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On the Capacity Region of the Discrete Additive 
Multiple-Access Arbitrarily Varying Channel 

John A. Gubner, Member, IEEE 

Abstract-The discrete additive multiple-access arbitrarily varying 
channel (AVC) with two senders and one receiver is considered. Neces- 
sary and sufficient conditions are given for its deterministic-code aver- 
age-probability-of-error capacity region under a state constraint to have 
a nonempty interior. In the case that no state constraint is present, the 
capacity region is characterized exactly. In the case of the noiseless 
mod-2 adder AVC using state constraint function I ( $ )  = s and subject 
to a state constraint L less than or equal to 0.13616917, the capacity 
region is shown to be a 45-degree triangle whose legs have length 
1 - h(L) ,  where h denotes the binary entropy function. 

Index Terms- Additive channel, multiple-access, arbitrarily varying 
channel, state constraint, capacity region. 

I. INTRODUCTION 

A general multiple-access arbitrarily varying channel (AVC) with 
two senders and one receiver is a transition probability W from 
X x Y x S into Z, where X,  Y, S ,  and Z are finite sets, each 
containing at least two elements. We interpret W( z I x ,  y, s)  as the 
conditional probability that the channel output is z E Z given that the 
channel input symbol from sender 1 is x E X,  the channel input 
symbol from sender 2 is y E Y, and that the channel state is s E S .  
When block codes of length n are used, we say the AVC is subject 
to state constraint L if the state-selection mechanism can generate 
only those state sequences s = ( s1 , * . a ,  s,) that satisfy a time-aver- 
age constraint of the form 

where I is a given nonnegative constraint function defined on S and 
satisfying min,l(s) = 0. Note that if L 2 max,l(s), then all state 
sequences s satisfy (1); in this case we say that the state constraint 
is not present, or inactive. 

Definition (Additive A VC): Let G be a finite nontrivial commu- 
tative group. Suppose that X = Y = Z = G. We say that W is an 
additive AVC if 

W ( z I x , y , s )  = V , ( z - x - y ) ,  

for some transition probability V from S into G. 
General multiple-access AVC's subject to a state constraint have 

been studied in [6]. There, both forward and converse results were 
proved that enable one to give inner and outer bounds on the 
capacity region. To obtain meaningful inner bounds, one must 
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exhibit input probability distributions for which certain inequalities 
are nonvacuous. We show that for the additive AVC such input 
distributions always exist. 

In the absence of state constraints, we exactly characterize the 
capacity region of the additive AVC. 

In the special case of the noiseless mod-2 adder AVC with 
I( s) = s and state constraint L 5 0.13616917, the capacity region 
is shown to be a 45" triangle whose legs have length 1 - h(L) ,  
where h denotes the binary entropy function defined in Theorem 3.  

Additive AVC's with one sender and one receiver were consid- 
ered in [4, Section VI, but under the assumption that the channel 
symbols come from a finite subset of R d  rather than a finite 
commutative group G. This is in contrast to the results of [4, 
Section IV] concerning a restricted form of additive AVC called a 
group adder AVC, which is an additive AVC for which S = G and 
V J t )  = p ( t  - s) for some probability distribution p on G. In an 
earlier paper [3, Section IV] Csiszhr and Narayan analyzed the 
single-user noiseless mod-2 adder AVC. 

II. STATEMENT OF RESULTS 

In order to state our results, we need the following notation. Let 
9 ( S )  denote the set of probability distributions on S .  For r E 9(S),  
let rV denote the distribution on G defined by ( r V ) ( t )  = 
C,r(s)V,(t). Let H ( r V )  denote the entropy of rV. Let 

Note that if L 2 max,I(s), then gL(S) = O(S). We now state our 
main results. 

Theorem 1: The deterministic-code average-probability-of-error 
capacity region under state constraint L of an additive multiple- 
access AVC V has a nonempty interior, if and only if there is no 
r E @(S)  such that rV is the uniform distribution on G. Further- 
more, the capacity region is always contained in the 45" triangle, 

{ ( R , ,  R , )  : R ,  2 0 ,  R ,  2 0 ,  

and R I  + R ,  5 log IG I - max H ( r V ) } ,  (2) 
rcgL(S)  

where I G I denotes the cardinality of the set G. 
Remark: Since G L ( S )  is compact and since H is continuous, 

W 9 L ( S )  

if and only if there is no rE @(S)  such that rV is the uniform 
distribution on G. 

logIGI > max H ( r V ) ,  (3) 

Theorem 2: In the absence of state constraints, the capacity 
region of the additive multiple-access AVC V is always given by 
(2), where @(S) is replaced by 9(S).  

