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Coarse Brownian dynamics for nematic liquid crystals:
Bifurcation, projective integration, and control via stochastic simulation
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We demonstrate how time integration of stochastic differential equations~i.e., Brownian dynamics
simulations! can be combined with continuum numerical analysis techniques to analyze the
dynamics of liquid crystalline polymers~LCPs!. Sidestepping the necessity of obtaining explicit
closures, the approach analyzes the~unavailable in closed form! ‘‘coarse’’ macroscopic equations,
estimating the necessary quantities through appropriately initialized, short ‘‘bursts’’ of Brownian
dynamics simulation. Through this approach, both stable and unstable branches of the equilibrium
bifurcation diagram are obtained for the Doi model of LCPs and their ‘‘coarse stability’’ is
estimated. Additional macroscopic computational tasks enabled through this approach, such as
coarse projective integration and coarse stabilizing controller design, are also demonstrated.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1572456#
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I. INTRODUCTION

Liquid crystalline polymers~LCPs! are large molecules
that generally contain long rigid or semirigid segments. B
cause of these rigid units, they can display phase transit
between isotropic and highly oriented~nematic! states as
temperature or concentration is changed. These mate
have desirable properties for applications~such as high
modulus in the solid phase but low viscosity in the melt! and
display a rich variety of phase behavior, especially un
flow.1

Rheological predictions of the behavior of complex fl
ids like these often start with the derivation of macroscop
approximate equations for quantities of interest~order pa-
rameters! using various~frequentlyad hoc! closure approxi-
mations; one then brings to bear, on these closed equat
general mathematical techniques for the computation, sta
ity, and parametric analysis of evolution equations@ordinary
or partial differential equations~ODEs or PDEs!#. The diffi-
culty in obtaining accurate closures has motivated the ex
sive, in recent years, use of direct simulations, either of
PDE governing the orientation distribution function or of t
equivalent stochastic differential equation, via ‘‘Brownia
dynamics’’ ~BD! simulations. The latter have the advanta
that they are amenable to use with models with many in
nal degrees of freedom~as opposed to the PDE approach
which the ‘‘curse of dimensionality’’ precludes realist
computation.2 BD methods have begun to be used in com
nation with computational fluid dynamics methods to sim
late the behavior of complex fluids in spatially inhomog
neous flows.3–14 In particular ~see Ref. 12!, a ‘‘lift-run-

a!Author to whom correspondence should be addressed.
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restrict’’ procedure related to the one described below can
used as part of an operator-splitting time-integration sche
to simulate spatially inhomogeneous problems for a limi
number of ensemble-averaged quantities, thus dramatic
reducing the number of PDEs that need to be integrated

While direct temporal simulation~i.e., straight time inte-
gration! can be successfully performed by stochastic ti
integration, such simulations are not directly amenable
bifurcation analysis, the direct determination and charac
ization of the parameter dependence of the long-te
coarse-grained~or simply ‘‘coarse’’! macroscopic dynamics
In this paper we demonstrate in the Brownian dynamics c
text a computer-assisted approach that aspires to bridge
roscopic numerical analysis techniques for the~unavailable!
closed equationsdirectly with microscopic/stochastic simula
tion codes~microscopic and stochastic time steppers!. This
system-identification-based, computational ‘‘closure-o
demand’’ approach sidesteps the necessity of deriving g
explicit closures. It enables state-of-the-art microsco
codes, by wrapping a computational superstructure aro
them, to perform tasks they have not in principle been
signed for. Coarse bifurcation analysis, coarse control,
coarse projective integration are three such tasks we
illustrate here; the focus will be on the former.

We choose a simple model for the dynamics of LCPs
a prototype with which to illustrate our computational a
proach. For a quiescent solution of rigid rod molecules
simple model of the dynamics of the single-particle orien
tional probability distribution functionc ~ u! is given by the
Smoluchowski equation

]c~u!

]t
5D

]

]u
•F]c~u!

]u
1c~u!

