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Abstract

In this paper, a simple technique is described for generating
the root loci of a feedback system which includes perturbations
g € R/ entering affine linearly into the coefficients of the plant.
Denoting the perturbed plant by P(s,¢) and the compensator
by C(s), we address the following problem: Given a bounding
set Q C R! for g, find the locus of points z in the complex
plane such that 1 + kP(z,q)C(z) = 0 for some k > 0 and some
g € Q. Such points z are said to lie on the Robust Root Locus.
One of the strengths of the technique presented in this paper
is that it avoids the “combinatoric explosion” synonomous with
gridding the [-dimensional set @ and plotting a large number of
ordinary root loci associated with the grid the points. Instead,
the technique given here exploits only a 2-dimensional gridding
of a bounded subset of the complex plane.

1. Introduction and Formulation

To motivate this paper, recall the classical Root Locus Prob-
lem: Given a nominal plant transfer function P(s) and a fixed
compensator C(s), find the locus of points s € C such that

1+ kP(s)C(s) =0 @)

for some k& > 0. That is, find the locus of the closed loop pole
locations as a function of the gain k; e.g., see Krall (1970) for a
survey of classical root locus techniques.

The takeoff point for this paper is the following fact: When
performing robustness analysis and design, various physical pa-
rameters of the plant may be perturbed. Hence, the “true” root
locus may differ from the root locus generated using the so-called
nominal system. In this regard, the main focal point of this paper
is the generation of root loci with respect to variations in more
than one parameter. This work can be viewed as a systematic
approach to robustness problems which were alluded to in the
fifties and sixties; e.g., see Truxal (1955). In the later work by
Zeheb and Walach (1977), a two-parameter root locus problem is
considered and rather specific assumptions (motivated by circuit
theory) are made about the class of perturbations.

A number of papers following Zeheb"and Walach’s work deal
with the so-called zero set concept; e.g., see Zeheb and Walach
(1981) and Fruchter, Srebro and Zeheb (1987). It is seen that
the zero set provides a rather general framework for dealing with
multi-parameter root-loci. That is, for each value of the gain
k, a function can be given whose zero set corresponds with the
cross section of the root locus at k. Hence, in principle, a multi-
parameter root locus can be generated by computing these cross
sections as k varies. In practice, however, there are difficulties
associated with numerical computation of the zero set.
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By strengthening the hypotheses on the class of allowable
perturbations, we obtain an enormous simplification in the char-
acterization of multi-parameter root loci. To this end, attention
in this paper is restricted to the case when the perturbations
enter the plant coefficients either linearly or multilinearly. This
leads to the following type of result: A point z € C can be
“tested” for membership in the root locus by simply checking
whether or not the point s = 0 lies inside or outside a specially
constructed 2-dimensional convex polygon in the complex plane.
Hence, one avoids the “combinatoric explosion” in computation
associated with an [-dimensional gridding of the rectangle Q.

This type of “zero inclusion” condition goes back a long way
in the robust stability literature (see, for example, Zadeh and
Desoer (1963)) and has been revived in the last few years; e.g., see
Saeki (1986), de Gaston and Safonov {1988), Dasgupta (1988),
Minnichelli, Anagnost and Desoer (1988). Furthermore, this con-
dition is easy to check because only two dimensions are involved
and the set to be checked is a convex polygon. The first dis-
tinguishing feature of this paper is the use of the zero inclusion
condition within the context of root locus rather than robust sta-
bility as in previous work. The second distinguishing feature is
that it readily lends itself to practical application and computed-
aided analysis and design.

To study variations in the root loci under multiple parameter
variations, we let ¢ € R' denote a vector of perturbations with
i-th component g; satisfying

¢ <e<g (2)

where the gi and g are prescribed bounds. Hence, the vector
of perturbations ¢ is confined to the [-dimensional rectangle

Q={q:q{§q;§q;+;izl,--wl}- (3)

To denote the dependence of the plant transfer function on g, we
write P(s,q) and when ¢ = 0, we obtain the so-called nominal
plant; i.e.,

P(s) = P(s,0). (4)

