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is an (n, d - l )R code. Similarly to Theorem 2, we prove that C is 
abnormal. U 

There are three important consequences from Theorem 6. 
Corollary 1: If Construction C is applied on the extended Ham- 

ming code of length 2”, we obtain an abnotmal (2”, 3)2 code. 
CoroZlary2: If Construction C is applied on the punctured 

Preparata code of length 2’”-1, we obtain an abnormal (2’”-1, 4)3 
code. 

Corollary 3: If Construction C is applied on the Preparata code 
of length 22m, we obtain an abnormal (22m, 5)4 code. 
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Distributed Estimation and Quantization 

John A. Gubner, Member, IEEE 

Absfnwt-An algorithm is developed for the design of a nonlinear, 
n-sensor, distriboted estimation system sobject to communication and 
computation mnstraints. Tbe algorithm uses only bivariate pmbabiIity 
dlstrbntio~~ and ykMs l d y  optimal esthnstora that saw the RQpind 
system constraints. It is ssorsl that fhe d g o r i h ~  is a generalizstioe of 
the elpssicpl Lloyd-Max results. 

I& ~nns-Nonlineat estimation, dismted estimation, sensor fo- 
don, Uyd-Max algorithm. 

I. INTRODUCTION 
Consider the distributed estimation system shown in Fig. 1. The 

system consists of n sensor platforms whose respective measure- 
ments, Y1 , . . - , Y,, are related to some unobservable quantity, say 
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X. Each Sensor platform processes its respective measurement and 
transmits the result over a communication channel to a common 
fusion center. The sensors do not communicate with each other, and 
there is no feedback from the fusion center to the sensor platforms. 
The task of the fusion center is to estimate the yobserved quantity 
X. We denote this estimate by X. Clearly, X is a function of 
Yi,... ,Yn, and we can write X = f (Yl ,* . - ,  U,) for some function 
f .  The problem then is to choose the function f so that X is 
close to X in some sense. For example, it is well known that in 
the appropriate probabilistic setting, the minimum-mean-square-eeror 
estimate of X given YI, - . , Y, is the conditional expectation of 
X given YI , - . , Y,, denoted E[ X I Y1, - , Y, 1. However, there 
are many situations in which the conditional expectation does not 
provide a satisfactory solution to the problem of choosing f. 

1) In general, the functional form of E[X 1 Yl,...,Y,] as 
a function of Y1,---,Yn is difficult to detennine, and it 
requires knowledge of the joint probability distribution of 
X ,  Y1 , e . - , Y, . In practice this complete joint distribution may 
not be available. 

2) To compute E[ X 1 Y1, - . , Y, 1, the fusion center must in gen- 
eral have access to all of the sensor measurements YI , . . . , Y, . 
Hence, even if the sensor platforms have local processing 
capability, it is of little use in computing E[ X I YI, . , Y, 1. 
If the nymber of sensor platforms is very large, the burden 
of computing E[X I Y1,..-,Yn ] at the fusion center, even 
if the formula is relatively simple, may be prohibitive. Such 
considerations are important if the estimate of X must be 
computed in real time. By using a suboptimal estimator of X 
for which some of the processing can be done locally at the 
sensor platforms, it may be possible to design an acceptable 
estimator that can operate in real time. 

3) As indicated in Fig. 1, the sensor platforms transmit their data to 
the fusion center. However, using any physical communication 
system, it is not possible to transmit real-valued quantities 
without distortion. In this situation, the conditional expectation, 
or even the best linear estimate, is generally a physically 
unrealizable solution. 

In this correspondence, we develop an algorithm to design solutions 
to the distributed estimation problem that do not suffer from these 
difficulties. 

11. BACKGROUND AND NOTATION 
Our approach is to consider quantization for distributed estimation 

systems. The goal of quantization in such systems is to provide a good 
estimate of the unobservable, X, rather than to reconstruct the Sensor 
measurements Yl, - , Y, as in [3]. Quantization for estimation has 
been studied for a single sensor by Ephraim and Gray [2] and by 
Ayanoglu [l]. The multisensor case has been studied by Lam and 
Reibman [SI, and we discuss their work in more detail below. Zhang 
and Berger [9] considers an asymptotic estimation problem in which 
the observations are discrete random variables taking finitely many 
values and the unobservable quantity is not a random variable, but 
a deterministic and unknown parameter in some finite-dimensional 
Euclidean space. 

