeneous surfacespresent B blocksia) Perpendicular lamellae of bulk peridg,, denoted
These are: by |||; (b) Perpendicular lamellae complying with the surface pattern, de-
noted byl||s; (c) Checkerboard morphology, denoted bym], wheremis
(@ Perpendicular lamellae of bulk periddy, denoted by the number of the layers of chains perpendicular to the surfaces in the
||| confined film(herem=2); (d) Mixed morphology of || near the patterned

(b) Perpendicular lamellae complying with the lower sur- surface and|| near the homogeneous surface, denotef]|py||; (e) Mixed
face pattern denoted HM morphology of+[1] near the patterned surface ajijdnear the homoge-
L] S

neous surface, denoted By 1]-|||; (f) Parallel lamellae, denoted ly[m]
(c) Checkerboard morphology, denoted By m], where  (herem=2); (g) Mixed morphology ofl||s near the patterned surface and

mis the number of layers of chains perpendicular to the=[m] near the homogeneous surface, denoted||gy=[m] (herem=2);

surfaces in the confined film. We assume that eacﬁh) Mixed morphology of+[1] near the patterned surface asdm—1]

chain |ayer has the same thickneésam near the homogeneous surface, denoted-bg]-=[m—1] (herem=2).
(d) Mixed morphology of perpendicular lamellae comply-

ing with the lower surface pattern near the patterned

sB SA

surface, and perpendicular lamellae of periggnear per surface. Such morphology is denoted M-

the upper surface. Such morphology is denoted by  =[m]. Again, we denote the height of the lower mor-

|[|s-/]|. We useh to denote the ratio of the height of the phology byhL,, and assume that the thickness of each

lower morphology tolL,. WhenL¢#Lg, the smaller chain layer in the parallel lamellae iD¢ hLg)/m.

the h, the lower the free energy of the According to our simulation resulté, we specifyh

[lls-||| morphology. However, our simulation results =1/4 for this morphology.

indicate thath in this morphology is almost constant (h) Mixed morphology of one layer of checkerboard near

regardless oD andL.?! Therefore, in this paper, we the lower patterned surface, and parallel lamellae of

simply specifyh=1/4 for this morphology. m—1 layers near the upper surface. We assume that
(e) Mixed morphology of one layer of checkerboard near the thickness of each chain layer in both the checker-

the lower patterned surface, and perpendicular lamellae  board and the parallel lamellae@¥m. Such morphol-
of periodLy near the upper surface. Such morphology ogy is denoted by+[1]-=[m—1]. To distinguish it

is denoted by+[1]-|[|. We assume that in this mor- from the +[m] morphology, we specifyn=2 for the
phology the thickness of the checkerboard layer is +[1]-=[m—1] morphology.
Lo/2.

(f) Parallel lamellae, denoted bse[m]. Similar to the Note that wherL /L,=1, the three types of morphologl,
+[m] morphology, we assume that each chain layer in|||s, and|||s-||| become identical; we udé to represent the
the =[m] morphology has the same thicknd3m. morphology.

(99 Mixed morphology of perpendicular lamellae comply- To calculate the interfacial energy between two mis-
ing with the lower surface pattern near the patternednatched structures with different periodg andLg (for ex-
surface, and parallel lamellae of layers near the up- ample, the surface—block interfacial energy between the
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TABLE I. Mismatch ratioq<1/2 for several values dfg/L. TABLE II. Phenomenological free energy expressions for different types of
morphology in confined films between patterned-homogeneous surfaces
Ls/Lo q with D/Ly>1/2.
1 0
14 17/35 Free energy
1.8 22/45 (oanto)
e 97/55 Morphology (M) { fu— “Dp fer (Lo)
2.6 32/65
3 1/3 3 5pq
3.4 42/85 l 2a T3t q
3.8 47/95
2
4.2 52/105 Ills i+—+|02
4.6 57/115 2d P
5 215 +[m] G, M 4d” 2
2d ' d m? p
[ L. WS
lower patterned surface and the lamellae when|thenor- s 2d d " ad " 2pd
phology formg, we define a mismatch ratipthat represents A3 S q 1
the average mismatch area per unit lengilong they direc- 2d 3 3t pa
tion). The value ofg depends ot.¢ /L, and the alignment of —[m] m 4 5
the two structures. Note thaj| Ls/L0:q|LO/Ls' Theoretical B a W 2d
calculations ofg are somewhat involved, particularly when llle=[m] m 4 1 h o +2) [3(d bt ’
. . . . . s - iy
L¢/Ly is an irrational number, or when different alignments a2 d p/ d
of the two structures are considered. In this paper we calcu- (h>1/‘:)
late the value of for Ls/L,=1~5 with a step of 0.0002, +[1]-=[m—-1] moa 1.2
and we only consider the “left” alignment of the two struc- (m=2) d*m 2d mp

tures of which the first half-periods match with each other
[refer to Figs. 2a), 2(d), and Ze)]. We find thatq=1/2 for
most values of_ /L, except those listed in Table I. Obvi-
ously, the larger the, the higher the interfacial energy. In our Monte Carlo simulations ane|, |||s-|||, +[m], +[1]-
some of our Monte Carlo simulations of thin fims confined|||, and|||s.%* Therefore, we only consider these five types
between patterned-neutral surfaéksye observed the trans- of morphology to construct the phase diagram.
posed perpendicular lamellae, wheye 1/2. Therefore, 1/2 To establish a connection between the phenomenological
can be considered as the upper limitopfor the purposes of theory and our Monte Carlo simulatiofisye setép=2 and
our study. To simplify our calculations, we assume that 5,=0. We varyp within [£,5] and d within (3,6] in the
=1/2 for all values ofL¢/Lye[%,5], except thatg=0 at  phase diagram. For the[ m] morphologymis chosen to be
Ls/Lo=1, q=1/3 at Li/Ly=1/3 and 3, andg=2/5 at the positive integer that minimizes the free energy of the
Ls/Ly=1/5 and 5. As we shall see below, these “unusual” system. The calculated phase diagram is shown in Fig. 3.
values ofq cause some “spikes” in the phase diagrams.  Note that the||| morphology coexists at the boundary be-
Table Il lists the phenomenological free energies for dif-tween thel||-||| and the+[1]-||| morphology atp=2. Be-
ferent types of morphology in the films confined betweencauseq=1/3 atp=3, the||| morphology also coexists with
patterned-homogeneous surfaces vidth.,>1/2, expressed the +[1]-||| morphology atp=3. Furthermore, these two
in the dimensionless formfy,— (oanq+ o)/ (Dp)1/fei(Lo),
wheref), is the free energy per chain corresponding to the

morphologyM, and f(Lo)=aLj is the elastic free energy 6 TV [ [
per chain in the bulk given by Eql). We define the dimen- _ i i
) . . ) 5 |a [~
sionless surface pattern peripeeL /L, the dimensionless Il
. . - > . Il s| (@) +{1+ll
film thicknessd=D/L, and two dimensionless parameters, o 4
6PE (U'm_ U)/O’AB>O and 5HE(0-BH_ O-AH)/O-AB . Without E‘
loss of generality, we assume th&{=0, and that A blocks o 3td vf o
segregate to the upper surface when parallel lamellae form © ovo b
near the upper preferential surfa@ee., in the morphology 29 o
=[m], |||-=[m], and+[1]-=[m—1]). This is consistent qyo 3]
with our Monte Carlo simulation resulfd Note that thea in iy e I
Eq. (1) does not appear in these dimensionless free energies. 032 1 5 3 +["1] 4 5
Therefore, its value does not affect the phase diagrams con- p=LJ/L,

structed below.
FIG. 3. Phase diagram of symmetric diblock copolymer thin films confined

