Magnetoelectric sensors in combination with nanometer-scale honeycombed thin film ceramic TiO$_2$ for remote query measurement of humidity

Craig A. Grimesa and Dimitris Kouzoudis
Department of Electrical Engineering, The University of Kentucky, Lexington, Kentucky 40506

Elizabeth C. Dickey and D. Qian
Department of Chemical and Materials Engineering, The University of Kentucky, Lexington, Kentucky 40506

M. A. Anderson
Water Chemistry and Materials Engineering, University of Wisconsin, Madison, Wisconsin 53706

Rony Shahidain, Maisha Lindsey, and Leonard Green
Division of Mathematics and Sciences, Kentucky State University, Frankfort, Kentucky 40601

Ribbonlike magnetoelectric sensors can be considered the magnetic analog of an acoustic bell; in response to an externally applied magnetic field impulse the sensors emit magnetic flux with a characteristic resonant frequency. The magnetic flux can be detected external to the test area using a pick-up coil, enabling query remote monitoring of the sensor. The characteristic resonant frequency of a magnetoelectric sensor changes in response to mass loads.

Therefore, remote query chemical sensors can be fabricated by combining the magnetoelectric sensors with a mass changing, chemically responsive layer. In this work magnetoelectric sensors are coated with humidity-sensitive thin films of ceramic, nanodimensionally porous TiO$_2$ to make remote query humidity sensors. © 2000 American Institute of Physics.

INTRODUCTION

Figure 1 shows the basic operational principle of a magnetoelectric sensor; the sensor material is a ferromagnetic, amorphous metallic glass thick-film exhibiting large values of magnetostriction. In response to a time varying magnetic field, magnetic energy is converted to elastic energy which acts to mechanically deform the sensor. As the sensor is magnetostrictive, magnetic flux is emitted from the sensor with the mechanical deflections. The frequency spectrum of the sensor can be obtained by sweeping an ac magnetic interrogation field over a predetermined frequency range, with the response measured using a pickup coil. If the frequency of the ac field is equal to the mechanical resonance frequency of the sensor the conversion of the magnetic energy into elastic energy is maximal and the sensor undergoes a magnetoelastic resonance. Thick-film ferromagnetic magnetoelastic ribbons, such as the MetglasTM alloys, have been used as position sensors, strain sensors, and antitheft markers.

For a thin, ribbon-shaped sensor of length L vibrating in its basal plane the resonant frequency is given by

$$f_n = \sqrt{\frac{E}{\rho(1-\sigma^2)}} \frac{n \pi}{L}, \quad n = 1, 2, 3, \ldots,$$

where E is Young’s modulus of elasticity, σ is the Poisson ratio, ρ is the density of the sensor material, and n denotes integers. We concern ourselves with the fundamental resonant frequency, $n = 1$, due to its relatively larger amplitude.

A dc magnetic field, superimposed with the ac magnetic field, is used to effectively offset the magnetic anisotropy of the sensor material enhancing the magnetoelastic properties. This dc biasing field can be supplied either by a field coil, or by adjacent placement of a magnetically hard thick film. Figure 2 demonstrates the frequency-dependent response of a $30 \text{ mm} \times 4 \text{ mm} \times 30 \text{ \mu m}$ Fe$_{40}$Ni$_{10}$P$_{14}$B$_{4}$ Metglas sensor, measured at room temperature. A constant 5.5 Oe dc field was applied over the test region by a Helmholtz coil; the frequency of the 50 mOe sinusoidal ac field is swept over the predetermined frequency range, and the response of the

FIG. 1. Schematic drawing demonstrating remote query nature of magnetoelectric sensors.
sensor monitored by use of a pickup coil. Since it is the frequency response of the sensor that is monitored, rather than the amplitude, the relative orientation of the sensor with respect to the detecting coil is unimportant. The sensor material was obtained from Allied Signal Corporation, alloy 2826MB, and used without further processing; similar sensors were used for all measurements described herein.

Changes Δm to the mass m of the sensor correspond to an increase of its density by a factor $1 + \Delta m/m$ which, in turn, changes the resonant frequency by a factor of $(1 + \Delta m/m)^{0.5}$. If the mass increase is small compared to the mass of the sensor, the shift in the resonant frequency is given by $\Delta f = -f(\Delta m/m)$. Thus small increases in mass can be detected by monitoring the downward shifts in the resonance frequency of the sensor.

In this work, we report on application of the sensing principle to fabrication of remote query humidity sensors. Thick film magnetoelastic sensors, approximately 25 mm \times 4 mm \times 30 μm, are combined with solgel deposited TiO$_2$ ceramic layers approximately 2 μm thick. The TiO$_2$ layers reversibly absorb–desorb water moisture, in turn reversibly gaining or losing mass.

EXPERIMENTAL RESULTS

The humidity sensors were fabricated by coating alloy 2826MB sensors with solgel deposited, porous, 2.0 μm thick layers of TiO$_2$. Two different sol–gel recipes were used, that of Refs. 8–10 and 11, with each resulting TiO$_2$ layer responding rapidly to changes in relative humidity. Interestingly enough, the approach followed in Ref. 11 for fabrication of the TiO$_2$ layer resulted in a nanoscale porous honeycomb structure as shown in Fig. 3. Presumably the honeycomb structure, with a pore size of approximately 80 nm, boosts the ceramic layers ability to trap moisture. The sensors were tested in a 50 cm diam cylindrical humidity chamber (1 m length), about which a ten-turn pick coil was wound. Figure 4 shows the resonant frequency of a magnetoelastic humidity sensor in response to alternating high and low relative humidity levels, 60% and 2%, respectively; the mass change of the sensor between the two extremes is approximately 1.7 mg, or 3.7%. The dashed line in Fig. 4 corresponds to the humidity cycle the sensor was exposed to. It is interesting to note that there is an immediate jump in the resonant frequency of the sensor with the humidity changes.

Figure 5 demonstrates the reversibility of the magnetoelastic humidity sensor, with the resonant frequency measured at increasing and decreasing humidity levels. The sensor was held at a constant humidity level for 10 min prior to
each measurement. There is a slight deviation from linearity, presumably due to rate-limited diffusion times of the ceramic.

CONCLUSIONS

Presented herein is application of magnetoelastic sensors for remote query sensing of humidity without direct physical connections such as wires, or special alignment requirements as needed for laser telemetry. In combination with a mass changing humidity responsive TiO₂ ceramic layer magnetoelastic sensors can be used for remote query humidity monitoring. The sensors are passive, responding to the query field, and are quite inexpensive allowing for their use on a disposable basis. Remote query sensors such as those described would be useful for monitoring the humidity levels inside sealed containers such as food packages. In combination with different chemically responsive layers the sensing technology could be extended to other in situ or in vivo monitoring applications \(^1\) such as gastric pH or glucose. \(^1\)

ACKNOWLEDGMENTS

Support of this work by the Life Sciences Division of the National Aeronautics and Space Administration of the United States of America under Grant No. NAG5-4594, by the National Institutes of Health NIGMS under Contract No. 1-R21-GM057240-01, and by the National Science Foundation under Contract Nos. ECS-9701733 and ECS-9875104 is gratefully acknowledged.