A. System Model 
Let X, Y1, . , Y, be real-valued random variables on some prob- 

ability space (Q, 3, P). Each sensor platform k processes its mea- 
surement Yk to obtain an output zk. Each z k  is then transmitted 
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Fig. 1. A distributed' estimation system. 

to the fusion center. We assume that the communication channel 
connecting the sensors to the fusion center has apsitive capacity, and 
that the use of error-correcting codes permits us to view the channel 
as noiseless. We suppose that the channel can transmit messages of 
log, N bits without error, where N 2 2 is an integer. For each k, 
let -. , A k N  be a partition of the real line, R. We require that 
the Sensor platfom output z k  be given by 

N 

z k  c(i - 1 ) I A k ,  ( y k ) ,  (1) 
i=l 

where IA(Y)  denotes the indicator function of the set A c R; i.e., 
IA(Y)  = 1, if y E A and IA(Y)  = 0, oaerwise. 

Under the preceding constraints, the function f discussed in 
Section I must be of the form 

f(y1, * * .  7 Yn) = h(Z1, * .  ' 9  q n ) ,  
where each z k  is equal to the function of Y k  determined by (1) .  

B. Relation to [5] 

We now briefly summarbe the approach in [5]. If the sets {Ak.} 
are fixed, one wants to find a function h(Z1, . . . , 2,) that minimis  
the mean-square error, 

E[ lX  - h ( Z i , * . * , Z ~ ) 1 2 ] ;  (2) 

hence, the optimal h is the conditional expectation, 

h ( ~ l , * * * , ~ , )  = E [ X  121 = z ~ , * * * , Z ~  = 2.1. 

Ifwe set il  = z1 + l , . . . , in = zn + 1 and let 

B A i , ,  x * * x A,,, , 
then this conditional expectation is given by 

Clearly, in order to compute (3), we need to h o w  E [  X 1 'YI, 
. . ,Yn 1. If the entire joint distribution FXU, ...Y, is not available, 

computation of h will not be possible in general. Another considera- 
tion in some applications is the computation of (3) in real time. If (3) 
is not computable in real time, all  the different possible values of the 
right-hand side of (3) will have to be precomputed and stored. For an 
la-sensor system with N-mmponent partitions, there are N" different 
numbers to compute and store. Finally, if more sensors are added at a 
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later date, there will be no way to take advantage of the work already 
done to develop the la-sensor system; all of the numbers given by (3) 
will have to be recomputed for an even larger value of n. 

The preceding paragraph assumed that the partitions were given. 
If h is arbitrary and given, and the partitions {Aki}fV=l are given 
for IC # I ,  then the remaining partition should satisfy (in order to 
minimize (2) [5 ] )  

and hl(i - 1) A h(Z1,.  , Zl-1, i - 1, Zl+l,  - - ,  Zn) .  The approach 
in [5] was to use (3) and'(4) as the basis of an algorithm for 
computing a locally optimal quantizer for a distributed estimation 
system. Briefly, one starts with an arbitrary initial quantizer and 
computes a function h(') given by (3). Using h(') and the initial 
partition, a new partition is generated using (4). One then repeats 
these steps using the new partition to generate h(2) according to 
(3), and so on. The algorithm stops when the relative change in the 
mean-square error falls below a preset threshold. 
As the preceding discussion indicates, the computational size of 

this problem grows exponentially with the number of sensors R. Next, 
we impose constraints on h so that the size of the problem of finding 
a locally optimal quantizer grows linearly with n. 

111. CONSTRAINING THE FUSION CENTER 

Our approach [4] is to constrain the computational capabilities of 
the fusion center a priori as follows. We require that 

n 

& = h ( Z l , " . , Z n )  = x g k ( Z k ) r  (5) 
k=l 

where 

Remrk 1: In spite of the sums in (5) and (6), the fusion center 
is performing a nonlinear operation on the input data 21, - . , 2, . In 
fact, since the z k  are discrete random variables, {he set of possible 
inputs does not c9nS@te a vector space over R. similarly, each gk 
in (6) is a nonlinear function of z k .  and in (l), z k  is a nonlinear 
function of Y k .  