2. Phase diagram for thin films confined between between patterned-neutral surfaces, calculated from the phenomenological
patterned-neutral surfaces theory We specifydp=(0n— o)/ opg=2, Where o, =ospa_g=0sg.a and
osa_a=0sg_g- The open symbols represent the morphology observed in
For thin films confined between patterned-neutral surMome Carlo SimulationsRef. 23: O denotes]||, V denotes)||-|||, O

faces, the only types of morphology that were observed inlenotes||s, ¢ denotes+[1]-|||, andA denotes+[2].
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.
L

n
A

types of morphology have tower free energy than the V—v :
+[m] morphology on the two vertical lines at=3 shown 5 lllg4=lm] 5
in Fig. 3 (one is fromd=0.6786 to 0.7583, and the other is o5l |43y 34
d>1). Similarly, the+[1]-||| morphology has #ower free L OTH4 ; bl +1]-=[3]
energy than the-[m] morphology on the two vertical lines b<I: ® :
at p=5 shown in Fig. 3(one is fromd=1.1953 to 1.2902, 1} ' '
and the other igl>1.5). Cx : :
Our simulation results are also shown in Fig. 3; different "' 0.5 o
open symbols represent different observed types of morphol- © O ' ROETIE
ogy. From Fig. 3 we can see that there is good qualitative (1 J o ; ’
agreement between our simulation results and theoretical 8.2" \I\IIH—III g 3
s

predictions. Note, however, that there are some discrepancies
on morphology at §,d)=(%,1) and(1.5,1).

Pereira and Williams studied the phase diagram of Sym_FIG. 4. Phase diagram of symmetric diblock copolymer thin films confined

ic diblock | hin il fined b between patterned-preferential surfaces, calculated from the phenomeno-
metric diblock  copo ymer. thin films  contine etween logical theory. We specifyip=2 andd= 2. For the|||c-=[m] morphology,
patterned-neutral surfaces in Ref. 27 and 28, where they rene value ofmis given in the figure. The open symbols represent the mor-
stricted their study to the cade,/L,<1, and where they phology observed in Monte Carlo simulatiotRef. 21): O denotes||, A
only considered the morphology of perpendicular lamellae oﬂe”Oteﬂns'W' © dengt;slollls, 0 denlote_sﬂl]'mr <l denotes=[4], V
different periods forming throughout the entire film. The @encted|ls-=[m. andX denotes+[1]-=[3].
“diblock-stripe” model they used is similar to ours, but their

methodology artificially imposes periodic boundary condi- 5,=0 corresponds to the patterned-neutral surfaces. Accord-
tions on the morphology with a periatls/2 along the di- jng to our Monte Carlo simulation resufts,we discard
rection in which the surface is patternétie y direction in  the +[m] morphology, and include the=[m], the

our notation. This might lead to some unexpected results.| |-=[m], and the+[1]-=[m—1] morphology for theo-
For example, in Ref. 27 and 28 it was concluded that getical consideration.

stripe-patterned surface can induce some “incommensurate” The calculated phase diagram is shown in Fig. 4. At

morphology, i.e., perpendicular lamellae of unequal spacings,,=0, the||| morphology coexists with the=[4] morphol-
or even inverted bilayers, where an A—-B lamella is followedogy (except atp=1/5 and 1/3, and the+[1]-||| morphol-
directly by another A—B lamella rather than a B-{#ach ogy coexists with thet[1]-=[3] morphology(except atp
lamella consists of one layer of copolymer chaitdowever, =3 and 5. Note thatd=2 for the phase diagram; similar to
we have Compared under the same conditions the free enerqye case of two neutral Surfac&ince the phenomen0|ogi_
of all the “incommensurate” morphology reported in Ref. cal theory does not take hard-surface efféntto account, it
28 with that of thel|| morphology studied here; we have cannot predict in a unique manner the formation of perpen-
found that thel|| morphology always has a lower free en- gicular lamellae near the upper neutral surface. However,
ergy. Note that in some cases tjje morphology may not  this can be compensated, in some sense, if we apply prior
even be the morphology with the lowest free enefithe |[|s  knowledge of the morphology obtained from our simulations
or the||[s-||| morphology may be more stable to exclude the=[m], the|||<-=[m], and the+[1]-=[m

In a recent paper, to validate the presence of the “in-_ 1] morpho|ogy at(‘)‘H:O (para”e] lamellae have never

commensurate” morphology, Pereira and Williams studiedyeen observed near a neutral surface in our Monte Carlo
symmetric diblock copolymer thin films confined between simylationg2?).

patterned-neutral surfaces with several hundreds of stripes by |n Fig. 4, for the|||;-=[m] morphology,m=1 with h
direct numerical integration of a dynamic evolution equation=1 5 m=2 with h=1, andm=3 with h=0.5 coexist ap
giVen by the Cahn—Hilliard fOI‘ma|iSI‘H.However, since that =1. Because of the “unusual” values qfat p= 1/5, 1/3' 3’

study was restricted to one dimension and only consideregnq 5, the||| morphology has dower free energy than the
the morphology of perpendicular lamellae of different peri-5[4] morpho|ogy on the vertical lines m: 1/5 (from 5H
ods(forming throughout the entire filmthe formation of the  —q to 2/5 and 1/3(from 84,=0 to 2/3 shown in Fig. 4; the
|l[s-[I| morphology was excluded. This morphology could 4 [1]-||| morphology has aower free energy than the
have a lower free energy than the “incommensurate” mor-4.[1]-=[3] morphology on the vertical lines at=3 (from
phology under certain conditions. Furthermore, as pointegs,=0 to 1/3 and 5(from 5,=0 to 1/5, not shown in Fig.

out by the authors, the sinusoidal profiles of the order paramy): the ||| morphology coexists with the-[1]-||| morphol-
eter indicate that their results are not quantitatively valid inggy atp=3.

