JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 22 8 JUNE 2003

Coarse Brownian dynamics for nematic liquid crystals:
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We demonstrate how time integration of stochastic differential equatiensBrownian dynamics
simulationg can be combined with continuum numerical analysis techniques to analyze the
dynamics of liquid crystalline polymerd CPs. Sidestepping the necessity of obtaining explicit
closures, the approach analyzes theavailable in closed forjr‘coarse” macroscopic equations,
estimating the necessary quantities through appropriately initialized, short “bursts” of Brownian
dynamics simulation. Through this approach, both stable and unstable branches of the equilibrium
bifurcation diagram are obtained for the Doi model of LCPs and their “coarse stability” is
estimated. Additional macroscopic computational tasks enabled through this approach, such as
coarse projective integration and coarse stabilizing controller design, are also demonstrated.
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I. INTRODUCTION restrict” procedure related to the one described below can be
used as part of an operator-splitting time-integration scheme
Liquid crystalline polymergLCPs are large molecules to simulate spatially inhomogeneous problems for a limited
that generally contain long rigid or semirigid segments. Benumber of ensemble-averaged quantities, thus dramatically
cause of these rigid units, they can display phase transitiongducing the number of PDEs that need to be integrated.
between isotropic and highly orientdgiematio states as While direct temporal simulatiofi.e., straight time inte-
temperature or concentration is changed. These materiadfration can be successfully performed by stochastic time
have desirable properties for applicatiofsuch as high integration, such simulations are not directly amenable to
modulus in the solid phase but low viscosity in the malid  bifurcation analysis, the direct determination and character-
display a rich variety of phase behavior, especially undeization of the parameter dependence of the long-term,
flow. coarse-grainedor simply “coarse” macroscopic dynamics.
Rheological predictions of the behavior of complex flu- In this paper we demonstrate in the Brownian dynamics con-
ids like these often start with the derivation of macroscopictext a computer-assisted approach that aspires to bridge mac-
approximate equations for quantities of interéstder pa-  roscopic numerical analysis techniques for (bieavailable
rameter$ using varioudfrequentlyad hog closure approxi- closed equationdirectly with microscopic/stochastic simula-
mations; one then brings to bear, on these closed equationgon codes(microscopic and stochastic time steppef&his
general mathematical techniques for the computation, stabikystem-identification-based, computational “closure-on-
ity, and parametric analysis of evolution equatiposdinary ~ demand” approach sidesteps the necessity of deriving good
or partial differential equation€ODEs or PDE¥|. The diffi-  explicit closures. It enables state-of-the-art microscopic
culty in obtaining accurate closures has motivated the extercodes, by wrapping a computational superstructure around
sive, in recent years, use of direct simulations, either of thenem, to perform tasks they have not in principle been de-
PDE governing the orientation distribution function or of the signed for. Coarse bifurcation analysis, coarse control, and
equivalent stochastic differential equation, via “Brownian coarse projective integration are three such tasks we will
dynamics” (BD) simulations. The latter have the advantageillustrate here; the focus will be on the former.
that they are amenable to use with models with many inter-  We choose a simple model for the dynamics of LCPs as
nal degrees of freedoifas opposed to the PDE approach ina prototype with which to illustrate our computational ap-
which the “curse of dimensionality” precludes realistic proach. For a quiescent solution of rigid rod molecules, a
computatiorf. BD methods have begun to be used in combi-simple model of the dynamics of the single-particle orienta-
nation with computational fluid dynamics methods to simu-tional probability distribution functiony(u) is given by the
late the behavior of complex fluids in spatially inhomoge-Smoluchowski equation
neous flows ™ In particular (see Ref. 12 a “lift-run-

P(u) 9 | dp(u) U 9 [VI,u] 0
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whereu is a unit vector describing orientatios/ou is the  “microscopic” detailed description is the distributian The
gradient operator restricted to the unit sphekas Boltz-  lifting step constructau(S,) distributionsconditioned ona
mann’s constantT is absolute temperatur® is the rota- givenSy; our particular choice of lifting is described in more
tional diffusivity, here set to unity, and[ ¢,u] is a nematic  detail below.