]

]u S V@c,u#

kT D G , ~1!
9 © 2003 American Institute of Physics
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whereu is a unit vector describing orientation,]/]u is the
gradient operator restricted to the unit sphere,k is Boltz-
mann’s constant,T is absolute temperature,D is the rota-
tional diffusivity, here set to unity, andV@c,u# is a nematic
potential, a functional of the distribution function that d
scribes the free energy associated with a molecule with
entationu interacting with its neighbors purely through e
cluded volume forces.1,15 We use the simple Maier–Saup
potential

V@c,u#52 3
2 Uuu:S, ~2!

whereS5^uu&21
3I is the tensororder parameter and̂f (u)&

5*c(u) f (u)du. The parameterU ~the intensity of the nem-
atic potential! can be thought of as proportional to the co
centration of the rods. Ifl is the eigenvalue ofS with the
largest magnitude, the so-calledscalar order parameter Sis
given by S53l/2. The isotropic phase is represented byS
50; it is straightforward to show that this state exists fo
quiescent solution for all values ofU. However, whenU
.Ucr55 this state becomes unstable, and a numer
method is required to analyze the full nonlinear behavior
the equation.15,16 It is the resulting bifurcation behavior, th
bifurcation diagram of thestochastically estimated order pa
rameter, that, as we demonstrate, can be captured by stoc
tic simulation methods.

The evolution of the distribution function can also b
represented by a stochastic~integro-!differential equation17

du5~ I2uu!•S 2
D

kT

]V

]u
dt1A2DdwD , ~3!

where dw is a Wiener process with covarianceIdt. It is
straightforward to time-integrate this equation with stoch
tic simulation techniques. We solved it numerically for
ensemble of trajectories$u%5$ui(t): i 51,Nt% and ensemble
averageŝ f (u)& were evaluated as (1/N)( i 51

Nt f (ui). We use
here an explicit Euler method used in previous studies
liquid crystalline polymers~e.g., Ref. 17!:

ui~ t1Dt !5

ui~ t !2
D

kT

]V

]uU
t

Dt1A2DDwi

Iui~ t !2
D

kT

]V

]uU
t

Dt1A2DDwi I , ~4!

where Dw has zero mean and covarianceIDt. To obtain
first-order weak convergence~i.e., convergence of ensemb
averages! in Dt, it is not required thatDw be Gaussian;18 we
sample from a uniform distribution.

To perform bifurcation analysis with this stochastic pr
cess, we actually analyze the evolution of ensemble avera
properties. Thecoarse time stepperconsists of the following.

~a! The choice of an order parameter at the level
which we believe that a coarse deterministic evolution eq
tion exists and closes. We choose as our order paramete
quantity 3

2(^uz
2&2 1

3), which, in a slight abuse of notation, w
will also call S.

~b! The choice of a~nonunique, one-many! lifting op-
eratorm that maps the macroscopic descriptionS to one or
more microscopic descriptions consistent with it. Here
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‘‘microscopic’’ detailed description is the distributionu. The
lifting step constructsu(S0) distributionsconditioned ona
givenS0 ; our particular choice of lifting is described in mor
detail below.

~c! The evolution~through the stochastic integrator! of
the ‘‘lifts’’ u(S0) for a short macroscopictime horizonT.
This time is associated with the existence of a spectral ga~a
separation of time scales in the Smoluchowski equation! and
will be further discussed below.

~d! The choice of arestriction operatorM from the mi-
croscopic description~distributions! to the corresponding
macroscopic description~moments of the final distributions
possibly averaged over several initial distributions!.

The combination of these steps gives us thecoarsetime
stepper: an estimation ofS(t5T), the result of integrating
the ~unavailable in closed form! equation forS with initial
conditionS(t50) for time T; the coarse time stepper is re
lated to the optimal predictors of Chorin and co-workers19

