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Evaluation of Uncertainty in Dynamic

Simulations of Power System Models:
The Probabilistic Collocation Method

James R. Hockenberry, Member, IEEE, and Bernard C. Lesieutre, Member, IEEE

Abstract—This paper explores the use of a new technique, the
probabilistic collocation method (PCM), to enable the evaluation
of uncertainty in power system simulations. The PCM allows the
uncertainty in transient behavior of power systems to be studied
using only a handful of simulations. The relevant theory is outlined
here and simple examples are used to illustrate the application of
PCM in a power systems setting. In addition, an index for identi-
fication of key uncertain parameters, as well as an example with a
more realistic power system, are presented.

Index Terms—Power system modeling, power system simulation,
uncertainty.

1. INTRODUCTION

IME-STEP simulation techniques form an important class
of tools for power system analysis. They are employed
whenever dynamic phenomena are to be studied, from the stand-
alone analysis of individual components or the study of fast elec-
tromagnetic transients, to the behavior of large-scale systems
over many time scales. (We use the words “time-step simula-
tion” to refer to methods that emulate the dynamic response of
a system typically represented by ordinary differential and al-
gebraic equations, and to distinguish from the usage of “simu-
lation” to refer to techniques to evaluate probabilistic problems
using Monte Carlo and related methods.) The results of such
studies are used to make decisions concerning the structure,
tuning, and operation of the system. The constant use and impor-
tance of these tools motivates the equally constant research on
improving models and simulation algorithms. The contribution
of this paper is to demonstrate practical evaluation of uncertain-
ties in power system models using presently available simula-
tion tools. This method will enable detailed uncertainty studies
that have been infeasible due to computational limitations. By
directly considering uncertainties in the models, the additional
information gained will lead to less need for conservative oper-
ation of the power grid.
The literature concerning uncertainty analyses in power sys-
tems is vast (see the bibliographies in [1]-[7]). The referenced
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books and papers cover a range of topics, many related to statis-
tical reliability studies. With regard to uncertainty studies ad-
dressing transient stability, there are fewer papers, and these
consider uncertainties related to disturbances and operating con-
ditions [8]—-[14]. These do not consider uncertainties in param-
eter values, and the approaches combine deterministic simula-
tion techniques with stochastic analyses. In some cases [11],
[10] the dynamic simulation step is significantly enhanced by
the use of Lyapunov-like energy functions. However, these en-
ergy functions are based on simplified models of a power system
that lack significant detail. While these studies are important in
their own right, they do not address the problem we consider and
do not design the time-step simulations around the uncertainty
characterization.

The specific area of parameter uncertainties in detailed
time-domain simulation studies is nearly vacant. This is
understandable. Historically, a time-step simulation of a large
power system model required lengthy computer runs (>>hours).
With faster computers these same simulations now can be
completed in minutes. (However, there is now new interest in
simulating larger and more detailed models which increases
the simulation time.) Still, practical techniques for the analysis
of uncertainty, such as Monte Carlo and its derivatives, require
many sample data obtained from repeated simulations. For
example, suppose that 1000 points are necessary, obtained from
1000 time-step simulations, then hours to days of computer
time will be required. Furthermore, each such study only
represents the analysis of a single event (line outage, generator
loss, etc.). Evaluating many contingencies while accounting
for uncertainties is prohibitively time intensive. Consequently,
such studies are not typically done. The results from nominal
simulations are incorporated into design and operation in a
conservative manner.

The recent literature on this topic is not completely empty.
In addition to our initial limited study [15], Hiskens ef al. have
used their “trajectory sensitivity” approach to approximate the
effect of uncertain parameter values on the outcome of time-step
simulations [16]. The method essentially employs an augmented
model that includes additional variables to represent the sensi-
tivity of specified state variables to select parameters and initial
conditions. The result of the time-step simulation of this larger
model yields the nominal trajectory and the sensitivities of the
trajectory to the aforementioned parameters. These linear sensi-
tivities then can be used to form a linear model with which to ap-
proximate the effect of uncertain parameters in a region about a
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nominal trajectory without the need for further time-consuming
(time-domain) simulation.