potential, a functional of the distribution function that de- (c) The evolution(through the stochastic integratasf
scribes the free energy associated with a molecule with orithe “lifts” u(S,) for a short macroscopidime horizonT.
entationu interacting with its neighbors purely through ex- This time is associated with the existence of a spectralgap
cluded volume forces™ We use the simple Maier—Saupe separation of time scales in the Smoluchowski equitiornl

potential will be further discussed below.
. (d) The choice of aestriction operatorM from the mi-
V[gu]=—z0uus, (20 croscopic descriptiondistributions to the corresponding

macroscopic descriptiotmoments of the final distributions,
possibly averaged over several initial distributipns

The combination of these steps gives ustharsetime
stepper: an estimation &(t=T), the result of integrating
the (unavailable in closed forjnequation forS with initial
conditionS(t=0) for time T; the coarse time stepper is re-
lated to the optimal predictors of Chorin and co-workErs;
here, we exploit the initial short microscopic simulation to
>U,=5 this state becomes unstable, and a numerica‘iclose" the unavailable equation. For the procedure to be

method is required to analyze the full nonlinear behavior ofPractically successtul, it is important that a separation of
the equatiot®18 1t is the resulting bifurcation behavior, the time scales exist in the evolution of the distributian In
bifurcation diagram of thetochastically estimated order pa- Particular, consider a discretization ofin terms of(a suffi-
rameter that, as we demonstrate, can be captured by stochaSieNtly large number gfits moments. We expect that, for the

where S=(uu)—3l is thetensororder parameter angf (u))

= [¢(u)f(u)du. The paramete (the intensity of the nem-
atic potential can be thought of as proportional to the con-
centration of the rods. Ik is the eigenvalue o with the
largest magnitude, the so-callsdalar order parameter &
given by S=3\/2. The isotropic phase is represented y
=0; it is straightforward to show that this state exists for a
quiescent solution for all values af. However, whenU

tic simulation methods. conditions of interest, this is a singularly perturbed problem:
The evolution of the distribution function can also be the discretized system of coupled nonlinear ODEs for the
represented by a stochastintegroydifferential equatiol’ moments evolves quickly to a one-dimensional slow mani-

fold parametrized bys This slow manifold(which can be
D oV thought of as a center manifold or possibly even an inertial
du=(l-uu)-| =37 Zrdt+y2Ddw], 3 manifold is a graph of a function oves, all moments
] ] _ ) _ quickly become “slaved to"—evolve to become functionals
where dw is a Wiener process with covarian¢dt. It is  of_g Wwhile the conditions for such a “fast” slaving to oc-
straightforward to time-integrate this equation with stochasy,,, may not be easy to explicitly write down or verify in a
tic simulation techniques. We solved it numerically for anparticylar simulation, it is still interesting to present the fol-
ensemble of trajectoriefu} ={u;(t):i :1"\,!}} and ensemble |o\ing heuristic argument. If we work in a regime in which
averageg f(u)) were evaluated as (4, f(u;). We use e believe that a deterministifosedevolution equation can
here an explicit Euler method used in previous studies ohe written forS only then such a separation of time scales

liquid crystalline polymerge.g., Ref. 17. must be valid For, if the higher moments did not quickly
D oV evolve to functior_w_lls ofS, the scglgr _initial values(t=0)
ui(t)_ﬁ E’ At+2DAw; would not be sufficient to deterministically pred@tater on

t in time in a simulation or an experiment: the actual initial

ui(t+At)= D v : (4)

ui(t)_ﬁ %’ At+ \IZDAWi
t

values of the higher moments would significantly affect
S(t=T).

Consider, as an illustration, an isothermal molecular
where Aw has zero mean and covariant&t. To obtain  simulation of a practically Newtonian fluid: if the stresses at
first-order weak convergendee., convergence of ensemble the initial configuration are not proportional to velocity gra-
averageksin At, it is not required thaw be Gaussiaf®we  dients, they would very quickly become so. Newton’s law of
sample from a uniform distribution. viscosity then implicitly defines the “slow manifold” on

To perform bifurcation analysis with this stochastic pro- which fields of higher moments of the molecular distribution
cess, we actually analyze the evolution of ensemble averagede slaved to the lowest two “determining” moment fields:
properties. Theoarse time steppeaonsists of the following. density and momentum. The Navier—Stokes equation then