Proof: Theorem 2 follows from Theorem 1 ,  the preceding 
Remark, ([7, Theorem 1, p. 2141, which says that if the determin- 
istic-code average-probability-of-error capacity region has a 
nonempty interior, then it is equal to the random-code average- 
probability-of-error capacity region), and [6, Section IV], which 
shows that the random-code average-probability-of-error capacity 
region of the additive AVC is given by (2). We give an independent 
proof in Section V. 0 
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We now consider the noiseless mod-2 adder AVC, which is 
defined as follows. The group G is taken to be the set (0, 1 )  under 
mod-2 addition. For the set of channel states, we take S = G. The 
noiseless mod-2 adder AVC is obtained by taking V,( t )  = 6( t - s), 
where 6(0) = 1 and 6(1) = 0. In discussing this channel, we always 
take the state-constraint function to be I(s)  = s so that ( 1 )  is and 

Observe that the following conditions are sufficient to guarantee (7)  
and (8), respectively: 

min H (  p*q* v ~ )  > max H (  q * r V )  (9) 
S€S r e i / L ( S )  

equivalent to the requirement that the fraction of 1's in the sequence 
s be less than or equal to L.  

Theorem 3: For L 5 0.13616917, the deterministic-code aver- 
age-probability-of-error capacity region under state constraint L of 
the noiseless mod-2 adder AVC is 

{ ( R , ,  R 2 ) :  R ,  2 0, R ,  2 0, and R ,  + R ,  5 1 - h ( L ) } ,  

(4) 

where h(L)  4 - L log L - (I - L )  log (1 - L )  is the binary en- 
tropy function. 

111. PRELIMINARIES FOR THE PROOFS 

In this section, some useful quantities associated with a general 
multiple-access AVC W are introduced. Simplified expressions for 
these quantities are presented when W is an additive AVC as 
defined in Section I.  For later use in the proof of Theorem 1, the 
hypotheses of Theorem A in the Appendix are also simplified for an 
additive AVC. 

Given any p E g(X), q E @U), and r E O(S), it is understood 
that the average mutual informations I( X A Z ) ,  I( Y A Z I X ) ,  
Z(S A Z ) ,  and I (S  A Z I X )  are computed using the necessary 
marginal and conditional distributions obtained from 

Pxrsz(Xt Y >  s, 2 )  = p ( x ) q ( y ) r ( s )  w(z I x, Y ,  s) 

Note that these mutual informations can be regarded as continuous 
functions of the 4-tuple ( p ,  q, r ,  W ) .  With this in mind, we define 

I ~ ( X A Z )  inf I ( X A Z )  
r e Y L ( s )  

and 

I ~ ( Y A Z I  X )  e inf I ( Y A Z ~  x ) .  
r E Y L ( S )  

In working with additive AVC's, it is convenient to define the 
convolution of two distributions p and q E %(G) by 

Thus, for an additive AVC, Theorem A can be applied if (9) and 
(10) hold. 

IV. PROOF OF THEOREM 1 

The converse result, that the capacity region of an additive AVC 
is a subset of the triangle in (2), was proved in [6, Sections 111 and 
IV]. From this it follows that if the capacity region has a nonempty 
interior, then (3) must hold; i.e., there can be no r E  gL(S)  with 
rV uniform. Our contribution in this paper is the proof of the 
forward result, that if there is no r E BL(S) with rV uniform, then 
the triangle in (2) contains nonempty open rectangles that are 
contained in the capacity region. 

Before proceeding, we summarize a few facts about regular 
probability distributions on a finite commutative group G .  Recall 
that a distribution p is said to be regular if for every pair of 
distributions q and q', 

p*q = p*q' implies q = q'; 

otherwise, p is said to be nonregular. First note that the point mass 
concentrated on the additive identity element is regular. Next, the 
uniform distribution, U ,  is always nonregular; this follows from the 
fact that u*q = U for all q. Thus, 9 ( G )  always contains both 
regular and nonregular distributions. We also point out that if p is 
regular, then the convex combination Ap + (1 - A)u is regular for 
all X E  (0, 11 .  As a consequence, even though the uniform distribu- 
tion is nonregular, we can always approximate it by a strictly 
positive regular distribution. We also need the fact that if p is 
regular, then p*q = u implies q = U. 