the Strong Segregation I|n'ﬁ{We therefore believe that the Our simulation results are also shown in F|g 4, differ-

existence of the “incommensurate” morphology remains anent open symbols represent different observed types of mor-
open question. phology. Again, from Fig. 4 we can see that we have good
qualitative agreement with theoretical predictions. Note that
there is a discrepancy on morphology ptd)=(1.5,2).
In their study of the phase diagram of symmetric diblock
In this case we sefp=2 andd=2, and varyp within  copolymer thin films confined between patterned-
[£,5] and &y within [0,2] in the phase diagram. Note that homogeneous surfac&sPereira and Williams considered

p= Ls/LO

3. Phase diagram for thin films confined between
patterned-preferential surfaces
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Upper Hard Surface A-B Interface Lo (D
. [I <D Fe|:8ap7J0 (D4+D3)dz, 9
| |
A N B : B where:
: ‘i : S~ Lo/4+u(z)
| @ Dy a(2)= cosé(z)
¥4
T L4 Lyd Lo/4—u(z)
y De(D)= —5sai7) 0z (10)

FIG. 5. lllustration of an A—B perpendicular lamella near the upper hard 0(z)=arctarnu,,
surface. The lower surfad@ot shown locates az=0. Thex direction is o
perpendicular to the page. The dotted line represents the A—B interface ianhd whereu, represents ulz)/dz. Substitution of Eqs(6)

the undistorted statéHere the upper surface prefers the A blocks, i&..  and(10) into Eq. (9) gives
u 2
Lo

>0.) The two dashed lines represent the invariant interfaces between adja-
In this case the curvature is given by u,,.%3 Therefore,

cent chain layers. It is assumed that chain trajectories are perpendicular to
1+16
the bending free energy of an A—B lamella per unit length in

dz. (11)

oag [P 2
the A—B interface and that the chains terminate at the interfaces between FGI:TJ (1+ Uz)
adjacent chain layers. 0

the following five types of morphologytlfs, |||, =[mM],  the x direction is[using Eq.(6)]
[||s-=[m] (these four types of morphology are also consid-
ered in this papérand|||-=[m] (this morphology has never 308

D
_ 2
been observed in our simulations and in their phase Fpend 128 fo (Uz7o)"0z. (12)

diagram$®). Since other types of morphology||lc-|||,
+[m], +[1]-]||, and+[1]-=[m—1]) are observed in our
Monte Carlo simulationé! they should be considered in the-
oretical work.

The A-B interfacial energy of an A-B lamella per unit
length in thex direction is

D
FAB:UABJO N1+ uZdZ. (13)

The surface—block interfacial energy of an A—B lamella per
We have seen that there is qualitative agreement beunit length in thex direction is:

tween the phase diagrams predicted by the phenomenologi-

cal theory Fia)md our I\%onte é)arlo simulz;/tion rgsults for thing Fsuri=(0as— 0ag)U(0) + (0an—0gn)u(D), (14
films confined between patterned-homogeneous surfaces. Where subscripts S and H represent the lower and upper ho-
this section, we revisit the undulation of perpendicular lamel-mogeneous surfaces, respectively. The total free energy of an
lae between two hard surfaces using the same theory, ars-B lamella per unit length in the direction is therefore
make quantitative comparison between the theory and our

B. Undulation of perpendicular lamellae

simulations. Fr=FetFpendt Fagt Fsurt- (15
After introducing dimensionless variables=2z/L,, f

1. Undulation between two homogeneous and =UulLy, F=F1/(0opasly), and 6s=(ogs— oag)/oag, and

preferential surfaces ignoring all constants, we arrive at the following expression

Let us first consider the case of perpendicular lamellador the dimensionless free energy of an A—B lamella per unit
confined between two homogeneous, hard, flat, and prefelength in thex direction,
ential surfaces. As in Ref. 19, the two surfaces are located at d
z=0 andz=D, respectively. We assume that perpendicular f=f
lamellae of period_q form along they direction. Because of
the surface preference, the A—B interfaces in the perpendicu- — 54F(0)— 84f(d). (16)
lar lamellae undergo a displaceman(iz) from the undis- ) )
torted reference state, as illustrated in Fig. 5. The interfacedote that the value o in Eq. (1) does not affect this ex-
between adjacent chain layers, however, are assumed to BEESSion for thedimensionlessfree energy, and therefore
invariant. To keep the morphology of perpendicular Iamel-doefS not affect the COFr_eSpohdlng Euler—Lagrange equations
lae, we specify|u(z)|<Lg/4. Assumingu;(z)=—u;(2) derived below. To obtain a linear Euler—Lagrange equation,
for two adjacent chain layeisandi+1, as in Ref. 19, we W€ now assume théfi(s)<1 and thatfy(s)<1, and Taylor
consider one A—B lamell&consisting of one layer of copoly- €xpand the integrand in Eq16) to second order. We get
mer chaing of unit length in thex direction. Following the fd

1 3
8f2+ Ef§+ 8f2f2+(V1+fi—1)+ @fﬁs ds

0

3
8f2+f2+ —f2

128 ss ds— 55f(0) — of(d). (17)

assumptions in Ref. 19, namely, that chain trajectories are F=
perpendicular to the A—B interface and that chains terminate

at the interfaces between adjacent lamellae, the elastic fregnfortunately, in Ref. 19 a factor df was apparently omit-
energy of an A—B lamella per unit length in tkedirection  ted in the right-hand sidéRHS) of Egs.(9) and(11), and a

can be written agfrom Eq. (4)], factor of + was omitted in the RHS of Eq12); different
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coefficients were therefore obtained in this equation and the 4
corresponding linear Euler—Lagrange equatigiven be-

low).

To minimize the free energy under the volume con-

straint,
d
J f(s)ds=0,
0
we define a functional,

d
<I)(f,fs,f55)=}'+Af f(s)ds,
0

where A is a Lagrange multiplier. Minimizingb with re-
spect tof(s) gives us the following linear Euler—Lagrange

equation:

3
g4 fssss 2fes 16(=— A,

As in Ref. 19, the following fixed boundary conditions are

(18)

(19

(20

employed to represent the hard surface confinerffent,

f(0)=f(d)=0.

The natural boundary conditions for minimizidg are

64 64
f5540)=§55, fssid)z_géH-

(21)

(22

Diblock copolymer between surfaces 10003

8S=—1
5S=1
3r 88=2
<Ic>
w2
w
1t
o LN
-0.2 -041 0.2 0.3

0 o1
f(s) = u(z)/L0

FIG. 6. Undulation of the A—B interface in perpendicular lamellae confined
between two homogeneous and preferential surfaces, calculatet=fér

and 6y= — 1 using the fixed boundary conditions E&1). For the strongly
preferential surfaceds=2), the thick dashed linénear the lower surfage
represents the region where the solution does not satisfy the hard surface
confinement expressed in Ref. 42. Our Monte Carlo simulations show that
parallel lamellae actually form in all these cases due to the relatively strong
surface preference.