here, we exploit the initial short microscopic simulation
‘‘close’’ the unavailable equation. For the procedure to
practically successful, it is important that a separation
time scales exist in the evolution of the distributionu. In
particular, consider a discretization ofu in terms of~a suffi-
ciently large number of! its moments. We expect that, for th
conditions of interest, this is a singularly perturbed proble
the discretized system of coupled nonlinear ODEs for
moments evolves quickly to a one-dimensional slow ma
fold parametrized byS. This slow manifold~which can be
thought of as a center manifold or possibly even an iner
manifold! is a graph of a function overS; all moments
quickly become ‘‘slaved to’’—evolve to become functiona
of—S. While the conditions for such a ‘‘fast’’ slaving to oc
cur may not be easy to explicitly write down or verify in
particular simulation, it is still interesting to present the fo
lowing heuristic argument. If we work in a regime in whic
we believe that a deterministicclosedevolution equation can
be written forS only, then such a separation of time scal
must be valid. For, if the higher moments did not quickl
evolve to functionals ofS, the scalar initial valueS(t50)
would not be sufficient to deterministically predictS later on
in time in a simulation or an experiment: the actual init
values of the higher moments would significantly affe
S(t5T).

Consider, as an illustration, an isothermal molecu
simulation of a practically Newtonian fluid: if the stresses
the initial configuration are not proportional to velocity gr
dients, they would very quickly become so. Newton’s law
viscosity then implicitly defines the ‘‘slow manifold’’ on
which fields of higher moments of the molecular distributi
are slaved to the lowest two ‘‘determining’’ moment field
density and momentum. The Navier–Stokes equation t
becomes a sort of ‘‘approximate inertial form’’ for the hie
archy of moments of the Boltzmann equation. In a simi
sense, the Smoluchowski equation above is a sort of ‘‘
proximate inertial form’’ for the detailed system Fokker
Planck coarse grained in terms of the single-particle orien
tional probability density.

The coarse variable we ‘‘evolve’’ in our simulation i
3
2(^uz

2&2 1
3) ([S), a simple measure of the degree of orie
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10151J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Brownian dynamics for liquid crystals
tation. We initialize the orientation vectors as 3-vectors
full space, but constrained to lie on the unit sphere; thz
~vertical! direction thus determines the north and south po
of the sphere. The most important issue in our computati
is the lifting step: how to ‘‘reconstruct’’ or ‘‘initialize’’ a full
distribution function$u% given a specified valueE for ^uz

2&.
There is clearly no unique solution to this problem~the lift-
ing operator is not unique!. A simple strategy that we find to
be effective both here and in a related application to spati
varying systems12 is a minimization with respect to ana
priori chosen reference ensemble$uref%. That is, we seek an
ensemble$u%5$uref1Du% and determine$Du% by solving
the minimization problem

min^Du•Du&, s.t.̂ ~uref1Du!z
2&5E. ~5!

This problem can be reduced to a linear least-squares p
lem if the Du are sufficiently small. For an isotropic refe
ence distribution, it is straightforward to show that the mi
mal corrections in the linearized problem have no compon
in the x or y direction, and thez component can be foun
analytically. Our procedure, then, is to solve the lineariz
version of Eq.~5! for Duz . Then thex andy components of
Du are obtained by requiring it to be a unit vector with t
same azimuthal angle as the corresponding reference v
~in spherical coordinates where the polar angle is meas
from thez axis!. We note that this ‘‘lifting’’ procedure always
yields distributions that are~statistically! axisymmetric with
respect to thez axis; such distributions constitute an inva
ant, though not necessarily stable, subspace for the Sm
chowski problem. As we will see below, we have also fou
it useful to construct initial ensembles conditioned not o
on the value of̂ uz

2&, but also on thestandard deviation

s5S 1

N21 (
i 51

N

~uzi2uzi!
2D 1/2

.

After initializing a distribution conditioned onS, additional
particles were inserted to impose the desired variance w
preserving the value ofS.