The first step in the proof is to assume that rV is not uniform for 
any r E Q L ( S ) ,  or equivalently, on account of the remark following 
the statement of Theorem 1 ,  that H ( r V )  < log 1 G I for all r E 

The first step in applying Theorem A is to show that there is a 
distribution q such that (10) holds. If 4 is close enough to the 
uniform distribution, we claim that (10) will hold. To see this, note 

YL(S) .  

that the right-hand side of (10) is strictly less than log IG 1 ,  while 
H(q* vs) is a continuous function of q ;  if is close to uniform, 
then H( q* V,) will be close to log I G I for all s in the finite set S. 

The next step is to show that there is a distribution p such that (9) 

Note that p*q E 9 ( G )  and that convolution is both commutative and 
associative. 

For an additive AVC, it is readily verified that 

zL(xAz) = inf N ( ~ * ~ * ~ v )  - H ( ~ + , . v ) ,  ( 5 )  holds. To do this, we make the additional assumption that 4 is 
repL(S)  regular. (This explains why we did not take q uniform in the 

preceding paragraph.) We claim that the right-hand side of (9) is 
strictly less than log IG 1 .  If this were not the case, there would be 
an r E Y L ( s )  with q*rV uniform. Since q is regular, we would 
then have rV uniform; but we have assumed this does not happen. 

and that 

I L (  y~ z 1 x )  = inf H ( p r V )  - H ( ~ v ) ,  ( 6 )  
re 9 L ( ~ )  

Thus, taking p to be any distribution close to uniform will satisfy 
(9).  For later use we assume p is strictly positive. In fact, we can 
even take p to be uniform since we do not need p to be regular. 

To simplify the hypotheses of Theorem A, we proceed as fol- 
lows. For an additive AVC, (A. 1) simplifies to 

.(.) H (  p p  v,) > H (  p r V ) ,  for all E g L ( s ) ,  ( 7 )  To conclude the proof, observe that since p is strictly positive 
and since q is regular, it follows from the lemma in the Appendix 
that the quantity I L ( X A  Z )  defined in ( 5 )  is positive. Similarly, 
since we may assume q is positive, the quantity ZL(  Y A  Z I X )  

Thus, we have shown that there exist distributions p and q such 

ses 

and (A.2) simplifies to 

r ( s )H(q*V, )  > H ( r V ) ,  for all r e  P L ( S ) .  (8) defined in (6) is also positive. 
sss 
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that (A.l)  and (A.2) hold and such that the rectangle defined by 
(A.3) is nonempty. 

V. PROOF OF THEDREM 2 

From the proof of Theorem 1, we see that there exist distributions 
p (nearly uniform and positive) and q (nearly uniform, regular, and 
positive) such that the open rectangle 

{ ( R , ,  R 2 )  : O  < R I  < Z L ( X A Z )  

(11) and 0 < R, < IL( Y A Z I X )  } 

is nonempty and belongs to the capacity region. Clearly, by inter- 
changing the roles of X and Y and p and q, there exist distribu- 
tions p' (nearly uniform, regular, and positive) and q' (nearly 
uniform and positive) such that if 

px, Y ' S Z (  x ,  Y ,  s, 2 )  = P'( x )  q'( Y )  .( s) w( z I x ,  Y ,  s) 9 

then 

{(R,, R ~ )  : O  < R ,  < P ( X ' A Z ~  Y') 

and O < R 2 < I L ( Y ' A Z ) }  (12) 

is nonempty and belongs to the capacity region. Now, the height of 
the rectangle in (11) is Z L ( Y ~  Z I X ) .  Since q is nearly uniform, 
(6) implies that IL(  Y A Z I X) is nearly equal to 

log IG I - max H ( r V ) ,  (13) 
re Y L ( ~ )  

which is the height of the triangle in (2). Similarly, since p' is 
nearly uniform, the width of the rectangle in (12), ZL( X' A Z I Y'), 
is also nearly equal to (13), which is also the length of the base of 
the triangle in (2). It follows that any point in the interior of (2) 
belongs to the convex hull of the open rectangles (1 1) and (12) if p ,  
q and p',  q' are appropriately selected. Thus, every rate pair in the 
interior of (2) belongs to the capacity region by the usual time-shar- 
ing argument [2, p. 2721. In Section VII, we explain why state 
constraints cannot be present when using the time-sharing argument. 