(&) The choice of an order parameter at the level ofbecomes a sort of “approximate inertial form” for the hier-
which we believe that a coarse deterministic evolution equaarchy of moments of the Boltzmann equation. In a similar
tion exists and closes. We choose as our order parameter tsense, the Smoluchowski equation above is a sort of “ap-
quantity%((uﬁ)—%), which, in a slight abuse of notation, we proximate inertial form” for the detailed system Fokker—

will also call S, Planck coarse grained in terms of the single-particle orienta-
(b) The choice of alnonunique, one-manyifting op-  tional probability density.
erator u that maps the macroscopic descripti®no one or The coarse variable we “evolve” in our simulation is

more microscopic descriptions consistent with it. Here the%((uf)—%) (=9), a simple measure of the degree of orien-
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tation. We initialize the orientation vectors as 3-vectors ineigenanalysis in the full space. It is worth mentioning the
full space, but constrained to lie on the unit sphere; zhe recent development of a template-based method that allows
(vertical direction thus determines the north and south poleshe dynamic factoring out of symmetry; this method is appli-
of the sphere. The most important issue in our computationsable to general systems with symmetry and even to self-
is thelifting step: how to “reconstruct” or “initialize” a full  similar dynamical systents:?2

distribution function{u} given a specified valug for (u?).

There is clearly no unique solution to this probléthe lift-

ing operator is not uniqueA simple strategy that we find to IIl. SIMULATION RESULTS

be effective both here and in a related application to spatiallya, Coarse bifurcation analysis for the nematic

varying system€ is a minimization with respect to aa  Brownian dynamics model

priori chosen reference ensemble.t. That is, we seek an
ensemble{u} ={u,+Au} and determine{Au} by solving
the minimization problem

min(Au-Au),  S.t{(Uert Au)2)=E. (5)

We found the steady-state bifurcation diagram3as a
sequence of fixed points of the coarse time stegdpger

S(t=T)=+(S(t=0))=MU7(ug) = MUr(E),

Thi bl be reduced i | the result of lifting consistentl(t=0)=E to an initial dis-
IS problem can be reduce to a linear eqst—squ_ares prOlE’ﬁbution upo= uE, evolving the stochastic differential equa-
lem if the Au are sufficiently small. For an isotropic refer-

distribution. it i iahtf q h hat the mi . tions for the distributioqug} over a time interval or report-
ence distribution, it is straightforward to show that the mlnl'ing horizon T to the final distributionU;, and restricting

mal corrections in the linearized problem have no componeny .\ +os=MU. The (coarse derivatives for the Newton—
n the.x ory direction, and the component can bg fouqd aphson fixed-point iteration were estimated numerically
analytlcally. Our procedure, then, is to solve the linearize hrough application of the coarse time stepper to ne@by
version of Eq(5) for Au,. Then thex andy components of initial conditions. For higher-dimensional systems, Newton—

Au are o_btalned by requiring it o be a ur_ut vector with the Krylov-type methods are used, based on iterative identifica-
same azimuthal angle as the corresponding reference VEChn of the slow subspace of the linearization of the time

(in sphericall coordinates wher.e the_ polar angle is measure epper(for the deterministic analog see Ref.)23tability
frpm the_z a.X'S)'. We note that th!s _In‘tmg p_rocedure.alwfays (the leading part of the spectrum of the linearization of the
yields distributions that aréstatistically axisymmetric with dynamic problem at stationaritcan be deduced from the
respect to the axis; such distributions constitute an invari- linearization of the coarse time stepper at its fixed point.

ant, tho'ugh not necessarlly stable, subspace for the Smo"!’—lere this is a scalar quantity—a single “multiplier” for the
chowski problem. As we will see below, we have also found i ote-time system, from which a single “exponefttie