Combining (5) and (6), and recalling that z k  = i - 1 if and only 
if Y k  E AkI, we have 

n N  

= c C k r I A k ,  ( y k ) .  (7) 
k=l r = l  

Clearly, X is a nonlinear function of Yi,  - , Y,. However, if the 
partitions at the sensors are fixed, choosing the { C k I }  that minimize 
E [  IX - XIz ] is a linear-estimation problem whose solution is given 
by the usual normal equations. In this case, we will have N n  
equations in Nn unknowns. Hence, the number of equations will 
grow linearly with the number of sensors n. The moments needed to 
write down the normal equations are 
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Note that one needs only the joint distributions of the form Fyk& 
and FXY, and not the entire joint distribution Fxyl ... yn. 

Dejinitwn 1: Given a partition {Akl}fv,l for each sensor k, we 
write 

A = ({Ali}fV=l,"',{An:}f"=,). 

We denote the procedure of solving the previously mentioned linear 
estimation problem by SN(A). Letting C denote the n x N matrix 
with elements Ck,, we write C = SN(A). 

We now discuss how to find a good partition. If the matrix 
C is fixed, it is now very natural to ask how the best partition 
is characterized. To obtain the answer to this question, fix any 
Z = l , - - . , n ,  and write 

E[ IX - X12] = E[ IX - gl(Z1) - cgk(zk)12] .  (10) 
k f l  

The right-hand side of (10) can be expanded into nine terms; however, 
only five terms will involve ZI. Denoting the sum of these five terms 
by JI, we have 

Recalling that ZI is a function of ki (cf. (l)), we can use the 
smoothing property of conditional expectation to write 

JI=E[gl(zl>{gl(z~)--(E[X Ix]-):E[gk(Zk) Ix])}]. 
k#l  

We can then write 
N .  

where P I ~ ( Y )  4 C I , ( C I ~  - 2 ~ 4 ~ ) )  and 

T I ( Y ) ~ E [ X I ~ = Y ] - ~ E [ ~ ~ ( Z ~ )  I ~ = Y ]  
k f l  

=E[X 1 X = Y ]  
N 

- 1 C k j P ( y k  E Ak3 I x = Y). (11) 
k#l 3=1 

Clearly, if the {cki}  are fixed for all k and i ,  and if the partitions 
{Aki}El are fixed for k # 1, then we should put 

y E AI. -e+ cpll(y) 5 cplli(y) for all i' = 1,.  . e ,  N .  

If we assume that cll < . - .  < C I N ,  then this is equivalent to 

("he choice of < and 5 is arbitrary and is made so that the 
{Ali}EV=, will be disjoint.) Observe that the fuqction TI  depends on 
the {Ck)}Y=l for all k # Z.  so, the set AI, in (12) is not an interval, 
but rather the inverse image of an interval. It is also important to 
observe that to compute T I  for Z = 1, . - . , n only requires knowing 
the two-dimensional joint distributions FXU, and Fyk% for all k and 
1. An important consequence of this fact is that if we decide to add 
another sensor to measure, say Yn+l, our prior knowledge of FXY, 
and Fyk& for k, Z 5 n can be reused. Of course, we would still need 
to obtain FXY,+~  and FY~Y,,+~ for k = 1 , .  

We conclude this section with a final definition q d  a remark. 
Def;nition 2: We introduce- the procedure Ul(C, A). Recall our 

notation in Definition 1. Let A = UI(C, A) be obtained from A by 
replacing {Ali}El with  AI;}^^, where each AI, is given by the 
right-hand side of (12). 

, n. 

Remark: If n = 1 and X = Y1, then the normal equations reduce 
to 

P(Yi E AiI)cir = E[ Y~IA,,  

or 

Clz = 

Further, n ( y )  = y, and so 

In other words, we recover the classical Lloyd-Max conditions for 
locally optimal quantizers [6], [7]. 

Iv. THE DESIGN ALGORlTHM 

Using the basic procedures SN and U I ,  I = 1, . . . , n, defined in 
the preceding section, there are two, almost identical, algorithms for 
generating approximately locally optimal quantizers for distributed 
estimation systems. 