We now present the formal definition of the Robust Root

Locus (RRL): A point z € C is said to lie on the Robust Root
Locus (RRL) if

1+ kP(2,9)C(z) =0 (5)

for some k > 0 and some ¢ € Q. It is also of interest to study
the distribution of the closed loop poles for a fixed value of the
gain k. Hence, for fixed k = k*, a point z € C is said to lie on
the cross section of the RRL at k* if

1+ k"P(2,q)C(z) =0 (6)

for some g € Q.
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The first main objective of this paper is to provide a compu-
tationally tractable method to accurately generate the RRL for
the case when the coefficients of the plant are affine linear func-
tions of g. We do not simply overbound the distribution of the
poles in the s-plane — we find the distribution precisely. This
lack of conservatism may seem somewhat surprising because of
the complicated relationship between the zeros of a polynomial
and its coefficients; e.g., see Marden (1966).

In a sense, this paper can be viewed as a complement to the
growing body of literature on parameter space space methods; see
e.g., Ackermann (1980). One reason why parameter space meth-
ods are powerful is because it is much easier to study the effect of
feedback on the coefficients of the characteristic polynomial than
on the closed loop poles. One of the earliest papers to fully recog-
nize and exploit this fact is by Fam and Meditch (1978). This is
also recently recognized in Soh, Evans, Petersen and Betz (1987)
and Biernacki, Huang and Bhattacharyya (1987).

Noting, however, that the closed loop poles may be highly
sensitive to the coefficients of the characteristic polynomial, a
design which “looks good” from a parameter space point of view
may have poles which are badly “smeared” over a large region
in the complex plane. Hence, having the RRL available, one
has the opportunity to check whether or not this phenomenon
is occuring; i.e., examine the cross section of the RRL at k = 1.
Subsequently, by tuning the loop gain, there is an opportunity
to obtain a more desirable distribution of closed loop poles; i.e.,
the RRL can be used for robustness enhancement.

The remainder of this paper is organized as follows: In Sec-
tion 2, we introduce the necessary notation for the parameter-
ization of the closed loop system with respect to g € Q. Sec-
tion 3 provides a simple technique to decide whether a given
point z € C lies on the RRL. In Section 4, the RRL technique
is reinterpreted in terms of the control system parameters and
in Section 5, a crude bound for the cross sections of the RRL is
computed. Finally, in Section 6 we present a numerical example
and in Section 7, we provide conclusions.

2. Basic Notation

2.1 The Extreme Points of the Rectangle Q: As stated
in Section 1, we assume that the vector of perturbations g is
confined to the [-dimensional rectangle Q. This rectangle has
at most L = 2! extreme points denoted ¢',¢%,...,q*. The i-th
extreme point has j-th component given by

gi=gj or ¢;=gq}.

2.2 The Plant Parameterization: For each fixed ¢ € Q,
the plant is a proper single-input single-output system! repre-
sented by the proper rational transfer function

NP(37q)

P(qu) - DP(S,‘])

(7

where Np(s,q) and Dp(s,q) are polynomials in s of the form

Np(8,8) = anp(9)8™ + anpo1(g)s™ ™' + ... + a1(q)s + ao(q);
Dp(s,q) = 8% +ba,_1()s®™ " + ...+ bi(q)s +bo(g).  (8)

Furthermore, it is assumed that the coefficients a;(g) and b;(g)
above are given affine linear functions of the perturbation vector
g; i.e.,

1The development to follow readily extends to multi-input single-output
systems and to single-input multi-output systems.

!
ai(g) = ap + Z a;;q;

j=1
for ¢ = 0,1,...,np and
!
bi(g) = bio + ) _ bijg;
i=1

for i = 0,1,...,dp — 1. From Section 1 recall that the nominal
plant (4) is given by P(s) = P(s,0).

2.3 The Compensator: As usual, the compensator to be
applied to the plant P(s, q) is a proper rational transfer function

Nc(s)
C(s)=k
(s) Do() (9)
where k > 0 is an adjustable gain and
Ng(8) = @nps™ + Qngo18™ ...+ oqs + g
De(s) = 8% +Pag-18% 7 +...+ s+ fo (10)

are prescribed polynomials.