We would like to advocate in this work a technique developed
by researchers who study global climate change. Similar to ours,
their time-domain simulation studies require significant com-
puter time and their models include parameters with uncertain
values. The so-called probabilistic collocation method (PCM)
[17], [18] (later renamed the ‘“deterministic equivalent mod-
eling method) involves a few time-step simulations, the results
of which are used to develop a polynomial model that directly
maps the uncertain parameter to outcomes of interest. This very
reduced-order model can be evaluated quickly to determine the
effect of the uncertainty. In their studies, the uncertain parameter
may be carbon dioxide emissions and the outcome the average
temperature in 2100. In our studies, the uncertainty may be re-
lated to load models or fault time and the outcome may be max-
imum frequency, angle, and voltage variations over the course
of the simulation (among many other possibilities) that can be
compared against operational and stability limits imposed on
these variables.

This approach is particularly appealing because it allows
the use of nonlinear models and the evaluation of complicated
output functions (maximum deviations). And, importantly,
these studies can be performed using existing commer-
cially-available power system simulation software.

The techniques we discuss are applicable to all studies that
rely on dynamic simulations: from fast time-scale EMTP sim-
ulations to slower time-scale large-scale system studies. In this
paper, we focus on system studies for the purpose of accurately
assessing operational limits while considering conditions during
which disturbances may lead to voltage and frequency viola-
tions. Instead of relying on operational safety margins, which
we hope are sufficiently conservative, a planning/operational
decision can be based on the probability of exceeding a set of
specified limits.

Our work on this topic is summarized in this paper. Here
we introduce and evaluate the PCM technique applied to small
power system models. We also address the additional challenges
associated with the analysis of very large system models con-
taining numerous uncertainties as well as presenting a large
system example. A more detailed treatment of some of the topics
presented here can be found in [19].

II. THEORY

PCM essentially creates polynomial models relating the un-
certain parameters of the system to the outputs of interest. The
power of the PCM method lies in its ability to select appropriate
simulation points to create a polynomial model which has the
same moments as a higher order model. Judiciously selected
simulations are carried out initially in order to determine the
coefficients of this polynomial model. Orthogonal polynomials
and Gaussian quadrature integration [20] are used to justify the
selection of suitable simulations, so these methods will be dis-
cussed before the actual development of PCM is presented. One
important property of PCM to note in the development is the
independence of the simulations necessary to determine the co-
efficients of the polynomial model from the output(s) of interest.
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The same set of simulations is performed to determine the co-
efficients of the polynomial models for all of the outputs of in-
terest.

A. Orthogonal Polynomials

The following function is an inner product on the space of
polynomials:

(9(x), h(z)) = /A F(@)g(x)h(z) da (1)

where f(z) is any nonnegative weighting function defined ev-
erywhere in a connected .A. In the context of PCM, f(z) is a
probability density function (pdf) describing the uncertainty in
a system parameter. This particular inner product is the one used
for Gaussian quadrature integration and the probabilistic collo-
cation method.

Given this inner product, a pair of polynomials is said to be
orthogonal if their inner product is zero. Further, a set of poly-
nomials H is said to be orthonormal if and only if the following
relationship holds for all h;(z) in H:

(hish;) = {(1) ij S0 @)
Given a weighting function f(x), we are interested in a par-
ticular orthonormal set, H, of polynomials of increasing order
in which h; is a polynomial of order i. These polynomials are
unique and form a basis for all polynomials. Efficient recursive
methods exist for obtaining these polynomials [20].

We omit the proofs, but it can be shown that each h; has ex-
actly 7 roots and all of the roots are contained in .4 [20]. These
roots play a pivotal role in the probabilistic collocation method.

B. Gaussian Quadrature Integration

Gaussian quadrature integration is a numerical integration
technique for integrals of the form:

/ f(z)g(z) dzx 3)
A

where g(x) is a polynomial and f () is a nonnegative weighting
function. If f(x) is a pdf, this integral is the expected value of
g(z). The main result of Gaussian quadrature integration is the
following exact formula for calculating this integral:

[ f@t@da =3 po) @

where the f; are constants which only depend on the weighting
function f(z) and the x; are constants in the region of integra-
tion. The formula is exact for all polynomials g(z) of order less
than or equal to 2n — 1. This result is somewhat surprising. The
polynomial g(z) itself could be determined using 2n samples,
but only n samples of g(z) are needed to compute the integral.