(6s=—1, 1, and 2;,64=—1 andd=4 in all the casesstud-

ied in Ref. 19. Our results are shown in Fig. 6. We can see
that near these surfaces with relatively strong preference for
one of the two blocks, if perpendicular lamellae could form
throughout the entire film, the amplitude of the undulation,
defined asA=|f(d)|, would be on the order of 1¥, one

The factor%! was omitted in these natural boundary condi-order of magnitude larger than reported in the literatdre.
tions in earlier work? which is probably the reason why Note, however, that our Monte Carlo simulations show that,
small amplitudes were reported for undulations. Our solutiordue to the relatively strong surface preference, parallel

IS
eanld)_1:|
f(s)=|ex S)——————|A
(s) P(719) 7.d 1
exp( — 7,d)—1
+ _eXﬂ — 7715) + T}AZ
eanzd)—l}
+|ex s)—————|A
| an ) 7]2d 3
exp— nd)—1
+ exq_’r]zs)'i‘M}Aél,
I 72d

where 7,=4+2, 7,=4+/%, and

64 S+ Sy expl 7,d)

3 p(nf- plexp2md)— 1]

64 5sexp(2m,d) + 6 expl 7,d)

23 pu(nB— dlexp2md)— 1]
64 Ogt O expl 7,d)

3 p(n3- Plexp2n,d) 1]
64 Ssexp 27,d) + Sy expl 7,d)

3 py(ni- Plexp2m,d)— 1]

A

Az=

4=

(23

lamellae actually occur in all three cases. The number of
chain layers in the parallel lamellae is eithei8the case of
ds=—1), or 9(in the cases 0bs=1 and 2. Figure 7 shows

a representative configuration of the system from a simula-
tion for the caseds=1.

For a direct comparison to our simulation data, we cal-
culate using the above solution the undulation of the A-B
interfaces in perpendicular lamellae confined between two
weakly preferential surfaces, i.&s= dy= — 0.5 (symmetric
surfaces wherd=1.5) andés= — 6= — 0.5 (antisymmetric
surfaces wherd=2). Perpendicular lamellae were observed
in Monte Carlo simulations for these two caseBrom the

FIG. 7. Representative configuration of the system from a Monte Carlo
simulation for two homogeneous and preferential surfaces wdthl (d

=4 andéy= —1). The six surfaces of the simulation box are shown in the
figure. Light regions represent A blocks and dark regions represent B

) We recalcul'ate the undulation of the A-B interfacesblocks. Due to the relatively strong surface preference, parallel lamellae
in the perpendicular lamellagf(s), for the three cases with nine chain layers form within the confined film.
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0l : — : the undulation of perpendicular lamellae for this surface
N g;mmgmg Eyﬁ)) configuratior®’ These authors assumed that perpendicular
0.2/|~— Antisymmetric (MC) ‘ lamellae complying with the lower surface pattern form

""" Antisymmetric (PM) throughout the entire film. The surface—block interfacial en-

ergy for the lower patterned surface was therefore 0. The
assumptions for undulation of Sec. IlIB1 were adopted.
That is, the A—B interfaces undergo a displaceme(x)
from the undistorted reference state, while the interfaces be-
tween adjacent lamellae are assumed to be invariant; for two
adjacent lamellaeandi + 1, u;(z) = —u; +1(2); chain trajec-
tories are perpendicular to the A-B interface, and chains
terminate at the interfaces between adjacent laméflae.

FIG. 8. Order parameter profiles along thedirection, calculated from In this case, the elastic free energy of an A-B lamella

Monte Carlo simulationsMC) and the phenomenological theayM), of o it length in thex direction can be obtained from Egs.
perpendicular lamellae confined between symmetric and weakly preferenti

surfaces §=1.5, 5= 8y= —0.5), and antisymmetric and weakly preferen- 9) and(10) by replacingL, with L,
tial surfaces =2, 5= — 6y=—0.5).

Order Parameter p,,(z)-pg(2)

Ls (P 2.2
Fe,=8ap7 . (Da+Dg)dz, (27

assumptionu;(z)=—u;+1(2) we get a simple relation to

convertf(s) to the order parameter profile along thdirec- where

tion, pa(2) — pe(2),° 5 LJ4+u(z)

Z = —!
pa(2)~ pa(2)=4pf(2ILo), (25) A2~ o)
wherep is the total percentage of lattice sites occupied by A LJ4—u(z)

and B segments in the system, taken from the simulation Dg(z)= , (28
data. The results are shown in Fig. 8. We can see that the
phenomenological theory predicts the correct order of mag-  ¢(z)=arctaru, .
nitude of the amplitudes of the undulations. However, it is . ]
unable to describe the peaks in the order parameter profilssh® bending free energy of an A—B lamella per unit length
near the surfaces shown by simulatidasz=5 and 15 in  in the x direction, Eq.(12), becomes
the case of symmetric surfaces, andzat5 and 21 in the 30aal’ (D
case of antisymmetric surfaces, as shown in FjgSamilar Foond= AB Sf
peaks were also observed in Monte Carlo simulations in the 128L8 0
framework of the bond fluctuation mod&land self-
consistent field calculatiort§:*117:18

We note here that Eq16) can also be minimized with-
out assumingf(s)<<1 andf¢(s)<<1. This gives rise to the
following nonlinear Euler—Lagrange equation:

cosé(z)

(UL o)?dz. (29)

The A-B interfacial energy of an A—B lamella per unit
length in thex direction, Eq.(13), remains unchanged. But
the surface—block interfacial energy of an A—B lamella per
unit length in thex direction, Eq.(14), becomes:

Fsurt=(oan—ogpu)u(D). (30

By using dimensionless variables and ignoring all constants,
(260 we get the dimensionless free energy of an A—B lamella per

The boundary conditions are unchanged. Equatif) can  Unit length in thex direction,

3
7 fosss [(1+F2) "R+ 1+16f2]f o+ 16(1—f2)f=—A.

be solved numericallytogether with the volume constraint d p®

Eqg. (18)]. We find that for the above cagsymmetric and ]-‘:f [8pf2+ —f§+ 8pf2f§+( 1+f§—1)

weakly preferential surfacgswhere perpendicular lamellae 0 2

were observed in Monte Carlo simulations, the numerical 3p°

solution is almost identical to the analytical solution of the + @fgs ds— yf(d). (31

linear Euler—Lagrange equation. Sin¢é(s)|<0.03 and
|fs(s)|<0.1 in that case, the two solutions are almost undisAgain, we can see that the value afin Eq. (1) does not
tinguishable in Fig. 8. This confirms that the Taylor expan-affect this expression for théimensionleséree energy, and
sion is valid for smallf(s) andfy(s). therefore does not affect the Euler—Lagrange equation de-
rived below. Assumingf(s)<1 and f4(s)<1, and Taylor

2. Undulation between patterned-preferential surfaces expanding the integrand in E(31) to second order, we get

+1 , 3p°
P f§+if2 ds—s4f(d). (32

2
8pi™+ — 128'ss

they direction, as shown in Fig. 1. All the stripes have the
same widthLg/2, and alternatively prefer A and B blocks.
The upper surface a@=D is homogeneous and preferential In Ref. 37 a factor of; was omitted in the right-hand side
to one of the two blocks. Pereira and Williams also studiedRHS) of Eq. (27), and a factor ofl/(4L(2))] was omitted in