VI. PROOF OF THEDREM 3 

We begin with a few simplifications. First note that log IG 1 = 1 
since IG I = 2. Next, since f ( s )  = s, r e  &(S), if and only if 
r(1) 5 L. Also note that for V J t )  = 6 ( t  - s), r V =  r ,  and so 
H ( r V )  = H ( r )  = h(r(1)).  Hence, the maximum in (2) is simply 
maxoc tcLh( t )  = h ( L )  when L 5 1/2, since h is increasing on 
[0, 1/21. It now follows that (4) is simply (2) specialized to the 
noiseless mod-2 adder AVC. It remains to show that every point in 
(4) belongs to the capacity region. Since the capacity region is 
closed, it suffices to consider only interior points of (4). Consider 
the shaded regions in Fig. 1. We prove that the shaded region at the 
left belongs to the capacity region. A similar argument interchang- 
ing the roles of X and Y will establish that the shaded region at the 
right also belongs to the capacity region. Since the union of the two 
shaded regions is the entire triangle, a convex-hull/time-sharing 
argument is not needed. 

Suppose ( R I ,  R,) belongs to the shaded region at the left in Fig. 
1. We show that there exist distributions p and q such that ( R I ,  
R,) belongs to the rectangle defined by (A.3) and to which Theorem 
A applies. To see that this is so, we need the following observa- 
tions. For the noiseless mod-2 adder AVC with p being the uniform 
distribution and 0 < q(1) < 1/2, the rectangle described by (A.3) 

1-h(L) 1-h(L) 

l-h(L) - I-h(L) 
2 2 

I-k(L) 1-h(L) 
2 

I-h(L) 1-h(L) 
2 

Fig. 1. Decomposition of triangle in (4). 

becomes, after a little calculus to evaluate the necessary infima, 

{ ( R I ,  R 2 )  : O  < R I  < 1 - h ( q ( l ) ( l  - L) + q ( 0 ) L )  and 

0 < R2 < h ( q ( l ) ( l  - L) + q ( 0 ) L )  - h ( L ) } .  

(14) 

Now, to apply Theorem A to this rectangle, we must also satisfy (9) 
and (10). Since p is uniform, the left-hand side of (9) is log IG 1 ;  
since q(1) < 1/2, q is regular, and hence, (9) holds. The treatment 
of (10) is more delicate. In the present situation, (IO) simplifies to 

h ( q ( 1 ) )  ' h ( L ) .  

Thus, we need L < q(1) < 1/2. 
Next, it is readily verified that the upper-right comer of the 

rectangle in (14) lies on the hypotenuse of the triangle in (4). 
Furthermore, the width of this rectangle varies from 0 to 1 - h( L) 
as q(1) varies from 1/2 down to 0. However, we require L < q(1) 
< 1/2 for Theorem A to hold. This means that the maximum 
rectangle width that Theorem A can handle is 

SUP 
L<q(1)<1/2  

1 - h ( q ( l ) ( l  - L )  + q ( 0 ) L )  

= 1 - h(2L(1 - L)) .  

Thus, in order for every interior point of the shaded region at the 
left in Fig. 1 to be included in a rectangle to which Theorem A 
applies, we need 

1 - h(2L(1 - L))  2 f [ I  - H ( L ) ] ,  

h(2L(1 - L ) )  - f h ( L )  5 3. 
or 

(15) 

Using a computer to print a few values of h(2L(1 - L))  - h(L)/2 
shows that (15) holds for L 5 0.13616917. 

VII. CONCLUSION AND DISCUSSION 

We have given necessary and sufficient conditions in order that 
the deterministic-code average-probability-of-error capacity region 
of the discrete additive multiple-access AVC subject to a state 
constraint have a nonempty interior, and we have exactly deter- 
mined the capacity region when state constraints are not present. We 
have also exactly established the capacity region of the mod-2 adder 
AVC when f ( s )  = s and L 5 0.13616917. 

We now explain why we had to assume that state constraints were 
not present when we applied the time-sharing argument in Section 
V. The difficulty arises as follows. Suppose n = n ,  + n,. Then (1) 
does not imply that both 

1 "' 1 "2 
- f ( s k )  5 L  and - 1 I ( s , , + ~ )  5 L ,  (16) 
"1 k = l  n2 k = l  
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which is a necessary condition to apply the time-sharing argument to 
an AVC subject to a state constraint. 