The z; are computed using the orthonormal polynomial set
‘H, where f(z) is used as the weighting function. The constants
x; are the roots of h,,, which exist and are contained in A. Fur-
thermore, the z; only depend on f (), since H only depends on
f(z). We show the independence of the f; from ¢(z) and the
correctness of (4) with these z; constructively.
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The polynomials in H up to and including order % constitute
an orthonormal basis for the space of all polynomials of degree
less than or equal to 7. Therefore, a polynomial of order 2n —
1 can be expressed in terms of these orthonormal polynomials
using constant coefficients a; and b;

9(x) = hn(2)(an—1hn_1(2) + -+ + aoho(z))
+by_1hn_1(x)+ -+ boho(z). (5)
If this expression is expanded by multiplying through by h., (),
the result is a sum of 2n linearly independent polynomials (not
necessarily orthogonal), which proves that such a representation

is always feasible. Since () is a constant, the integral is easily
determined by orthogonality

/ F(@)g(x) dz = b / F@)ho(x) da. ©)
JA JA

Finally, we build a linear set of equations by evaluating ¢(z)
in (5) at the roots of h,,(x)

hn—1($1) ho(l’1) bn—1
= P O
hn—1(xy) ho(xy) bo

By inverting this matrix, we derive an expression for by

g(w1)

hn—1(z1) ho(z1) g(z1)
= : : : - (®)

bo hnr () ho(en) | | gen)

bnfl

If we define ho(x) tobe 1 (which is customary) and assume f(z)
is a pdf (which integrates to 1), then by is the desired result

bo= [ S de = fatr). O

The weights f; are given by the last row of the matrix in (8).
Since H is determined solely by f(z), both z; and f; are inde-
pendent of g(x).

The independence of the x; from the particular polynomial
for which we are calculating the integral is analogous to the
desired independence between the set of parameter values for
which we perform simulations and the particular output variable
of interest. One set of x; suffices for all polynomials of order less
than or equal to (2n — 1) and one set of simulations is sufficient
for all outputs of interest.

C. Monte Carlo Method

A brief description of the simple, “brute force” Monte Carlo
method for a single uncertain parameter is helpful as a basis of
comparison before we discuss PCM.

In its simplest form, the Monte Carlo method is a method of
repeated trials. As an example, let f(z) be a pdf describing some
uncertain parameter x
for allx (10)

Y

z) >0,

f(z)
/ f(z)dz =1.
A
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For some desired output, g(x), which is a function of that pa-
rameter the expected value of the output is computed using the
following integral:

| f@ao) do = Elg(). (12
A

A simplistic Monte Carlo method approximates the integral by
generating random numbers using f(z) and then performing a
simple average of the resulting answers

/A f(x)g(x)dr ~ %;g(&) (13)

where the Z; are generated according to f(z) using a pseu-
dorandom number generator. Given sufficiently large N, this
method is guaranteed to converge to the actual expected value as
a direct result of the law of large numbers [21]. Unfortunately,
the required N may be quite large. Since all of the moments
of g(x) (e.g., the variance) are expected values, the law of large
numbers applies to these statistics as well under the Monte Carlo
method.

The size of N is dependent on the variance of the output vari-
able. A larger variance means a larger number of simulations
are required. Variance reduction techniques reduce the size of
the required N for a particular output by modifying the system
and pseudorandom numbers in such a way that the expected
value of the desired output is accurately generated but with a sig-
nificantly reduced variance. However, these methods have the
major drawback that a new set of simulations are then neces-
sary for each output variable and each moment, since only the
expected value of one output is accurately computed.

D. PCM—Single Uncertain Parameter

The probabilistic collocation method is a polynomial mod-
eling technique; the desired output is described as a polynomial
in the uncertain parameter of the system. After this model is
identified, a standard, simplistic Monte Carlo method can be
applied to the polynomial model. The problem with (13) is that
each g(z;) is computationally expensive, since it represents a
separate simulation of the power system. If this function g(z)
can be modeled reasonably accurately by a polynomial §(x),
an essentially unlimited number of samples §(z;) can be com-
puted because no simulations are involved once the polynomial
has been identified. The only simulations necessary are those to
identify the polynomial. If the same simulations can be used to
identify the polynomials for all outputs of interest, the number
of simulations is very limited in contrast to variance reduction
techniques. Therein lies the power of the probabilistic colloca-
tion method.

Concretely, let z be the uncertain parameter, f(«) be the pdf
describing this parameter and g(z) be the output of interest.
PCM creates a polynomial model of the form

i@)=gh+gia+ -+ ga"" (14)

where the g/ are constants. The model parameters could be iden-
tified by performing many simulations using various x; and ap-
plying a least squares algorithm. However, we are trying to per-
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form an absolute minimal number of simulations, since each
simulation is expensive in terms of time.