it useful to constrzuct initial ensembles condition_ed. not Onlyeigenvalue of the corresponding continuous time sysiem
on the value ofuz), but also on thestandard deviation deduced. In problems with more degrees of freedom, it is the
1 N o\ leading(slow) part of the Jacobian that is approximated as a
o= mzl (Uzi—uz)?| . by-product of procedures like the recursive projection
' method of Shroff and Kelléf for deterministic problems. If
After initializing a distribution conditioned oS, additional the steady state is known, then matrix-free algorithms like an
particles were inserted to impose the desired variance whil&rnoldi procedure can be used to estimate the slow subspace
preserving the value d&. of the coarse time stepper. This was first used in macroscopic
A final note before moving on to the results. This prob-flow computations by Christodoulou and Scri¢&mnd in
lem is in fact a highly degenerate one—there are two conviscoelastic computations by Ramanan, Kumar, and
tinuous (rotationa) symmetries and no preferred direction, Grahan?® Somasi and Khomami have used transient micro-
so it isO(3) equivariant® The trivial (isotropic random ori-  scopic simulations to quantify coarse stabiffty!
entation of moleculessolution is spherically symmetric— The coarse time-stepper-based fixed-point algoritesa
invariant under polar or azimuthal rotations. The states thasentially a Newton—Raphson algorithrvas combined with
bifurcate from this can have arbitrary orientation,&s only  arclength continuation and branch-switching algorithms. The
unique to within a pair of rotations. Bifurcation problems of coarse bifurcation diagram of the order parameter, the largest
this nature are actually rather difficult to numerically study,eigenvalue of the second-rank order tenSavith respect to
unless the algorithm “knows” about the symmetries. Herethe potential intensity, is shown in Fig. 1. It was computed
the restriction operator constrains the solution behavior to upon convergence of the Newton—Raphson algorithm to a
one-dimensional subspace of the global stable manifold, reresidual ofO(10 %), for perturbationse~10 2], using the
ducing the bifurcation problem to a generic one that is easilynicroscopic Brownian dynamics simulator. The computa-
treated by standard metho@se invariances have been fac- tional parameters were the number of trajectofigg;=3
tored ouj. Furthermore, the lift operator, because it uses thex 10°, time-reporting horizonT=1.75, and an inner Euler
isotropic distribution as a reference, keeps initial conditiondntegrator step set tdt=0.0005(the sensitivity of the re-
close to the axisymmetric invariant subspace. The downsidsults to the latter was also carefully monitoyethese results
to this restriction is that the stability predictions made hereshould be compared with Fig. 1 of Faraetial,*® where the
are only valid in the subspace considered. Nevertheless, sthifurcation diagram is computed from a standard bifurcation
bility in the unrestricted space can be determined straightforanalysis of a spherical harmonics Galerkin expansion of the
wardly upon location of the steady state, by linearization andSmoluchowski equation.
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1 late (S>0, nemati¢ branch atU* ~4.6 (within 2.2% of the
S predictions obtained using the discretized Smoluchowski
S equation. The stability of the linearized system is monitored
L by computing the norm of the eigenvalues that cross the unit
05 1 . circle. The stability results here are consistent with those
{ dictated by bifurcation theory: solutions on the subcritical
% prolate branch are unstable betweé¢h<U<U_ and regain
%0, stability past the turning poirfor U>U?*); solutions on the
D¢---0--—-0 -~ ¢ -¢-9-06"00400___-0- -0 __-_-0_-__Z . .

, * e, oblate branch $<0) appearstable in these computations.

* . Extensive time evolution of the stochastic system shows that
the oblate branch is indeed unstable with respect to pertur-
bations that drive it to a prolate branch that does not have the

4 45 5 55 U 6 z axisymmetry imposed by our lifting step.
It is interesting to consider thapparent stabilityof the
FIG. 1. Coarse bifurcation diagram for the nematic model Kgp=3 ~ computed oblate branch. We know from fully discretized
X10°, dt=0.0005,T=1.75; solid(oper) rhombs and circles correspond to - Smoluchowski simulations that this branchuisstable It is
i;ﬁ':é“gétzﬂisstg"fggy states. These are obtained as fixed points of the, .1y a saddle branch: most directions in phase space are
attracted to the steady states, and only the ones destabilized
atU, are unstable. Close td, these unstable modes are so
The isotropic(“flat” ) solution loses stability at what ap- slow, that the BD simulator, depending on its time horizon,
pears(for our scalar coarse variabléke a transcritical bi- does not initially “see” the instabilityf see Figs. &)—2(d)],
furcation at a critical potentiall ., giving rise to two par- considering this direction as practically neutral. It records the
tially oriented anisotropic solutions. The predicted criticalmovement along one of the slowest attracting direction and
value of U, as calculated with our “coarse Brownian dy- reports the steady state as stable. Of course, if we let the
namics” procedure was found to He.=5.01 and agrees time-reporting horizon of the time stepper grow longer, the
within 0.2% with the predictions of the Smoluchowski equa-instability will be correctly characterized. This might appear
tion. A turning point was found to be on the subcritical pro- at first sight as a defect of the approach; on the contrary, we
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FIG. 2. Evolution of(u?) for different initial values, intensity potentials and stochastic integrator time si@pgb) U=6.5, Niraj= 10°, dt=0.001,(c) U
=5.5,Nyq= 10°, dt=0.001,(d) U=5.5, Nirgj=3X 10°, dt=0.0005. The purpose of the figure is to illustrate some of the parametric and numerical effects,
but also to show that initial transients may linger enough around an unstable stationary state for the coarse time stepper to find it as a fixed point.