A final note before moving on to the results. This pro
lem is in fact a highly degenerate one—there are two c
tinuous ~rotational! symmetries and no preferred directio
so it isO(3) equivariant.20 The trivial ~isotropic random ori-
entation of molecules! solution is spherically symmetric—
invariant under polar or azimuthal rotations. The states
bifurcate from this can have arbitrary orientation, soS is only
unique to within a pair of rotations. Bifurcation problems
this nature are actually rather difficult to numerically stud
unless the algorithm ‘‘knows’’ about the symmetries. He
the restriction operator constrains the solution behavior
one-dimensional subspace of the global stable manifold,
ducing the bifurcation problem to a generic one that is ea
treated by standard methods~the invariances have been fa
tored out!. Furthermore, the lift operator, because it uses
isotropic distribution as a reference, keeps initial conditio
close to the axisymmetric invariant subspace. The down
to this restriction is that the stability predictions made h
are only valid in the subspace considered. Nevertheless,
bility in the unrestricted space can be determined straight
wardly upon location of the steady state, by linearization a
Downloaded 22 Feb 2007 to 128.104.198.190. Redistribution subject to A
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eigenanalysis in the full space. It is worth mentioning t
recent development of a template-based method that all
the dynamic factoring out of symmetry; this method is app
cable to general systems with symmetry and even to s
similar dynamical systems.21,22

II. SIMULATION RESULTS

A. Coarse bifurcation analysis for the nematic
Brownian dynamics model

We found the steady-state bifurcation diagram forSas a
sequence of fixed points of the coarse time stepperFT :

S~ t5T![FT„S~ t50!…5MUT~u0!5MUT~mE!,

the result of lifting consistentlyS(t50)5E to an initial dis-
tribution u05mE, evolving the stochastic differential equa
tions for the distribution$u0% over a time interval or report-
ing horizon T to the final distributionUT , and restricting
back toS5MU. The ~coarse! derivatives for the Newton–
Raphson fixed-point iteration were estimated numerica
through application of the coarse time stepper to nearbS
initial conditions. For higher-dimensional systems, Newto
Krylov-type methods are used, based on iterative identifi
tion of the slow subspace of the linearization of the tim
stepper~for the deterministic analog see Ref. 23!. Stability
~the leading part of the spectrum of the linearization of t
dynamic problem at stationarity! can be deduced from th
linearization of the coarse time stepper at its fixed po
Here this is a scalar quantity—a single ‘‘multiplier’’ for th
discrete-time system, from which a single ‘‘exponent’’~the
eigenvalue of the corresponding continuous time system! is
deduced. In problems with more degrees of freedom, it is
leading~slow! part of the Jacobian that is approximated a
by-product of procedures like the recursive projecti
method of Shroff and Keller24 for deterministic problems. If
the steady state is known, then matrix-free algorithms like
Arnoldi procedure can be used to estimate the slow subsp
of the coarse time stepper. This was first used in macrosc
flow computations by Christodoulou and Scriven23 and in
viscoelastic computations by Ramanan, Kumar, a
Graham.25 Somasi and Khomami have used transient mic
scopic simulations to quantify coarse stability.10,11

The coarse time-stepper-based fixed-point algorithm~es-
sentially a Newton–Raphson algorithm! was combined with
arclength continuation and branch-switching algorithms. T
coarse bifurcation diagram of the order parameter, the lar
eigenvalue of the second-rank order tensorS with respect to
the potential intensityU, is shown in Fig. 1. It was compute
@upon convergence of the Newton–Raphson algorithm t
residual ofO(1024), for perturbationse;1022], using the
microscopic Brownian dynamics simulator. The compu
tional parameters were the number of trajectoriesNtraj53
3105, time-reporting horizonT51.75, and an inner Eule
integrator step set toDt50.0005~the sensitivity of the re-
sults to the latter was also carefully monitored!. These results
should be compared with Fig. 1 of Faraoniet al.,16 where the
bifurcation diagram is computed from a standard bifurcat
analysis of a spherical harmonics Galerkin expansion of
Smoluchowski equation.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The isotropic~‘‘flat’’ ! solution loses stability at what ap
pears~for our scalar coarse variable! like a transcritical bi-
furcation at a critical potentialUcr , giving rise to two par-
tially oriented anisotropic solutions. The predicted critic
value of Ucr as calculated with our ‘‘coarse Brownian dy
namics’’ procedure was found to beUcr55.01 and agrees
within 0.2% with the predictions of the Smoluchowski equ
tion. A turning point was found to be on the subcritical pr