Gaussian quadrature integration says that if this polynomial is
fit using exactly the right simulations, the expected value of g is
identical to the expected value of g as long as g is a polynomial
of order 2n—1 or less. PCM fits the polynomial model with sim-
ulations of the system at the x; indicated by Gaussian quadrature
integration. If a high-order polynomial is a reasonable model
for the relationship between uncertain parameter and output of
interest, PCM yields extremely good results for the expected
value. Not surprisingly, the higher order moments are also well
approximated though a firm theoretical basis is lacking.

Following this line of logic, let us represent §(z) using the
polynomials in H without loss of generality, where §(z) is of
order (n — 1)

9(z) = goho(2) + g1hi(2) + -+ + gn—1hp—1(z).  (15)
The following linear system of equations can be solved to de-
termine the g;:

hin—1(z1) ho(z1) | [ gn-1
= | ae
hn—1 (flin) ho(ﬂin) 9o

g(z1)

g(;;;n)

where the z; are chosen to be the roots of h,,(x) [to exploit the
benefits of Guassian quadrature integration explored in (5)—(9)].
If ho(x) = 1, the expected value is simply go and no further
calculations are necessary. Similar relationships exist for higher
order moments of g(x). For example

a7)

In general, this approach is heuristic. We cannot usually guar-
antee that the actual relationship between the uncertain param-
eter and the output of interest is exactly a polynomial. In ad-
dition, we may be interested in further statistical information
about the output, not just its moments. As previously noted,
higher order moments are also expected values, so the argu-
ments for the expected value hold just as well for the variance,
although a higher order polynomial model may be required, but
further statistical information, such as the exact probability that
the output lies in some interval, may not be accurate. PCM is
designed to calculate the coefficients of the polynomial model
with the bare minimal number of simulations while also trying
to reproduce the moments of the output with high fidelity by
modeling the polynomial particularly well in the regions that are
more probable. Given that, one could also expect that the PCM
model would perform well when used to compute the proba-
bility of events in the high probability region of the output.

III. SIMPLE ILLUSTRATIVE EXAMPLES
A. RC Circuit

To illustrate the probabilistic collocation method, a simple
first-order circuit, such as the one shown in Fig. 1, may be
helpful because of its familiarity and its tractability to analytical
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Fig. 1. Simple RC circuit with voltage step input.

fr(Ro)

foag
!

2.5 Rg

05 1

Fig. 2. Pdf for resistance R.

techniques. The response voltage is described by a first-order
differential equation
ViV
-4 .
RC  RC
Given zero initial conditions and the step input shown, the
output is a familiar exponential response

V= (18)

V(t)=1— e t/RC, (19)
For this example, the resistance is treated as uncertain and the
capacitance is treated as if it were known exactly. The voltage
at time C'/10 is chosen as the output of interest g
g(R) = V(C/10) = 1 — e~ /10F (20)
Before any uncertainty analysis can be performed, a descrip-
tion of the parameter uncertainty must be available. We use a
somewhat unusual probability density function to describe the
uncertainty in R to demonstrate that the probabilistic colloca-
tion method can accommodate any desired pdf

2Ro — 1, $<Ry<1

fR(RO)Z{—%Ro—I—%, 1<R <3~ @D

This pdf is shown graphically in Fig. 2. For completeness, we
compute the expected value and variance of R

Bl = § 22)
13
0% = = = 0.1806. (23)

Since an algebraic expression for g as a function of R is avail-
able, the pdf for g can be derived directly, along with its as-
sociated moments. The expected value, variance and standard
deviation of g are summarized in Table I.



HOCKENBERRY AND LESIEUTRE: EVALUATION OF UNCERTAINTY IN DYNAMIC SIMULATIONS OF POWER SYSTEM MODELS

TABLE 1
EXPECTED VALUE, VARIANCE, AND STANDARD DEVIATION FOR
RC-CircuiT EXAMPLE

|_Ell | g %
Analytical 0.0797 0.000660 0.0257
PCM - Linear 0.0787 0.000462 0.0215
PCM - Quadratic 0.0795 0.000618 0.0249
Taylor - R=1 0.0650 0.00148 0.0385
Taylor - R=4/3 0.0723 0.000492 0.0222