2.4 Vector Representation of The Closed Loop Equa-
tion: Using the notation introduced above, the closed loop equa-
tion is given by

A(s,q,k) = kNp(s,q)Nc(s) + Dp(s,q)Dc(s). (11)

We introduce the vector §(g, k) € R4 " to represent the coeffi-
cients for A(s,q,k); i.e, §(q, k) has i-th component §;_,(q, k) and
hence, we write

dp+dc -1
A(s,q,k) = s+ N (g, k)s . (12)

i=0

In Section 4, we express the vector §(g, k) more directly in terms
of the coefficients a;;, b;;, a; and fB; describing the plant P(s,gq)
and the compensator C(s). This type of expression proves useful
for numerical computation.

3. Key Ideas Behind the Construction of the
RRL

As emphasized in the Introduction, it is typically not feasible
to generate an RRL by gridding the [-dimensional set Q. In
this section, we see that the computation of the RRL can be
achieved using only a 2-dimensional gridding of a bounded subset
of the complex plane. This reduction in complexity leads to
computational tractability which will be demonstrated using the
numerical example presented in Section 7.

3.1 Key Ideas for the Special Case of an Interval Plant
with a Static Gain: To motivate the general construction of
the RRL, we consider the special case of interval polynomials for
Np(s,q) and Dp(s,q) and a static gain compensator

C(s)=k. (13)

In this case, each plant coefficient depends on one and only one
perturbation parameter g¢;; say

ai(q) = a0 + qina

fori=10,1,...,np and

1387



bi(g) = bio + Gnprise

for 2 =0,1,...,dp_1. Then, it is easily verified that the closed
loop polynomial is given by

np
5" 43 (kaio + bio + kgiy1 + Gnpriva) s

i=0

A(s,q,k)

ne—1

+ 20 (bt upsisa)- (14)

i=np 41

Hence, we see that A(s,q,k) is an interval polynomial; i.e., we

can write
nc-—1 .
As,q,k) = 5™ + 3 bi(g, k)s* (15)
i=0
where
b:(q,k) € (&7 (k), 87 (k)] (16)
fori=0,1,...,n¢c-; and

57 (k) = { kay + bio + kg iy + qrppigs fori=0,1,...,np;

biﬂ + q;r+,-+,, fori = NPpi1y. .y NC-1
(17)
and
55 (k) = { kag + bio + kgfyy + 41 yipn fori=0,1,...,np;
' bio +l1:,,+¢+z for i = npyy,...,no_1 -
(18)

We now motivate the construction of the cross section of the
RRL at k = 1. In this regard, we use the well-known Kharitonov
polynomials to determine which points on the imaginary axis lie
on this cross section. The idea used to characterize these axis
points is generalized to “non-axis points” and to “non-interval
polynomials” in the next subsection.

Indeed, for fixed frequency w* € R and fixed gain k = k*,
we want to decide if s = jw* lies on the cross section of RRL at
k*. To this end, first note that the work of Kharitonov (1978)
leads to the sharpest possible bounds on A(jw*,q,k*). Namely,
we have '

Re Ki(jw™, k") < Re A(jw’,q,k") < Re K(jw™, k™);

Im K3(jw™,k*) < Re A(jw*,q,k*) < Im Ky(jw*, k%) (19)
where

Ki(s,k) = 65(k)+67(k)s + 65 (k)s® + 6+(k)53 +0

Kaloyk) = 65(8) + 61 (B)s + 65 (k) + 85 (R)° + -

Ka(s,k) = & (k)+67(k)s + (’c)é'2 + 5+(’¢)33 SRR

Ky(s,k) 65 (k) + 87 (k)s + 65 (k)s® + 65 (k)s® + (20)

are the four Kharitonov polynomials.
Denoting the rectangle associated with (19) by

Qw*, k) = {A(jw*,q,k*) 1gi <q<gt for i=1,2,... ,l},

(21)
observe the sharpness of the bounds in (19) implies that all points
in Q(w*,k*) are attainable by choice of g. Hence, it follows that

s = jw* belongs to the cross section of the RRL at k*if and only
if

0e QUw™ k%) (22)
or, equivalently,

Re Ky(jo' k) < 0 <
Im K3(jw™, k") < < Im Ky(juw™, k7). (23)

Hence, we arrive at the following conclusion: The point s =
jw* with w* > 0 belongs to the cross section of the RRL at k~ if
and only if (23) holds. It is easy to verify that for w* < 0, the
identical condition holds with the labels reversed for K;(jw,k)
and K,(jw, k).