FIG. 1. Coarse bifurcation diagram for the nematic model forNtraj53
3105, dt50.0005,T51.75; solid~open! rhombs and circles correspond t
stable~unstable! stationary states. These are obtained as fixed points of
coarse BD time stepper.
Downloaded 22 Feb 2007 to 128.104.198.190. Redistribution subject to A
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late (S.0, nematic! branch atU* '4.6 ~within 2.2% of the
predictions obtained using the discretized Smoluchow
equation!. The stability of the linearized system is monitore
by computing the norm of the eigenvalues that cross the
circle. The stability results here are consistent with tho
dictated by bifurcation theory: solutions on the subcritic
prolate branch are unstable betweenU* ,U,Ucr and regain
stability past the turning point~for U.U* ); solutions on the
oblate branch (S,0) appearstable in these computations
Extensive time evolution of the stochastic system shows
the oblate branch is indeed unstable with respect to per
bations that drive it to a prolate branch that does not have
z axisymmetry imposed by our lifting step.

It is interesting to consider theapparent stabilityof the
computed oblate branch. We know from fully discretiz
Smoluchowski simulations that this branch isunstable. It is
actually a saddle branch: most directions in phase space
attracted to the steady states, and only the ones destabi
at Ucr are unstable. Close toUcr these unstable modes are
slow, that the BD simulator, depending on its time horizo
does not initially ‘‘see’’ the instability@see Figs. 2~b!–2~d!#,
considering this direction as practically neutral. It records
movement along one of the slowest attracting direction a
reports the steady state as stable. Of course, if we let
time-reporting horizon of the time stepper grow longer, t
instability will be correctly characterized. This might appe
at first sight as a defect of the approach; on the contrary,

e

ffects,
t.
FIG. 2. Evolution of^uz
2& for different initial values, intensity potentials and stochastic integrator time steps.~a!, ~b! U56.5, Ntraj5103, dt50.001,~c! U

55.5, Ntraj5103, dt50.001,~d! U55.5, Ntraj533105, dt50.0005. The purpose of the figure is to illustrate some of the parametric and numerical e
but also to show that initial transients may linger enough around an unstable stationary state for the coarse time stepper to find it as a fixed poin
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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believe that it may be a strong point. What the coarse t
stepper reports is the expected behaviorover the simulation
ensemble and time horizon chosen. It is well known that
different apparent dynamics occur when one studies a n
phenomenon at different time levels. Instead of deriving d
ferent equations for the expected behavior over different t
scales, we can in principle analyze the behavior of sev
such ‘‘layers’’ using thesameinner detailed simulator, bu
tailoring the simulation ensemble~initial conditions and ob-
servation time! to the ‘‘layer’’ of interest~see Ref. 26 for a
discussion!.

Figure 3 illustrates the computed exchange of stability
Ucr ; rhombs correspond to the eigenvalues calculated on
flat branch, while circles correspond to the ones calcula
on the branch containing the turning point. The above coa
bifurcation analysis is based on the hypothesis that a ma
scopic coarse model existsand closesfor S, a single statistic
of the underlying microscopic distribution. This implies th
higher-order moments of theu distribution become quickly
enslavedto lower ones~they evolve towards a ‘‘slow mani
fold’’ parametrized by the lower ones!. Computational results
corroborating this can be seen in Fig. 4, which illustra
~both in terms of the direct and of the cumulative distrib
tion! the ‘‘initial fast’’ and ‘‘subsequent slow’’ evolution
stages.

A ‘‘phase portrait’’ of the trajectories of a few differen
evolving distributions is seen in Fig. 5, where two mome
of the distributions are plotted:S as well ass, the standard
deviation of the microscopic distribution in thez direction
~which is a ‘‘higher’’ thanS moment in the correspondin
hierarchy!. A one-dimensional slow manifold parametrize
by S is clear in the picture; all three coarse steady sta
clearly lie on this manifold.