At this point, we would like to demonstrate how to apply
PCM to this problem. In normal practice, one would not use
PCM in such a situation, since the relationship between the un-
certain parameter and the output of interest is known analyti-
cally, but having the exact answer for comparison purposes is
helpful pedagogically. The first step is to obtain the first few or-
thogonal polynomials based on fr(Ry) (see [20] for a straight-
forward recursive algorithm for the construction of orthogonal
polynomials)

ho(R) =1 (24)
12 4
1560 37 191
ho(R) = —— (R2— =R+ — 26
() = Ja5sts < BT 104) (26)
39760 3 2157 5, 29163 6087
h3(R) = ——— — R— .
V15174901 497 4970 2485

27)

The roots of ha(R) yield two values of R, which we can use
to develop a linear approximation of the relationship between g
and R. The roots of ho(R) and the resulting values of g are as
follows:

(28)

R =1.857 — g(R) = 0.0524
= 0. (29)

R =0.989 — g(R) = 0.0962.

These two points are sufficient to uniquely define a line, which
is the linear PCM approximate model

§(R) = (—=0.0505)R + 0.146

= —0.0215h1 (R) + 0.0787ho(R). (30)

As noted earlier, the expected value, variance and standard devi-
ation are directly available from the coefficients and the results
are shown in Table I. The accuracy of these results is startling
considering that they are based on a linear approximation and
that approximation was created using two points selected based
on the pdf for R and not based on the relationship between g
and R.

As a basis of comparison, we also examine another standard
way to obtain a linear approximation of g(R), namely, a Taylor
series approach. Instead of creating a line using two widely sep-
arated values of R, we select a nominal value for R and an-
other value of R close to the nominal value, which results in
a line tangential to the actual relationship between g and R at
that point; in other words, the approximation is local. One might
select R = 1 for the nominal value, since the pdf for R is max-
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0.2

g =V(C/10)
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Approximations—
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Fig. 3. Comparison of linear approximations using PCM and Taylor series
approximation.

imal there. Another good choice is R = 4/3, since that is the
expected value of R. The PCM linear model as well as these two
linear approximations are shown in Fig. 3.

As Table I shows, the PCM results compare favorably with
those based on the Taylor series approximations. The results
using R = 1 as the nominal point are uniformly poor since this
approximation diverges substantially from the actual g for larger
values of R. The approximation based on a nominal value of
R = 4/3 yields a comparable variance and standard deviation
to that using PCM since their slopes are nearly identical. But,
the expected value as computed using PCM is more accurate
since the Taylor series approximation in this example always
lies below the actual graph of g; the PCM model is not limited
to being tangential to g.

One can also create higher order polynomial approximations
using PCM. To create a quadratic model, the roots of h3(R)
are used to find the coefficients. The roots of hs and the corre-
sponding values of g(R) are as follows:

R =2.106 — g(R) = 0.0464 (31)
R = 1407 — g(R) = 0.0686 (32)
R =0.826 — g(R) = 0.1140. (33)

The quadratic PCM model is as follows:

G(R) = 0.0072hy(R) — 0.0238hy (R) + 0.0795ho(R)

= (0.0362)R? — (0.159)R + 0.221. (34)

The moments can be computed directly from the coefficients,
just as for the linear model, and the results are in Table 1. The
quadratic PCM model is able to reproduce the actual moments
almost exactly.

B. Multiple Machine Power System

A power system with multiple machines has richer behavior
than the previously presented example and we close this sec-
tion with such a system. The power system model comprises a
two-area system adapted from [22] and shown in Fig. 4. We ex-
plore the amount of power which can be transferred between the
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Area 1 Area 2

Fig. 4. A small multiple machine power system.

TABLE 1I
COMPARISON OF PCM AND MONTE CARLO METHOD

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 19, NO. 3, AUGUST 2004

Monte Carlo | PCM, quadratic
7000 pts. 3 pts.

B[V min] 0.913 0.913

SD[Vimin] 0.00830 0.00833

Prob. of Violation || 7.82% 8.92%

two areas. A power transfer is deemed unacceptable if voltage
or frequency limits are exceeded during the transient following
a fault and reset on one of the two lines connecting buses 7 and
9.If Areas 1 and 2 each represent a utility, we are attempting to
determine the maximum amount of power which can safely be
transferred from one utility to the other.

At a power transfer of 450 MW, the minimum voltage limit
is violated during the post-fault transient, while a 400-MW
transfer is acceptable. The question we seek to answer is
whether the 400-MW transfer scenario is acceptable for all
reasonable parameter variations of a single parameter within
the model and, if it is not, what is the likelihood that a violation
occurs.