In this case, the surface at 0 is stripe-patterned along fd
F=
0
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0.8r
_r 0.6}
N p=1.4
i A=0(p=~1.11)
o 0.4} p=1
p=0.9
0.2r
FIG. 10. Representative configuration of the system from a Monte Carlo
0 ) ) simulation for patterned-preferential surfaces wpk1 (64=1 andd
-0.04 -0.02 0 0.02 0.04 0.06 =1). The six surfaces of the simulation box are shown in the figure. Light
f(s) = u(z)/L regions represent A blocks and dark regions represent B blocks. Perpendicu-

lar lamellae complying with the surface pattern form near the lower pat-
FIG. 9. Undulation of the A—B interface in perpendicular lamellae confinedterned surface, and one layer of parallel lamellae forms near the upper
between patterned-preferential surfaces, calculated,ferl andd=1 us-  surface due to the relatively strong surface preference.
ing the fixed boundary conditions E@1). Our Monte Carlo simulations for
the cases op=1 andp=1.5 (64=1 andd=1) show that parallel lamellae . .
actually form near the upper preferential surface in both cases due to thiial surface when the surface preference is relatively strong.

relatively strong surface preference. Even for the case of a neutral surface on the(tbfs case is
discussed in the following sectipandp not far from unity
) o (e.g.,% or 1.5, where a perpendicular structure is observed in
the RHS of Eq.(29); different coefficients were therefore (e confined films, the structure actually consists of perpen-
obtained in this equation and the corresponding Euler—jicyar lamellae complying with the surface pattern near the
Lagrange equatiofgiven below. _lower patterned surface, and perpendicular lamellae of period
Following a procedure analogous to that presented i near the upper neutral surfaleTherefore, the basic as-
Sec. llIB 1, we get the following Euler—Lagrange equation:sumptiOn adopted in Ref. 37 and 38, that perpendicular

3p° . lamellae complying with the lower surface pattern form
&2 fssss (PP Df st 16pf=—A. (33 throughout the entire film, is valid only whemis very close
to unity and the upper homogeneous surface is either neutral

The fixed boundary conditions aré(0)=0 and f¢(0) or weakly preferential.
=fs(d)=0. The natural boundary condition i$ss{d) To compare the prediction of the phenomenological
=—[64/(30°)]64. The factor 64/(B°) in this natural theory with Monte Carlo simulations when perpendicular
boundary condition was omitted in earlier wotkwhere |amellae complying with the lower surface pattern actually
small amplitudes were reported for undulations. See Appenoccur throughout the entire film, we simulate the cases of
dix A for our solution. weakly preferential surface on the top, i.8,=0.5 and 0.25,

To compare with Ref. 37, we calculate the undulation ofwith p=1 andd=1. Figure 11 shows a representative con-
the A—B interfaces in perpendicular lamelldés), for four  figuration of the system from a simulation for the ca%e
different values op at 6y=1 andd=1 (assuming that per- =0.25. Equatior(25) is used to convert the predicted undu-
pendicular lamellae form in these cagethe results are |ation to the order parameter profile. The results are shown in
shown in Fig. 9. We can see that if perpendicular lamellagrig. 12. We can see that the amplitude of the undulation
could form throughout the entire film in these cases, the amgbtained from simulations is larger than that predicted by the
plitude of the undulation would be on the order of #0 theory. More importantly, as in Fig. @he cases of perpen-
instead of the order of 1G reported in the literatur¥. Fur-  dicular lamellae confined between two homogeneous and
thermore, the amplitude would decreasepascreases; this preferential surfacesthe phenomenological theory is again

is contrary to earlier report€. Note, however, that our ynable to describe the peakat z=3 in Fig. 12 shown by
Monte Carlo simulations for the caseswt1 andp=1.5, Monte Carlo simulations.

with §4=1 andd=1, show that parallel lamellae actually
form near the upper preferential surface due to the relatively
strong surface preferené&Figure 10 shows a representative
configuration of the system from a simulation for the case
p=1.

Our Monte Carlo simulatior’$ have shown that whep j
deviates far from unity, perpendicular lamellae complying .
with the lower surface pattern cannot be obtained, even nea |
the patterned surface. For a small valuepote.qg., 3) the y
lower surface pattern would be ignored, while for a large
value ofp (e.g., 3 chains near the patterned surface wouldFIG. 11. Representative configuration of the system from a Monte Carlo
change their orientation to be perpendicular to the surfacesimulation for patterned-preferential surfaces wi=0.25 (p=1 andd
thereby leading to one layer of checkerboard morphology.: 1_). The six surfaces of the S|mulat|on_ box are shown in the figure. nght

. . - regions represent A blocks and dark regions represent B blocks. Perpendicu-
On the other hand, our Monte Carlo simulations also Ind'(;atear lamellae complying with the lower surface pattern form throughout the
that parallel lamellae actually form near the upper preferenentire film.
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= 0.5 (MC)
=0.5 (PM)
= 0.25 (MC)
= 0.25 (PM)

0.2 - 9§
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ket
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Order Parameter p,,(2)—p(2)

FIG. 12. Order parameter profiles along thelirection, calculated from

Monte Carlo simulation$MC) and the phenomenological theayM), for

perpendicular lamellae confined between a lower stripe-patterned and an

upper weakly preferential surface€1 andd=1).

3. Undulation between patterned-neutral surfaces

In this case the lower stripe-patterned surface has a pt?é

riod Ls=Lg, and the upper surface atD is neutral(refer

to Fig. 1. In a separate pap&t Pereira and Williams applied d -
a similar theory to study the undulation of perpendicular F1= 128, Jo[gss_w gslds.

Wang et al.

ond order, and ignoring all constants, the free energy of an
A—-B lamella(from x= — to ©) can be written as

~ 3U'AB * D p5
Fr= 2 J‘_wjo [aLS(UXX+UZZ)2

p°-1
3

(u2+u?) |dzdx.

(37

By making the ansatz thai(x,z) = cos¢x/Ly)0(2), where
g(z) is an unknown function of, then integrating over one
period along thex direction, Pereira and Williami& derived
the following expression for the free energy of an A-B
lamella per unit length in th& direction,

_3p50'AB
256,

wherew=\64(p3—1)/3p°. If £=0, that is, if the problem is
reduced to two dimensions in thgz plane andu(x,z)
=g(2), then the free energy of an A—B lamella per unit
ngth in thex direction becomes

Fr

d
f (9~ £%9)2— w?(£%g%+g2)1ds, (38)

3p°oas

(39

lamellae confined between patterned-neutral surfaces. They
assumed that perpendicular lamellae complying with thealthough Eq.(39) differs from Eq.(38) by a factor of 2, they
lower surface pattern form throughout the entire film. Thehave the same Euler—Lagrange equation,

surface—block interfacial energy is therefdfg, =0. Dif-

ferent from the above two cases, wHep> L, these authors

gssss_(zfz_wz)gss+(§4_w2§2)gzo- (40)

assumed that the A-B interfaces undergo a displacemeRte fixed boundary conditions arg(0)=0 and g.(0)
u(x,z) from the undistorted reference state to relieve the:gs(d)=0. The natural boundary condition @Ss(d)zso.