It is interesting to consider thetransient approachof
various initial distributions to this manifold. As we have po
tulated in kinetic Monte Carlo and lattice Boltzmann co
texts, three time scales exist at this resolution:~a! an initial

FIG. 3. Exchange of stability atUcr ; rhombs correspond to the coars
eigenvalues calculated on the isotropic branch, while circles correspon
the ones calculated on the prolate branch.
Downloaded 22 Feb 2007 to 128.104.198.190. Redistribution subject to A
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very fast collapse onto a two-dimensional slow manifold p
rametrized byS and s ~this is the ‘‘healing’’ of the errors
made in the lifting step26–29!; ~b! this is followed by a some-
what slower approach to the one-dimensional slow manifo
parametrized byS; and finally ~c! a ‘‘slow’’ approach to the
ultimate steady state on this slow manifold.

It is interesting that when we ‘‘lift’’~i.e., condition the
microscopic distributions on two coarse variablesS and s!
we have a two-dimensional time stepper, and its fixed poi
upon convergence of the Newton–Raphson algorithm t
residual ofO(1024) for e;1022, possess two eigenvalue
~multipliers!, representative of the corresponding relaxati
times. In the particular case shown~at U54.75 usingNtraj

5105) the two eigenvalues were found to bel150.18 ~the
corresponding eigenvector is depicted with the dashed l!
and l250.001 ~the corresponding eigenvector is depict
with the dotted line!. This implies that the~discrete time!
evolution of the second ‘‘coarse mode’’ is about 500 fas
than the first ‘‘coarse mode,’’ the slowest, governing on
Notice that the eigenvector corresponding to the slow eig
value is aligned with the~visually apparent! one-dimensional
slow manifold. Our computational results at this level of a

to

FIG. 4. ~a! Evolution of the distribution function ofu ~histogram! in the z
direction. The values in thez direction were partitioned in 100 bins.~b!
Evolution of the corresponding cumulative distribution function ofu in the
z direction. The simulations were performed atU55.5, Ntraj5103, dt
50.001.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 5. Phase portrait~in S and standard deviations! at U54.75. The results are obtained through the coarse BD time stepper usingNtraj5105 and dt
50.0005; the dashed line depicts the coarse eigenvector corresponding tol150.18, while the dotted one depicts the coarse eigenvector correspondi
l250.001. The ‘‘noisy’’ lines are stochastic simulations, showing two stages, fast followed by slow, of coarse decay to the stationary state~this is more
marked in the blowup close to the top left stable stationary state!. The solid curve is the one-dimensional ‘‘slow manifold’’ on which all long-term dynam
lie ~including the three marked coarse stationary states!.
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curacy were converged with respect to the number of tra
tories and the inner step of the Euler microscopic integra
This is the first time we have been able to quantitativ
confirm that one moment of the distribution is sufficient
close a deterministic equation.

It makes sense to begin such computations in a reg
where we know at least at what level one might obtain c
sures~at these values ofU and in the absence of shear, it w
known that one can close withS only!. What happens as w
approach~in a continuation environment! conditions where
the closure will fail? The situation is discussed in detail
Ref. 26: moments ‘‘higher up’’ in the hierarchy, which we
fast enough for lowerU, start becoming slow. We must the
augment the set of independent coarse variables; the s
‘‘lift-run-restrict’’ procedure can be used for coarse comp
tation as long as we simply ‘‘lift’’~construct distributions
conditioned on! a higher number of momentsas independen
coarse variables~e.g., see Ref. 12!. Performing such a chec
regularly along a continuation branch~keeping track of
whether the ‘‘next fastest’’ mode is still fast enough to g
enslaved over our reporting horizon! is the analog, in our
case, of checking from time to time whether the mesh fo
given discretization problem needs refinement or not.