Observation: An equivalent way to write (23) is

H(w™ k) <0 (24)

where
H(w,k) = max{K,(jw, k), —Ks(jw, k), Ks(jw, k), —Ki(jw, k)}.
(25)

This way of checking the zero inclusion condition motivate a
method for performing computations in the more general analysis
to follow.

3.2 Key Ideas for the General Case: Now we consider
the more general case obtained when the plant coefficients de-
pend affine linearly on ¢ and we want to determine whether a
given point s = z belongs to the RRL. Motivated by the interval
polynomial analysis of the previous subsection, we fix k& = k* and
define the set

MUz, k") = {A(z,q,k7) : g € Q} - (26)

It now follows that z belongs to the cross section of the RRL
at k™ if and only if
0€e Qz,k). (27)
Finally, to test zero inclusion condition above, we need a more
concrete description of Q(z,k™). To obtain such a description,
we first note that an affine linear transformation T' taking the
rectangle @ into the complex plane has a convex polygonal image
which is the convex hull of T applied to the extreme points g¢';
ie.,

T(Q) = conv {T(¢"), T(¢%),...,T(¢")} . (28)

Hence, if we consider T to be an affine linear mapping, taking
q into 8(q, k*), it follows that £}(z,k*) is the convex polygon de-
scibed by

0z, k") = conv {A(z,ql,k‘),A(z,qz,k*),...,A(z,qL,k*)}.

(29)

Book Keeping Simplification: Note that the zero inclu-
sion condition (27) can be checked in many possible ways because
Q(z,k*) is a convex polygon—even a brute force gridding proce-
dure will suffice. Nevertheless, when performing digital compu-
tation, it is convenient to have a “compact formula” which can
easily be coded. Recalling inequality (24) for interval polyno-
mials with a static gain compensator, we now provide a simi-
lar result for this affine linear case; i.e., we generate a function
H(z,k) having the following property (Proved in Barmish and
Tempo (1988)): A point z belongs to the cross section of the
RRL at k* if and only if
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H(z,k)<0. (30)
We now provide a recipe for H(z,k").

Step 1: Pick any continuous path T' in the complex plane
which encircles the origin and let ®r(p) denote a parameteriza-
tion of this path which is obtained by varying p between 0 and
1;i.e.,

D= {@r(p) :p € [0,1) - (31)

A simple example of an acceptable path is described by the
boundary of the unit circle given by

Or(p) = cos 2wp + jsin 2mp . (32)

More generally, for zero inclusion problems, in Barmish (1988)
it is argued that computations are facilited when I is a polyhedral
set. For example, one reasonable choice is the unit “diamond”
described by

|Re s| + [Im 5| = 1. (33)
Step 2: Define the function
Bz, b, p) = min < Br(p), Az, 4, ) > (34)
where for z,, z; € C, we use the inner product
<zy,z3>=Rez -Rezy+Imz - Imz, . (35)
Step 3: Let
H(z, k") = max h(z,k, p). (36)

Notice that numerical generation of this function involves a
sweep of the scalar variable p over the interval [0,1].

4. A More Concrete Formula for §(q, k)

The computations required in Section 3 can be further simpli-
fied by taking advantage of the underlying control system struc-
ture. In this section, we derive an expression for the closed loop
vector §(q,k) in terms of the control system parameters. The
computation below essentially amounts to a minor modification
of the idea used in Biernacki, Huang and Bhattacharyya (1987)

to isolate the effect of the gain k on the vector &(g,k). Note
that this leads to computational savings because various ma-

trices need only be computed once as k varies along the RRL.
Indeed, for notational convenience, we define

a; =0

for ¢ > n¢. Finally, we define the compensator parameter matri-
ces as follows:

a 0 0 0 0 0 0 0
a; 0 ap 0 0 0 0 0
a; 0 a; 0 0 0 0
Ou=|0as 0 a 0 0 - 0| ¢Rerdr)xaldrty)
0 0 0 O ago-1 0 agez 0
0 0 ¢ O ag, 0 age1 O

(37)
and

066 00 -0 0 0 0
08 0B -0 0 0 0
0 5 046, -0 0 0
Op=10 F; 06, -0 0 € Rldct+dp)x2(dp+1)
00 0 0 - 0 Bags 0 Pags
0000 -0 1 0 fa