imposed strairp, and that the interfaces between adjacent

So far we have basically followed the same procedure

lamellae undergo the same displacement as the A-B intefng gptained the same Euler—Lagrange equation and bound-
faces. The volume constraint is therefore satisfied automatglry conditions as in Ref. 38. However, our solutisee Ap-

cally. If it is assumed that all the second derivatives @fith

pendix B is different from that in Ref. 38. Solving the

respect tocandz (i.e., Uyy, Uy, andu,,) are small, such an  gyjer—agrange equation subject to the above boundary con-
undulation of the perpendicular lamellae reduces the effecgitions shows that the free energy given by E3p) [or Eq.

tive lamellar spacindperpendicular to the A—B interfaces

approximately toL=L¢/\/(1+u?)(1+u?), and D,=Djg

(39 when ¢=0] either has a minimum value of @vhich
means that the undulation of the A-B interfagésany)

=L/4 (chain tra_jectories are again assumed tq be perpendiCéxnnot decrease the free energy of the syktemdoes not
lar to the A—B interfacegs Therefore, the elastic free energy have a minimum at all. This is due to the omission of higher

of an A-B lamella(from x= —o0 to «) is

© D 1
—=Jo (1+uy)(1+uy)

In this case, the curvature is=uy,+u,,.>>* Thus, the
bending free energy of an A—B lamelltom x= — to )
is

3
~ _O-ABLS

el™ 2Lg

(34

~ 3oals (= (D

Fbend:—5f f

1285 J-=Jo

The A-B interfacial energy of an A—B lamell&rom
X=—o0 t0 ®) is

~ e D
FAB:UABJ_ fo \/(1+U§)(1+U§)d2dx

(uxx+ uzz) I-0

2
> > dzdx.
(I+u)(1+uy)

(35

(36)

order terms in the free energy Taylor expansion, or due to the
strict boundary conditiog(0)=0. If we allow for a nonzero
value of g(0) at the patterned surface, and use a natural
boundary condition at=0 instead, some undulations might
exist that are more stable than the undistorted state. The
study of such cases, however, is beyond the scope of this
paper.

In what follows we partially address this problem by
reducing it to two dimensions and Taylor expanding the
bending free energy given in E¢35) to second order. By
using dimensionless variables and ignoring all constants, we
get the dimensionless free energy of an A—B lamella per unit
length in thex direction,

d| p3 1
f:fp(
0

2\ 1+¢2

3 5
—1|+(J1+fi-1)+ 1—281‘; ds.

(41

As in Ref. 38, by adding all of the terms above, assuming
u,<1 andu,<1 and Taylor expanding the integrand to sec-The corresponding Euler—Lagrange equation is
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0.5 FIG. 15. Representative configuration of the system from a Monte Carlo
| o Simulation (p=7/6) | simulation for patterned-neutral surfaces wijil-7/6 andd=2. The six
surfaces of the simulation box are shown in the figure. Light regions repre-
0 sent A blocks and dark regions represent B blocks. Undulated perpendicular

-1 -0.8 _0'f6(s) -04 -02 0 lamellae are observed in this simulation. The right-hand side of the figure
also displays the lower patterned surface, where light regions represent sA
FIG. 13. Undulation of perpendicular lamellae confined between patternedstripes and dark regions represent sB stripes.

neutral surfaces, calculated by solving E4R) for d=2. The value ofp is

given for each curve in the figure. Symmetric solutions () >0 are not

shown in the figure. The open circles represent the undulation of perpen- ; ; ;
dicular lamellae observed in a Monte Carlo simulation for 7/6 andd ImereStmgly’ Whenp is close to unity, the undulated

—2 perpendicular lamellae are indeed observed in our Monte
Carlo simulations for thin films confined between patterned-
neutral surfaces. Figure 15 shows a representative configura-

3p° f p3f.(1—3f2) tion of the system from a simulation for the cade 2 and
— oo SZ 7 ° 3 > = (42  p=7/6. From the figure we can see that the lamellae in the
64 (1+f£9) (1+f£5) vicinity of the lower patterned surface comply with the sur-

The fixed boundary conditions ar&(0)=0 and f(0) face pattern, and that the undulation of the perpendicular
—f,(d)=0. The natural boundary condition fs Jd)sz o. lamellae occurs in thg-z plane, as assumed in our numeri-
Thi; differential equation can be solved nurrs1erically for cal solution. The undulation of the A—-B interfaces observed

given p and d. Figure 13 shows the results for=2 and in the simulation is shown in Fig. 13 by open circles. We can
different values ofp; we can see that the amplitude of the S€€ that the observed undulation has a shape similar to that
undulation has a maximurfaroundp=1.6) whenp varies. predicted by the phenomenological theory, but has an ampli-

Figure 14 shows the dimensionless free energies of the ufude about 50% larger. The tilted lamellae found by Petera
distorted perpendicular lamelldg, (given in Table 1), the and Muthukumd® in their two-dimensional self-consistent

undulated perpendicular lamellaggiven by p2+2/p field calculations, which have an angle of_arcsinlﬂvith
+27(pd)], and thel||«-||| morphology(given in Table 1) respect to the surface, would give an amplitude of about 1.2
for d=2 and8,=0 calculated from the phenomenological Under the same surface configuration. Note that|the||
theory. We can see that the undulation of perpendiculaf?©rPhology is also observed in some other runs in our simu-
lamellae that we obtain at this level of approximation doedations under the same conditions, with the only difference
decrease the free energy below the undistorted state. On tR§Ng the random number generator seeds. This may be due
other hand, thé||-||| morphology has a lower free energy tq the large energy barrier between the undulated perpen-
than the undulated perpendicular lamellae wpenl.4 (for  dicular lamellae and thgl|s-[|| morphology that cannot be
d=2); this explains why we have not observed undulated®Vercome by our system in a finite simulation run.
perpendicular lamellae in our simulations for thin films con-

fined between patterned-neutral surfaces pith1.52 IV. CONCLUSIONS

We have investigated the ability of a simple phenomeno-
; logical theory to describe the behavior of symmetric diblock
-=-- Mllg copolymer thin films confined between two hard surfaces.
- Undulated |l 1 Prior knowledge of the morphology in thin films is crucial
— M=t for applying this theory to predict the phase diagram of such
S ] systems. Taking advantage of our observations from Monte
‘ Carlo simulationg! we have used the theory to construct
| phase diagrams for thin films confined between patterned-
] homogeneous surfaces, and obtained good qualitative agree-
Bt ment with the simulations. In view of the simplicity of the
theory, such agreement is both surprising and satisfactory.
] T3 17 185 18 & a2 The phgnomenological th'eory does not take ha.rd.—surf'ace
’ ) p ) ’ effects into account, and is therefore unable to distinguish
FIG. 14. Comparison of the dimensionless free energies of the undistortebetWeen the unfrustrated parallel and perpendicular lamellae
perr;endicularplamellaéHs, undulated perpendicularglamellae, and the Hear neutral surfaces. This, however, can be compensated by

||l<-||| morphology confined between patterned-neutral surfacesdvita,  apPplying prior _kn0W|?dge of the morphology obtained from
calculated using the phenomenological theory. Monte Carlo simulations.
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For applications to nanofabrication, our objective is to f(s)=A; cosh 7;S) + A, sinh( %,S) + Az cosh{ 7,S)
produce long-range ordere@ver micron$ perpendicular

lamellae. This work shows that the region of parameter space
in which such morphology can be found is fairly small. Two
conditions are essential for obtaining this desirable morpholgnhere
ogy: a lower stripe-patterned surface with the surface pattern 3
periodL ; comparable to the bulk lamellar periag, and an _ [P VA)
upper neutral or weakly preferential surface. 1.2 3p° '