Downloaded 22 Feb 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Brownian dynamics for liquid crystals 10153

2

1.5

Number of particles/ bin

1000

500 i & H ..

0.5 -

3
time (sec)

‘ 1 3

: ) . . .0

: ; valuesin z - direction

| o, . . 0.5 Y

: : partitioned in 100 bins

: B 10

3 3.5 4 4.5 5 55 6 (a)

U

FIG. 3. Exchange of stability at/.,; rhombs correspond to the coarse 1 T " " " i T
. . . . . 2

eigenvalues calculated on the isotropic branch, while circles correspond t<“z> CDF ol

the ones calculated on the prolate branch.

08
0.7}

0.6

believe that it may be a strong point. What the coarse time
stepper reports is the expected behawwer the simulation o
ensemble and time horizon chosdhis well known that ' =5
different apparent dynamics occur when one studies a nois “r =1
phenomenon at different time levels. Instead of deriving dif- 2
ferent equations for the expected behavior over different time oy 7 1=0
scales, we can in principle analyze the behavior of severe Y T Y S S U I
such “layers” using thesameinner detailed simulator, but
tailoring the simulation ensemblg@nitial conditions and ob- ®)
servation timg to the “layer” of interest(see Ref. 26 for a FiG. 4. (3 Evolution of the distribution function ofi (histogram in the z
diSCUSSiODl direction. The values in the direction were partitioned in 100 bingb)
Figure 3 illustrates the computed exchange of stability a_{Evo_lutio_n of the co_rrespo_nding cumulative distribution functiorudh the
. . z direction. The simulations were performed @t=5.5, Ny,=10° dt
Uer; rhombs correspond to the eigenvalues calculated on the; 5,7 !
flat branch, while circles correspond to the ones calculated
on the branch containing the turning point. The above coarse
bifurcation analysis is based on the hypothesis that a macrarery fast collapse onto a two-dimensional slow manifold pa-
scopic coarse model existnd closedor S a single statistic rametrized byS and o (this is the “healing” of the errors
of the underlying microscopic distribution. This implies that made in the lifting steff=29; (b) this is followed by a some-
higher-order moments of the distribution become quickly what slower approach to the one-dimensional slow manifold,
enslavedo lower onegthey evolve towards a “slow mani- parametrized bys, and finally(c) a “slow” approach to the
fold” parametrized by the lower ongsComputational results ultimate steady state on this slow manifold.
corroborating this can be seen in Fig. 4, which illustrates It is interesting that when we “lift"(i.e., condition the
(both in terms of the direct and of the cumulative distribu-microscopic distributions on two coarse variab®sand o)
tion) the “initial fast” and “subsequent slow” evolution we have a two-dimensional time stepper, and its fixed points,
stages. upon convergence of the Newton—Raphson algorithm to a
A “phase portrait” of the trajectories of a few different residual ofO(10 %) for e~10 2, possess two eigenvalues
evolving distributions is seen in Fig. 5, where two moments(multipliers), representative of the corresponding relaxation
of the distributions are plotted as well aso, the standard times. In the particular case showat U=4.75 usingNy.;
deviation of the microscopic distribution in tredirection =10 the two eigenvalues were found to he=0.18 (the
(which is a “higher” than S moment in the corresponding corresponding eigenvector is depicted with the dashed line
hierarchy. A one-dimensional slow manifold parametrized and \,=0.001 (the corresponding eigenvector is depicted
by Sis clear in the picture; all three coarse steady statewith the dotted ling This implies that thediscrete time
clearly lie on this manifold. evolution of the second “coarse mode” is about 500 faster
It is interesting to consider th&ansient approachof  than the first “coarse mode,” the slowest, governing one.
various initial distributions to this manifold. As we have pos- Notice that the eigenvector corresponding to the slow eigen-
tulated in kinetic Monte Carlo and lattice Boltzmann con- value is aligned with thévisually apparentone-dimensional
texts, three time scales exist at this resoluti@:an initial ~ slow manifold. Our computational results at this level of ac-