The fact that (1) does not imply (16) also appears to prevent one 
from applying Ahlswede’s elimination technique [l], [7], to AVC’s 
subject to a state constraint; thus, our result in Theorem 1 does not 
appear to be sufficient to allow us to prove the conjecture that the 
region in (2)  is exactly the capacity region when state constraints are 
present, either by the elimination technique or by time-sharing. 

Corrections to [6J 
The preceding observations require us to make the following 

corrections to our prior paper [6]. 
In [6, Theorem 5.81 the words “closed convex hull,” should be 

replaced by “closure.” 
In [6, Section V-C] we can no longer conclude that equation (5.8) 

is correct. Instead, all that we can conclude, using notation defined 
in [6], is that the closure of 

a ! f ( p * ,  q*,  vu) U ” i ” ( p * ,  q* ,  Wu) 

is a subset of C(Wu, 1/2) and that C( WO, 1/2) is a subset of the 
right-hand side of (5.8). 
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APPENDIX 

Lemma: Let p be any distribution with p (  x )  > 0 for all x E G .  
For any q E g ( G ) ,  H( p*q)  - H ( q )  = 0, if and only if q is the 
uniform distribution. 

Proof: Define a distribution on G x G by setting P x y ( x ,  
v) = P ( x ) q ( y  - x ) .  Then 

I ( x A Y )  = n ( Y )  - H ( Y \ X )  

= H ( p * q )  - H ( q ) .  

Clearly, H ( p * q )  - H ( q )  = 0, if and only if X and Y are inde- 
pendent. Since p ( x )  > 0 for all x, X and Y are independent, if 
and only if q(y  - x) = q( y )  for all x, y E G .  Thus, X and Y are 

U 

Theorem A: Let W be a general multiple-access AVC. If 
p E 9(X) and q E 9(Y)  are such that (recall paragraph 2 of Section 
111) 

independent, if and only if q is uniform. 

Z ( X A Z )  > Z(SAZ) ,  forall r e  @(s), (A.’) 

and 

Z ( Y A Z I X )  > Z ( S A Z I X ) ,  forall r E P L ( S ) ,  (A.2) 

then every pair ( R I ,  R 2 )  satisfying 

O < R l < Z L ( X A Z )  and O < R 2 < Z L ( Y A Z I X )  (A.3) 

belongs to the deterministic-code average-probability-of-error ca- 
pacity region under state constraint L .  

Proof: This theorem can be proved by making trivial modifi- 
cations to the proof of [5,  Theorem 5.51. A similar observation was 
made in [6, Section V-A], though it was not pointed out there that in 
this case the modifications do not require that the channel be 

0 nonsymmetrizable [6, Definitions 3.3, 3.5, and 3.71. 
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Shaping Using Variable-Size Regions 

Jay N.  Livingston, Member, IEEE 

Abstract-Constellation shaping is extended to provide shaping gains 
without resorting to high-dimensional constellations. This is accom- 
plished by dividing the constellation into unequal sized constellations, 
and selecting these constellations on an equiprobable basis. A design 
example is provided, demonstrating the simplicity and power of the 
approach. 

Index Terms-Coding, modulation, shaping, signal constellations, 
and nonequiprobable signaling. 

I. INTRODUCTION 

Coding schemes for transmission of data over the Gaussian 
channel have been used over the last decade that lead to improved 
performance [1]-[4]. The most popular approach is to use coser 
codes, and to attain high code rates coupled with good performance, 
the shift has been to use higher dimensional constellations. One 
result of moving to higher dimensions is the ability to achieve what 
has been called shaping gains. This is due to the reduction in 
average symbol energy that can accompany the use of a constella- 
tion whose boundary is not an N-cube. In particular, as the constel- 
lation becomes more spherical, it enforces a nonequiprobable distri- 
bution on signal points drawn from a constituent two-dimensional 
constellation. It has been shown [5] that in the limit as N + 00,  an 
N-sphere can achieve 1.53 dB of shaping gain, and will enforce a 
truncated Gaussian distribution on the constituent 2-D constellation. 
Attention has been focused on these shaping gains, as they can be 
achieved independently of any gain due to the use of a coset code. 

Multidimensional constellations with significant shaping gain were 
first described by Conway and Sloane in [6]. Other constellations 
with shaping gain and simple decoding methods were described by 
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