Following thg methods of Pe_re|ra and W|II|_arJr? ' Ai, Ay, Az, and A, are constants to be solved from the
we have also revisited the undulation of perpendicular lamel; o P _ 13

boundary conditions. IA=0, i.e., p=[(1+ 3)/2]*3, the
lae between two hard surfaces. For the cases of two homo- . .
. ._ general solution to Eq.33) is
geneous (preferential surfaces and patterned-preferential
surfaces, our calculations using the phenomenological theory  f(S)=A; exp(7s) +Azs exp( 7s) + Az exp( — 7s)
indicate that the amplitudes of the undulations are of the A
same order of magnitude as those observed in our Monte +A sexp— ns)— 6o (A4)
Carlo simulations, and are one order of magnitude larger 6p
than reported in the literatuf®®’ These undulations could where
have adverse effects for lithographic applications. Unfortu- 3
. 32(p°+1)

nately, the theory is unable to capture the shape of the undu- 5= /[ ———— (A5)
lations. 3p°

For the case of patterned-neutral surfaces, we find that g A<0, i.e.,p>[(1++/3)/2]"3, the general solution to Eq.
second-order expansion of the free enéfgg unable to (33 is

yield the undulations that would stabilize the perpendicular _ .
lamellar morphology. In this work, we have addressed this F(8)=Aqs explas)cod Bs) + Az explas)sin( Bs)
problem in an approximate manner, and obtained undula- + Az exp(— as)coq Bs) + A, expl — as)sin( BS)
tions that can lower the free energy of the perpendicular

A
+ A, sinh( 7,8) — 1_6p (A2)

(A3)
7,38

lamellae. Such undulations are consistent with results of _i (A6)
Monte Carlo simulations. 16p’
Our Monte Carlo simulations have provided us with where
valuable insights regarding the morphology and the molecu-
. . . 3 [
lar structure of the systems of interest. The simulation results ~ _ , [+ V3)pi+1 _ 16v—-A (A7)
have served as a guide to propose plausible solutions for 3p° ' 3p°a '

theoretical calculations. Based on these results, we are CU&imilar to Sec. IIIB 1. from the volume constraint Ed8)
rently pursuing a more refined self-consistent field theory, : '

treat t for diblock | thin fil fined bet and the four boundary conditions we can solve for shand
reatment for diblock copolymer thin fiims confined betweeny, . A; (i=1,2,3,4) in each case. The resultant expressions
patterned-homogeneous surfaces.

are too complicated to be listed hditbey were obtained by
Mathematica

APPENDIX B

From the ansatz that(x,z) =cosgx/Ly)g(2) we can re-
We are grateful for helpful discussions with Dr. G. G. strict ourselves t&=0, without loss of generality. We are
Pereira. Financial support for this work was provided by theinterested in nontrivial solutions for the case 0 (i.e.,
Semiconductor Research Corporation through Contract Ng2>1) andd>0.
99-LP-452 and by the NSF CTS-9703207 and CTS- Let us consider the casg>0 first. Solving the charac-
9901430. teristic equation to Eq40) gives usnif £ and 7;5’4: &2
—w?, wheren,, 7,, 53, andz, are roots of the character-
istic equation. Ifé2— w?>0, the general solution to E¢40)
is

ACKNOWLEDGMENTS

APPENDIX A .
g(s)=A; cosh(és) + A, sinh(és) + Az cosh{s)
Solving the characteristic equation of the homogeneous

ordinary differential equation to E433) gives us four roots +A,sinh({s), (B1)
7 (i=1,2,3,4), where¢=\&—w?>0; A;, A,, A, andA, are constants.
Substituting Eq(B1) into the boundary conditions gives us a
2_32(p3+ 1+A) system of four linear equations for the (i=1,2,3,4) with

7i 3p (A1) the right-hand side being all zeros. Therefore the nontrivial

solution exists only if the determinant of coefficients of all
where A=—2p®+2p3+1. Note thatp>0 and A<(p® theA; (i=1,2,3,4) on the left-hand side is zero. This gives
+1)2. If A>0, i.e., 0<p<[(1++/3)/2]"3 the general so- us

lution to Eq.(33) is £tanh &d)= ¢ tank(£d). (B2

5
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Since&¢> >0 andd>0, Eq.(B2) cannot be satisfied for any u(z)=g(s)=A;[cog ws)—1], (B13)
given strainp>1. Thus only the trivial solutiorg(s)=0
exists in this case. whereA; is anarbitrary constant. We substitute EGB13)

If £2—w?=0, the general solution to E¢40) is into Eq. (39) and find that the free energy of an undulated

. A-B lamella is F+=0, the same as the undistorted state
9(s) = A COSHES) + A, SINNES) + Ag+ Ags. (B3 4(2)=0. Therefore, in this case the undulation cannot de-
Similarly, the condition for a nontrivial solution is crease the free energy of the system. We attribute this to the
. omission of higher order terms in the free enelfgill these
sinh(¢d) =0, (B4) results are derived from the free energy Taylor expansion to
which obviously cannot be satisfied by aiy 0 andd>0.  second order, Eq38) or Eq. (39 whené=0.]
Thus only the trivial solutiorg(s) =0 exists in this case.
If £2—w2<0, the general solution to E¢40) is

g(s) =A, COSf( &s) +A, Sinl’( &s) +A3 cogq{s) 1p. Lambooy, T. P. Russell, G. J. Kellogg, A. M. Mayes, P. D. Gallagher,
and S. K. Satija, Phys. Rev. Left2, 2899(1994.
+A, sin(¢s), (B5) 2T, P. Russell, P. Lambooy, G. J. Kellogg, and A. M. Mayes, Physica B

213&214, 22 (1995.
where (= Jw?— £2>0. Similarly, the condition to obtain a *N. Koneripalli, N. Singh, R. Levicky, F. S. Bates, P. D. Gallagher, and S.