B. Coarse control for the nematic Brownian
dynamics model

The proposed computational framework serves as a ‘‘
in time’’ or ‘‘on demand’’30 computational closure method
ology that allows the identification, from short computation
experiments, of coarse time derivatives, ‘‘coarse slow’’ Ja
bians, coarse derivatives with respect to parameters,
These quantities are used in conjunction with tradition
continuum scientific computation to find coarse fixed poin
These fixed points, along with the coarse linearizat
around them, are precisely the ‘‘systems level’’ informati
required by a linear control design algorithm. It becom
then possible to invoke such algorithms and design co
observers and controllers that will stabilize coarse unsta
stationary states; extensions to nonlinear control are stra
forward.
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For demonstration we designed a stabilizing contro
for the macroscopicunstablestationary state atU054.7.
This coarse steady state@evaluated through theT51.75
coarse Brownian time stepper, upon convergence of
Newton iteration to a residual ofO(1025) for e;1022] is
S0'0.15. It is assumed that the discrete model describing
system behavior around the equilibrium is given by the st
dard discrete time stochastic state-space model:x(k11)
5Ax(k)1Bu(k)1w(k); here, w(k) denotes the proces
noise. At the steady state, the estimates of the~scalar, since
the problem is one dimensional! JacobianA and control ma-
trix B were found to beA'1.53 andB'0.33. Actually, this
information is a by-product of the fixed-point–continuatio
procedure for estimating the location of the coarse ste
states. At this point we should note that for coarse large-s
problems~such as those arising in discretized coarse PDE!,
Newton–Picard-type algorithms~e.g., the RPM algorithm!
can be used to derive the ‘‘coarseslow’’ Jacobian matrices.
We employ our bifurcation parameterU, the intensity of the
nematic potential, as the control actuator. We used a lin
feedback controller of the formU(t)2U0[u(t)52K(S
2S0). For our illustrations, we aimed at stabilizing the u
stable coarse steady state by placing the coarse eigenval
l'0.95 with a sampling timeDT5dt50.005; the required
control gain was found to beK'54. The number of trajec-
tories was set toNtraj533103. If necessary, a Kalman filte
could also have been constructed based on the co
information.31 The open- and closed-loop responses
shown in Fig. 6.

C. Coarse projective integration of the Brownian
dynamics model

We have demonstrated that our coarse ‘‘lift-run-restric
procedure can be used to enable the performance of se
numerical tasks~bifurcation, continuation, stability analysis
and control! directly at the macroscopic level, sidesteppi
the necessity to obtain explicit macroscopic closures. We
now briefly demonstrate that this procedure can also be u
to accelerate the time evolution computations directly. T
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 6. Stabilizing an unstable steady state~at U054.7); Ntraj533103, ~a! open-loop response~dotted line!; closed-loop response~solid line!, ~b! closed
response of the control variableU ~dashed lines correspond to nominal values!.
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method to accomplish this, called ‘‘coarse projective integ
tion,’’ is described in more detail in Refs. 29 and 32. Here
only demonstrate its simplest realization~the coarse forward
Euler projective method!.

The main idea is to consider the computations t
would have been performed, had an explicit closure b
available@in the form of a scalar ODE in the formdS/dt
5 f (S)]. Given an initial conditionS(t50)5S0 a simple,
explicit, forward Euler integration~with time stepDt) would
give S(t5Dt)5S01Dt f (S0). Since the time derivative
functional form f (•) is not explicitly available, weestimate
it from short-duration BD simulations initialized consistent
with S0 . The steps of the algorithm are then as follow
~given the lifting and restriction operator choices we d
cussed above!:

~a! Select an initial conditionS0 .
~b! Lift it to one ~or more! consistent microscopic dis

tributions,u05mS0 .
~c! Evolve microscopically for enough timet1 for the

lifting errors to heal, and restrict toS15M„u(t5t1)…; evolve
a little longer, until timet2 , restrict toS25M„u(t5t2)….