For this study, one of the load parameters is modeled as uncer-
tain. A standard real power load model is used in this example,
namely

P = Py|V|°. (35)

Here we assume that « is uniformly distributed between 0.75
and 2.0. The load parameter is varied simultaneously and iden-
tically at each of the two load locations.

In all cases, when the system transient is unacceptable, the
minimum voltage constraint is violated in this system. There-
fore, we concentrate on three quantities in our study: the prob-
ability of violation, the expected value of the minimum system
voltage during the transient, and the standard deviation of the
minimum system voltage during the transient. A comparison of
the results of our studies using both Monte Carlo methods and
the probabilistic collocation method is presented in Table II.

As the table shows, the results using PCM are very good con-
sidering that they require only three simulations. As expected,
the moments can be calculated to a high degree of accuracy.
Even the probability of violation, which is a low probability
event, is reasonably approximated. To verify our results, 7000
Monte Carlo simulations are used as a basis of comparison. Re-
alistically, “only” about 1500 Monte Carlo simulations are ac-
tually necessary to obtain results with comparable accuracy to
those obtained using the probabilistic collocation method.

To complete the discussion of the probability of violation,
Table III presents results obtained using progressively higher

TABLE III
COMPARISON OF POLYNOMIAL ORDERS
Order E[Vmin] SD[Vmin] Probability
Linear 0.91300 0.00800 3.00%
Quadratic 0.91333 0.00833 8.92%
3rd Order 0.91346 0.00834 8.83%
4th Order 0.91333 0.00831 8.90%
5th Order 0.91336 0.00838 8.08%
6th Order 0.91321 0.00832 8.06%
7th Order 0.91328 0.00825 7.86%
1.04 T T T T T
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Fig. 5. The voltage at Bus 7 following the fault with error bars.

order polynomial representations. Determining the appropriate
order of the polynomial model for a given problem remains an
unresolved issue.

Another goal is to perform such studies on time-varying out-
puts of the system. To illustrate, we take this same example and
study the voltage at Bus 7 after the fault is cleared. In this case,
we seek something akin to error bars for the simulation. To ac-
complish this, we plot the expected value of the voltage at each
time point along with two additional curves at plus and minus
one standard deviation from the mean. Fig. 5 summarizes the
results using both brute force Monte Carlo and PCM. The solid
line represents the expected value of the voltage as calculated
by either a Monte Carlo method or PCM (they yield essentially
identical results here). The error bars represent 1 standard de-
viation from the mean as calculated using a brute force Monte
Carlo method. The “dotted-dashed” lines represent 1 standard
deviation from the mean as calculated using PCM. The PCM re-
sults require three simulations of the system, while the Monte
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Carlo results require 1500. The correspondence between the two
methods is striking, as is the considerable computational savings
of PCM.

On a final note, we observe that such time-varying simula-
tion studies are impossible to produce using variance reduction
techniques. We individually calculate the expected value and
standard deviation at each of 100 time-sample points in order
to produce such a plot. One single importance sampling distri-
bution cannot be found which yields good results for all of these
different “output variables”. On the other hand, the exact same
three system simulations are used to create a different polyno-
mial for each of the time points with the probabilistic collocation
method. Additional savings are obtained if one is only interested
in the mean and standard deviation, since they are directly avail-
able from the coefficients of the PCM model.

IV. LARGE POWER SYSTEMS

We very briefly discuss some of the issues presented by large
power systems and present a large power system example. The
interested reader is referred to [19] for a more thorough presen-
tation.

A. Parameter Uncertainty Priorization

In the previous sections, PCM was applied to problems with
only one uncertain parameter. In the case of a single uncertain
parameter, the number of simulations necessary to fit the model
is equal to one plus the order of the polynomial. For multiple
uncertain parameters, the required number of simulations grows
quickly. Even for a quadratic approximation, a model with n
uncertain parameters requires

1+2n+(g>

simulations. To retain the advantages of PCM, n must be rela-
tively small.