nontrivial solution is 4K. Satija, Macromoleculeg8, 2897(1995.
G. J. Kellogg, D. G. Walton, A. M. Mayes, P. Lambooy, T. P. Russell, P.
i =—/gj . D. Gallagher, and S. K. Satija, Phys. Rev. L&, 2503(1996.
¢ codfd)sinh(£d) gsin(£d)costi£d) (B6) 5Q. Wang, Q. Yan, P. F. Nealey, and J. J. de Pablo, J. Chem. Phgs.
Under this condition, the solution is 450(2000.
6K. R. Shull, Macromolecule&5, 2122 (1992.
g(s)=A1¥(w,d,s), (B7) M. S. Turner, Phys. Rev. Let69, 1788(1992.
. . 8D. G. Walton, G. J. Kellogg, A. M. Mayes, P. Lambooy, and T. P. Russell,
whereA; is anarbitrary constant, and Macromolecule®7, 6225(1994.
. . 9G. Brown and A. Chakrabarti, J. Chem. Ph§62, 1440(1995.
Esinh(éd)+ ¢ sin(¢d) 10G. T. Pickett and A. C. Balazs, MacromolecuRg 3097 (1997).
(w,d,s)=cosh és) — £ cosh £d) — £ cos £d) sinh(s) M. W. Matsen, J. Chem. Phy&06, 7781(1997.
12N. Koneripalli, R. Levicky, F. S. Bates, J. Ankner, H. Kaiser, and S. K.
; ; Satija, Langmuirl2, 6681(1996.
—coqZs)+ &sinh(¢d) + ¢ sin({d) sin(£s). 13E. Huang, T. P. Russell, C. Harrison, P. M. Chaikin, R. A. Register, C. J.
{ cosléd) —  cog ¢d) Hawker, and J. Mays, Macromolecul@g, 7641(1998.

M. Kikuchi and K. Binder, Europhys. Lett21, 427 (1993.
(B8) 15\ Kikuchi and K. Binder, J. Chem. Physl01, 3367(1994.
Note that, since = Jw?— £2, Eq. (B6) gives¢ as a function 16€i9%.980mmer, A. Hoffmann, and A. Blumen, J. Chem. Pid, 3728
of @ andd only. Substituting Eq(B7) into Eq.(38), we can 171 _geisinger, M. Muller, and K. Binder, J. Chem. Phgs1 5241(1999.
get the free energy of an undulated A-B lamelg 18T. Geisinger, M. Muller, and K. Binder, J. Chem. Phg41, 5251(1999.
:Ai\l}(w,d), where ;9(3. G. Pereira and_ D. R. M. Williams, Macromolecul®® 1661(1999.
OL. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, and S. G. J.
Mochrie, Phys. Rev. Leti82, 2602(1999.
\I’— 256_ j [(ss— E240)%— 0?(£2yP+ ¢2)]ds (B9)  2'Q.Wang, Q. Yan, P. F. Nealey, and J. J. de Pablo, Macromoletles
press.
. . . . ) 227, Halperin, J. U. Sommer, and M. Daoud, Europhys. L&8, 297
is a function ofw andd only. SinceA, is anarbitrary con- (1995.
stant, when¥(w,d)=0, the minimum value of the free en- 2*H. Chen and A. Chakrabarti, J. Chem. Phy88 6897 (1998.

ergy is 0, which means that the undulation cannot decrease? Cgakrabaf“ and H. Chen, J. Polym. Sci., Part B: Polym. P8§;s3127

the free energy; wheW (w,d) <0, by makingA, infinitely 25 "petera and M. Muthukumar, J. Chem. P67, 9640(1997.
large F+ would be —o, which means that Eq438) does not  26p_ petera and M. Muthukumar, J. Chem. Phy89, 5101 (1998.
have a minimum and therefore cannot represent the free eﬁ7G G. Pereira and D. R. M. Williams, Phys. Rev. L&®, 2849(1998.
ergy of the system in this case. G, G. Pereira and D. R. M. Williams, Macromoleculgk 5904 (1998.

S 2G. G. Pereira and D. R. M. Williams, Macromoleculg® 758 (1999.
Now let us consider the case=0, which implies that  sog i "Nath, p. F. Nealey, and J. J. de Pablo, J. Chem. PHy.7483

the problem reduces to two dimensions in yhe plane. The (1999.

Euler_Lagrange equation Ecpfo) becomes SIA, N.(Semse]nov, Sov. Phys. JET®I, 733(1985 [Zh. Eksp. Teor. Fiz88,
1242(1985].
Jsssst @20ss=0. (B10)  *2T. Ohta and K. Kawasaki, Macromolecul&s, 2621(1986.
337.-G. Wang and S. A. Safran, J. PhyBrance 51, 185 (1990.
The general solution is 347.-G. Wang and S. A. Safran, J. Chem. Phg4, 679 (1991).
) 357.-G. Wang, J. Chem. Phy4$00, 2298(1994.
g(s)=A; cog ws) + A, sin(ws) + Az + Ass, (B11) 36The phenomenological theory predicts that for thin films confined between
.. . . . two neutral surfaces, unfrustrated parallel lamellae and perpendicular

and the condition for a nontrivial solution is lamellae(both having a bulk periotl,) have the same free energy, while

Sin(wd)=0 (BlZ) experiments(Ref. 13 Monte Carlo simulationgRefs. 5,16 and self-

consistent field calculationdRefs. 10,11,1)all indicate that the perpen-
Therefore, we may have undulations of the A—B interfaces dicular lamellae are preferred over the parallel lamellae between two neu-
tral surfaces.
whenwd=jm, wherej is a positive integer. Under this con- 37 G_ pereira and D. R. M. Williams, Langmui, 2125(1999.

dition the undulation of the A—B interfaces is 38G. G. Pereira and D. R. M. Williams, Europhys. Lett, 304 (1998.

Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



10010  J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 Wang et al.

39T, Hashimoto, M. Shibayama, and H. Kawai, Macromolecul8s1237 Dpsind<D-z if 6(z)>0
(1980. Dgsin(—=0) <D-z if 6(z <0.
“OF. A. Escobedo and J. J. de Pablo, J. Chem. PHY5.4391(1996. 5 Sin(=0) (2)
“1G. G. Pereira and D. R. M. Williams, Phys. Rev6B, 5841(1999. We find that the solution using E¢R1) may not satisfy the above equa-

“2strictly speaking, Eq(21) only represents the hard surface confinenant  tions in some regions in the case of relatively strong surface preference,
the surfaces, but notearthe surfaces. According to the assumptions that  for example, the case @,=—1 (5s=2 andd=4) studied in Sec. Il B 1

Cha'r.' trajectories are perpendicular to t_he A-B interface and that chalns and in Ref. 19. In Fig. 6 such a region is shown by a thick dashed line.
terminate at the interfaces between adjacent lamellae, the corresponding ) .
Note, however, that perpendicular lamellae are not actually preferred in

boundary conditions for the lower hard surface should be ; ) ’ ; ; =
) . this case. Therefore, this problem might be of little practical significance;
Dgsing<z if 6(z)>0 ) L g )
the fixed boundary conditions E(R1) could be sufficient for the solution
Dpsin(=6) <z if 6(z)<0 to satisfy the above equations when perpendicular lamellae are actually
and for the upper hard surface, preferred.
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