~d! Use the difference (S22S1)/(t22t1) to estimate the
derivativedS/dtu t5t2

.
~e! Project in the future to an estimateS(t5t3)5S2

1(t32t2)(S22S1)/(t22t1).
~f! Return to step~b!.
One can clearly see an ‘‘inner’’ integrator~the BD simu-

lator! and an ‘‘outer’’ integrator~a forward Euler method tha
uses the results of the inner integrator!. This is the simplest
form of the coarse projective forward Euler method, w
simple differencing for the estimation of derivatives; mu
more sophisticated components can be used in assem
such multilevel integration schemes, but the idea remains
same. The numerical analysis of these algorithms is the
ject of extensive research,32 as are the issues of modifyin
them for the case where the ‘‘inner’’ evolution code is
microscopic–stochastic code~here, the BD simulator!. Our
purpose here is not to analyze these algorithms, but jus
illustrate their underlying principle. This is accomplished
Fig. 7, where short bursts of BD simulation~marked with
asterisks! are used to estimate~after an initial transient! the
Downloaded 22 Feb 2007 to 128.104.198.190. Redistribution subject to A
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time derivativedS/dt. This quantity is then used to perform
a ‘‘projection’’ into the future~predict the expected value o
S after some time!. The procedure is then repeated: we l
from the predicted value ofS to a new microscopic distribu
tion, run for some time to obtain a new estimate ofdS/dt,
project again, and so on. For comparison, we have inclu
in the Fig. 7 the projection~on S! of a long, uninterrupted
BD transient. It is clear that, in this case, the procedure ev
tually saves us 60% of the BD simulation flops~the projec-
tion time interval is 3/2 the BD evolution one!. The errors
made when lifting from the ‘‘projected in time’’ value ofS
are seen to quickly ‘‘heal’’ as the BD simulation is restarte
This is a consequence of the exponential attractivity of
‘‘slow manifold’’ parametrized by our coarse variableS.

III. DISCUSSION AND CONCLUSIONS

We presented and illustrated, in a Brownian dynam
context, a computational methodology for the coarse, mu
scale computational study of microscopic stochastic simu
tors. Our example was the ‘‘enabling’’ of Brownian dynam
ics simulators of nematic liquid crystal models to perfor
macroscopic tasks such as the location of stable and uns
coarse stationary states, their stability, continuation, and
furcation analysis, as well as additional tasks~controller de-
sign, coarse projective integration, etc.!. We believe that
these computer-assisted techniques, grounded in the p
of an ‘‘inner’’ microscopic simulator and based on thecon-
ceptualexistence of a macroscopic closure, offer the prom
of a new bridge across the scale gap, between ‘‘the b
available’’ microscopic–stochastic simulators and their m
roscopic, coarse dynamics. Based on the separation of
scales that fundamentally underlies macroscopic determ
tic equations, these algorithms sidestep the derivation of
plicit equations, but do allow the use of a large arsenal
‘‘equation-based tools,’’ developed for continuum models,
be used directly on the microscopic solvers. Many ‘‘sy
tems’’ tools, ranging from system identification and filterin
to variance reduction and matrix free iterative linear alge
methods, form part of this bridge. An extensive discussion
the overall approach can be found in Ref. 29.
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What we presented here was a simpleillustrative ex-
ample: we applied the method on a stochastic realization
knownSmoluchowski equation, so as to demonstrate its
lient features in a case where the ‘‘correct dynamics’’ we
known. It is important, however, to point immediately o
that the method can be used in precisely the same way w
the Smoluchowski equation isnot accurately known~e.g., in
the case of molecules comprised of several bead-spring
ments! or in cases where the inner solver may be of a diff
ent nature~e.g., MD as opposed to BD!.

The fundamental underlying principle of this ‘‘comput
tional enabling technology’’ is the smoothness, or regular
of the expected behavior with respect to time~allowing us to
estimate coarse temporal derivatives in projective integ
tion! and with respect to the variables themselves~so that the
action of coarse slow Jacobians can be estimated for b
cation computations!. It is worth mentioning that a simila
regularity of the coarse behaviorbut now in macroscopic
spaceallows, under certain circumstances, the lifting to
performed not over a full computational domain, but on
over small computational ‘‘patches.’’ The microscopic sim
lation is then performed over such patches~communicating
with each other through a coarse macroscopic field only!.12,29

The conditions under which one can exploit such ‘‘sho
space’’–‘‘short-time’’ microscopic simulations, using reg
larity in space and time to interpolate coarse macrosco
fields and projectively integrate them in time, is discussed
detail in Ref. 29.
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