[ON]
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FIG. 5. Phase portraifin Sand standard deviation) at U=4.75. The results are obtained through the coarse BD time stepper Nigipgl0° and dt
=0.0005; the dashed line depicts the coarse eigenvector corresponding 018, while the dotted one depicts the coarse eigenvector corresponding to
\»,=0.001. The “noisy” lines are stochastic simulations, showing two stages, fast followed by slow, of coarse decay to the statior{#ins st&ataore
marked in the blowup close to the top left stable stationary stéitee solid curve is the one-dimensional “slow manifold” on which all long-term dynamics
lie (including the three marked coarse stationary sjates

curacy were converged with respect to the number of trajec- For demonstration we designed a stabilizing controller
tories and the inner step of the Euler microscopic integratofor the macroscopiainstable stationary state atlo=4.7.
This is the first time we have been able to quantitativelyThis coarse steady staf{evaluated through th&=1.75
confirm that one moment of the distribution is sufficient to coarse Brownian time stepper, upon convergence of the
close a deterministic equation. Newton iteration to a residual dd(10°°) for e~10"?] is
It makes sense to begin such computations in a regim&~0.15. Itis assumed that the discrete model describing the
where we know at least at what level one might obtain clo-System behavior around the equilibrium is given by the stan-
sures(at these values df and in the absence of shear, it was dard discrete time stochastic state-space moxrigt:+ 1)
known that one can close wihonly). What happens as we =Ax(k)+Bu(k)+w(k); here, w(k) denotes the process
approach(in a continuation environmentonditions where noise. At the steady state, the estimates of(#ualar, since
the closure will fail? The situation is discussed in detail inthe problem is one dimensionalacobiarA and control ma-
Ref. 26: moments “higher up” in the hierarchy, which were trix B were found to beA~1.53 andB~0.33. Actually, this
fast enough for lowebJ, start becoming slow. We must then information is a by-product of the fixed-point—continuation
augment the set of independent coarse variables; the sarpeocedure for estimating the location of the coarse steady
“lift-run-restrict” procedure can be used for coarse compu-states. At this point we should note that for coarse large-scale
tation as long as we simply “lift"(construct distributions ~problems(such as those arising in discretized coarse BDEs
conditioned oha higher number of momenés independent Newton—Picard-type algorithmge.g., therpm algorithm
coarse variablege.g., see Ref. )2Performing such a check can be used to derive the “coarseow’ Jacobian matrices.
regularly along a continuation branctkeeping track of ~We employ our bifurcation paramete), the intensity of the
whether the “next fastest” mode is still fast enough to getnematic potential, as the control actuator. We used a linear
enslaved over our reporting horizois the analog, in our feedback controller of the forn(t)—Uy=u(t)=—-K(S
case, of checking from time to time whether the mesh for a—Sp). For our illustrations, we aimed at stabilizing the un-
given discretization problem needs refinement or not. stable coarse steady state by placing the coarse eigenvalue to
\~0.95 with a sampling tim®T=dt=0.005; the required
control gain was found to b ~54. The number of trajec-
tories was set td ;=3 X 10°. If necessary, a Kalman filter
The proposed computational framework serves as a “justould also have been constructed based on the coarse
in time” or “on demand”*® computational closure method- information®* The open- and closed-loop responses are
ology that allows the identification, from short computationalshown in Fig. 6.
experiments, of coarse time derivatives, “coarse slow” Jaco-
bians, coarse derivatives with respect to parameters, etc. o ) )
These quantities are used in conjunction with traditionalC: CO8rse projective integration of the Brownian
continuum scientific computation to find coarse fixed points.dyn""m'cS model
These fixed points, along with the coarse linearization We have demonstrated that our coarse “lift-run-restrict”
around them, are precisely the “systems level” informationprocedure can be used to enable the performance of several
required by a linear control design algorithm. It becomesnumerical taskgbifurcation, continuation, stability analysis,
then possible to invoke such algorithms and design coarsend control directly at the macroscopic level, sidestepping
observers and controllers that will stabilize coarse unstabléhe necessity to obtain explicit macroscopic closures. We will
stationary states; extensions to nonlinear control are straightrow briefly demonstrate that this procedure can also be used
forward. to accelerate the time evolution computations directly. The