. (38)
Similarly, to describe the plant perturbations, we let

Ol,'jio

for i > np and j = 0,1,...,I. Subsequently, we define the per-
turbation coefficient matriz as

ap; Qo2 ... Qo
bor  boz ... by
Gab = . : . . c Rz(dp+1)xl (39)
Gdp1  Qdp2 Gdpl
0 0o ... 0
and the nominal plant coefficient vector as
Qoo
boo
Go=| 1 |eRAPH, (40)
dpo
1

The following lemma is obtained by a lengthy but straight-
forward computation.

4.1 Lemma (See Barmish and Tempo (1988) for proof): Let
©., Op, Ou and 8 be defined as in (37), (38), (39) and (40)
respectively. Then

8(g,k) = (kOu + Op) (60 + Ousq) - (41)

Remark: To exploit the function H(z,k) in checking if a
point z belongs to the RRL, one simply substitutes (41), into
(34) and (36).

5. Simplification of RRL Computation using a
Crude Bound

Note that if k& = k™ is fixed, we have a crude bound Dj. for the
cross section of the RRL at k*. Hence, one can avoid testing zero
inclusion condition for an unbounded set of z; i.e., we generate
a 2-dimensional grid of Dy and check if zero belongs to (z, k")
as z ranges over Div.

Indeed, for & > 0 and s € C we seek a bound D on the
zeroes of A(s,q,k);i.e.,

{s€C:A(s,q,k) =0 forsome g€ Q} CDp. (42)

To generate an acceptable bound Dy, we use the well known
fact (see Marden (1966)) that for a fixed monic n-th order poly-
nomial p(s) = s+ .74 a;s%, all its zeros are interior to the circle
of radius
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R =1+ max{|e;|:7=0,1,...,n — 1}. (43)

Applying this result to equation (12), it follows that all zeros of
A(s, g, k) lie interior to a circle of radius

Ry =1+ max [6(¢’, k)| (44)
17

To complete the bounding process, we substitute for &;(¢7, k)
in terms of the given plant and compensator coefficient functions.
Indeed, letting e; denote a unit vector in the i-th coordinate
direction and (41), we obtain

R,=1+ max lef (kO + ©p) (90 + ®abqj) | {45)

and the desired bounding region is
De={s€C:(Res) +(Ims) < R} . (46)

Note that even greater computational savings can be achieved
by using tighter bounds for the zeros of A(s, ¢, k); e.g., see Mar-
den (1966).

6. Numerical Example

In this Section, we illustrate the application of the RRL tech-
nique using a plant with transfer function

1
(82 + (8 + q1)s + (20 + g2))

Ploya) = - (@)

perturbation bounds
-2<q:1 <2,

-4<g <4

and unity feedback.
Computational Results: The RRL was generated for the
range
0 < k < 100. (48)

A few observations are in order: For the low gain case (k <
23), it is apparent from the cross section of the RRL that one
cannot distinguish between the variations of the three closed loop
poles. This phenomenon is illustrated in Figure 1 for & = 12. On
the other hand, for the high gain case (k > 23), there are three
distinct regions—two regions corresponding to a pair of complex
conjugate poles and an interval corresponding to a real pole.
Typical cross sections of the RRL are given in Figures 2 and 3
for k = 25 and k = 50 respectively.

7. Conclusion

One of the main technical novelties of this paper is the use of
the zero inclusion conclusion within the context of robust root
locus. To date, this condition has been used largely in a robust
stability context. When the RRL is recast in this framework, a 2-
dimensional sweep of a bounded set is required in lieu of the one
dimensional sweep used in robust stability theory. As illustrated
by the numerical example, the resulting computational technique
is easy to use and readily lends itself to useful graphical display.

A second important point to note is that for affine linear un-
certainty structures, we obtain the “true” RRL. That is, at each
value of the gain k, one obtains (within the limits of numerical
roundoff) the exact distribution of the closed loop poles.
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Figure 1: Cross Section of the RRL for the Low Gain Case (k =12).
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Figure 2: Cross Section of the RRL for the High Gain Case (k = 25).
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Figure 3: Cross Section of the RRL for the High Gain Case (k = 50).
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