Our approach is to use eigenvalue sensitivities. The basic
technique used is inspired by recent work on the identification
of key load dynamics for system damping in power systems
[23]-[27]. While this research encompasses two separate ap-
proaches (which are compared in [27]), eigenvalue sensitivities
are at the core of the work described by both research groups.
Concretely, we evaluate the following expression for each un-
certain parameter y in the system:

(36)

n

>

=1

ON;
dy

Oy

‘ vl
Ai | |Ely]
where the first term in the product is the absolute sensitivity of
the eigenvalue to parameter ¥, the second term is the quotient
of the nominal value of the parameter and the nominal value
of the eigenvalue, and the last term is the standard deviation of
the parameter divided by its expected value. (The ever-present
zero-eigenvalue is not considered as it does not change with pa-
rameter variation.) This measure is a reasonable way to combine
all of the sensitivities into one single scalar quantity, which can
be computed quickly. The quantity is also unitless and based on
both the relative sensitivity of the eigenvalues and the uncer-
tainty in the parameter (as measured by standard deviation).

(37)
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TABLE IV
SIZE OF THE “LARGE” SYSTEM BEFORE AND AFTER REDUCTION
Unreduced | Reduced
# of Gens./Loads 262/670 16/63
# of Buses Removed - 800
# of Lines Removed/Created - 1209/282

# of Injectors - 49
Simulation Time (seconds) 224 34
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Fig. 6. Uncertainty in generator 233 angle.

B. Large Power-System Example

A portion of a dynamic model which describes a large portion
of the western U.S. was adapted for the studies here. Unfortu-
nately, the data had to be modified from its original form be-
cause of problems converting it to conform to the EUROSTAG
format. Though the system studied is not necessarily an accurate
representation of the original system, the system is nevertheless
interesting and realistic. In addition, we applied a model reduc-
tion technique to the system; for this paper, we used synchronic
modal equivalencing (SME) [28]-[32]. The size of the network
before and after reduction is summarized in Table IV.

The event of interest is a short circuit between nodes 234-448
after 50 s, which is cleared 0.1 s later; this line is the only di-
rect connection between two groups of generators, and, conse-
quently, faulting the line has a substantial effect on the system.

We have not yet considered uncertainties in parameters which
are intrinsic to the simulation event itself. A good example of
such a parameter in this particular case is the length of time
until the fault is cleared. Instead of using a nominal clearing
time of 0.1 s, we assume that the clearing time is uniformly
distributed between 0.0333 and 0.1 s. For this study, a third-
order polynomial is used.

Two outputs of interest are chosen: the speed and angle of
generator 233. The results are shown in Fig. 6 and 7. In each
case, the diagram shows the results of the uncertainty analysis;
the solid line is the expected value and the error bars are +1
standard deviation. These results are the result of a PCM anal-
ysis using the reduced model to fit the polynomial.

We stress here that these results are obtained with a minimum
of computational effort. The time required for the identification
and analysis of the polynomial model (including finding mo-
ments) is on the order of seconds. We summarize the time sav-
ings in Table V.

The first column represents using PCM with model reduction.
The second column is similar but without model reduction. (In
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Fig. 7. Uncertainty in generator 233 speed.
TABLE V
ESTIMATED TIME-SAVINGS USING THE DESCRIBED METHODS
Our Method | Only PCM | M. C.
Reduction Time 8 min - -
# of Sim. 4 4 1000
Time per Sim. 30 sec 3 min 3 min
Total Time 10 min 12 min 2 days

this case with only one uncertain parameter, model reduction is
not strikingly beneficial. We include it only for completeness).
The third column is a brute force Monte Carlo approach using
the full model. The number of simulations for the Monte Carlo
method is a very conservative estimate. The true number of re-
quired simulations could easily be several orders of magnitude
larger. The time savings using PCM are striking.

V. CONCLUSION

The probabilistic collocation method allows one to study
the uncertainty in particular outputs, sets of outputs or even
transients of a system with a mere handful of simulations.
The method relies on polynomial models of the relationship
between the uncertain parameter in the system and the outputs
of interest. The same set of simulations are used to fit all of the
polynomial models for a particular simulation, so the method
is more flexible than more traditional time-saving methods,
such as variance reduction techniques. The polynomial models
are created based on very carefully selected simulations and
are not local approximations, as is the case for Taylor series
expansion approximations.

The larger system example demonstrates the time savings
and enabling aspect of PCM in conjunction with the associ-
ated methods. The results presented here would take months to
gather using other standard methods.

We believe that this method shows great promise. We hope
that it encourages interest in the study of uncertainty in power
systems simulations and at the same time enables more sophis-
ticated analyses of uncertainty without prohibitively expensive
expenditures of time and resources.
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