B. Coarse control for the nematic Brownian
dynamics model
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FIG. 6. Stabilizing an unstable steady stéeU,=4.7); Nt,aj:3><103, (a) open-loop responsglotted ling; closed-loop responsgolid line), (b) closed
response of the control variablg (dashed lines correspond to nominal vajues

method to accomplish this, called “coarse projective integratime derivatived Sdt. This quantity is then used to perform
tion,” is described in more detail in Refs. 29 and 32. Here wea “projection” into the future(predict the expected value of

only demonstrate its simplest realizatithe coarse forward
Euler projective method

S after some timg The procedure is then repeated: we lift
from the predicted value ddto a new microscopic distribu-

The main idea is to consider the computations thation, run for some time to obtain a new estimated& dt,
would have been performed, had an explicit closure beeproject again, and so on. For comparison, we have included

available[in the form of a scalar ODE in the forrdS/dt
=f(S)]. Given an initial conditionS(t=0)=S; a simple,
explicit, forward Euler integratiofwith time stepAt) would
give S(t=At)=S,+Atf(Sy). Since the time derivative
functional formf(-) is not explicitly available, wesstimate

in the Fig. 7 the projectiorfon S of a long, uninterrupted
BD transient. It is clear that, in this case, the procedure even-
tually saves us 60% of the BD simulation flofiee projec-
tion time interval is 3/2 the BD evolution oneThe errors
made when lifting from the “projected in time” value &

it from short-duration BD simulations initialized consistently are seen to quickly “heal” as the BD simulation is restarted.
with Sy. The steps of the algorithm are then as followsThis is a consequence of the exponential attractivity of the
(given the lifting and restriction operator choices we dis-“slow manifold” parametrized by our coarse varialfe

cussed above

(a) Select an initial conditiors,.

(b) Lift it to one (or more consistent microscopic dis-
tributions,up=uS,.

(c) Evolve microscopically for enough timg for the
lifting errors to heal, and restrict 8, = M(u(t=t,)); evolve
a little longer, until timet,, restrict toS,=M(u(t=t,)).

(d) Use the difference,—S;)/(t,—t;) to estimate the
derivatived S/dt[;—y,.

(e) Project in the future to an estima®(t=t3)=S,
T (tz—12) (S = Sp)/(ta—ty).

(f) Return to stegb).

One can clearly see an “inner” integrat@he BD simu-
lator) and an “outer” integratofa forward Euler method that
uses the results of the inner integratdrhis is the simplest

Ill. DISCUSSION AND CONCLUSIONS

We presented and illustrated, in a Brownian dynamics
context, a computational methodology for the coarse, multi-
scale computational study of microscopic stochastic simula-
tors. Our example was the “enabling” of Brownian dynam-
ics simulators of nematic liquid crystal models to perform
macroscopic tasks such as the location of stable and unstable
coarse stationary states, their stability, continuation, and bi-
furcation analysis, as well as additional tagkentroller de-
sign, coarse projective integration, eic\We believe that
these computer-assisted techniques, grounded in the power
of an “inner” microscopic simulator and based on tben-
ceptualexistence of a macroscopic closure, offer the promise

form of the coarse projective forward Euler method, withof a new bridge across the scale gap, between “the best
simple differencing for the estimation of derivatives; muchavailable” microscopic—stochastic simulators and their mac-
more sophisticated components can be used in assemblimgscopic, coarse dynamics. Based on the separation of time
such multilevel integration schemes, but the idea remains thecales that fundamentally underlies macroscopic determinis-
same. The numerical analysis of these algorithms is the sultic equations, these algorithms sidestep the derivation of ex-
ject of extensive researcf,as are the issues of modifying plicit equations, but do allow the use of a large arsenal of
them for the case where the “inner” evolution code is a“equation-based tools,” developed for continuum models, to
microscopic—stochastic codeere, the BD simulatgr Our  be used directly on the microscopic solvers. Many “sys-
purpose here is not to analyze these algorithms, but just teems” tools, ranging from system identification and filtering,
illustrate their underlying principle. This is accomplished in to variance reduction and matrix free iterative linear algebra

Fig. 7, where short bursts of BD simulatidmarked with
asterisk$ are used to estimat@fter an initial transientthe

methods, form part of this bridge. An extensive discussion of
the overall approach can be found in Ref. 29.
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