About This Item

Ask the MINDS@UW Librarian

On Two Polynomial Spaces Associated With a Box Spline

Show full item record


Ron, Amos; deBoor, Carl; Dyn, Nira
University of Wisconsin-Madison Department of Computer Sciences
Mar 15, 2012
The polynomial space H in the span of the integer translates of a box spline M admits a well-known characterization as the joint kernel of a set of homogeneous differential operators with constant coefficients. The dual space H* has a convenient representation by a polynomial space P, explicitly known, which plays an important role in box spline theory as well as in multivariate polynomial interpolation. In this paper we characterize the dual space P as the joint kernel of simple differential operators, each one a power of a directional derivative. Various applications of this result to multivariate polynomial interpolation, multivariate splines and duality between polynomial and exponential spaces are discussed.
Permanent link
Export to RefWorks 

Part of

Show full item record

Search and browse


Deposit materials

  1. Register to deposit in MINDS@UW
  2. Need deposit privileges? Contact us.
  3. Already registered? Have deposit privileges? Deposit materials.