Algorithm 1: 
Let A =  ({A~,}fv,l,~~~,{Anl}fv,l) be given. 
C := SN(A) 

loopl: FOR 2 = 1 TO n 
A := Ui(C, A) 

NEXT I 
C := SN(A) 
IF stopping criterion not met, GO TO loopl 
END 

Let A =  ({A1a}fv,l,~~~,{A,a}fV=l) be given. 
C := SN(A) 

Algorithm 2: 

loop2: FOR 1 = 1 TO n 
A := U/(C, A) 
C := SN(A) 

NEXT 1 
IF stopping criterion not met, GO TO loop2 
END 

While the preceding algorithms appear simple enough, their im- 
plementation is nontrivial. The two main difficulties in implementing 
the algorithms are the computation of the function n(y) in (11) and 
the characterization of the inverse images in (12). Note that even if 
X, Y1,. . , Y, are jointly Gaussian, we cannot write (11) in closed 
form even if the Ak3 are intervals. Hence, the sets AI, in (12) must 
be determined numerically and then a description of them must be 
stored in a suitable data structure. 

A set of programs has been developed [8] to implement Algorithms 
1 and 2 when provided with subroutines to compute the particular 
moments and probabilities for a given situation. Several examples of 
the form 

Y k = x + w k ,  k = 1 , 2 ,  

where X, W1, and W2 are statistically independent were considered. 
Example [8, Example 81: Let X have density 

where d M 0.3419 is a normalization constant and b = 2 (see Fig. 2). 
We let WI and Wz have the same density except that b = 1. With 
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Fig. 2. Density p ( z )  in (13) with b = 2. 

N = 8 (3-bit quantizers), the Lloyd-Max partitions for the random 
variables Yk, k = 1,2, are identical and are given by 

Ah1 = (-m, -1.32731 
AkZ = (-1.3273, -1.24191 
4 3  = (-1.2419, -1.03741 
Ak4 = (-1.0374,0] 
Ak5 = (0,1.0374] 
Ak6 = (1.0374,1.2419] 
Ak7 = (1.2419,1.3273] 

Ak.s = (1.3273, m). (14) 

E[ ( X  - X I 2 ]  = 0.18129. 

Note that the minimum mean square error achievable by a linear 
estimator is 0.18534. Thus, just using the Lloyd-Max quantizers and 
doing linear estimation on 21, ZZ can do better than pure linear 
estimation. Using Algorithm 1, we initialized A to the Lloyd-Max 
partition in (14). After 5 passes through the loop in Algodthm 1, the 
partitions were 

Solving the normal equations for C = SN(A), we have 

Ai1 = (-m, -2.18021 

A12 = (-2.8102, -1.79501 U (-1.3697, -0.81771 

A13 = (-1.7950, -1.36971 U (-0.8177, -0.41091 

A14 = (-0.4109,0.0005686] 

Ai5 = (0.0005686,0.4130] 

Ai6 = (0.4130,0.8200] U (1.3739,1.7979] 

Ai7 = (0.8200,1.3739] U (1.7979,2.1834] 

Ais = (2 .1834 ,~ )  

and 
A21 = (--oo, -2.10561 

Azz = (-2.1056, -0.65041 

A23 = (-0.6504, -0.32071 

A24 = (-0.3207, -0.18051 

A25 = (-0.1805,0.2863] 

Az6 = (0.2863,0.6240] 

A27 = (0.6240,2.0960] 

Azs = (2.0960,m). 

The minimum mean square error for these partitions is 

E[ IX - X I 2 ]  = 0.12655, 

which is more than a 30% improvement over the performance of the 
Lloyd-Max partition and over pure linear estimation. 

Remark 2: After 5 passes through the algorithm, the mean square 
error was not significantly reduced. 

Remurk3: The final partitions for the sensors are not the same, 
even though sensors 1 and 2 play interchangeable roles in this 
example. The reason for this is that the algorithm treats one sensor 
at a time. 

Remark#: As a general rule, it was found in [8] that Algorithm 
2 yielded results almost identical to those of Algorithm 1. 

V. CONCLUSION 
We have developed an algorithm for the design of a distributed 

estimation system with n sensors and a single fusion center that is 
subject to communication and compuhtion constraints. The algorithm 
uses only bivariato probability distributions and yields locally optimal 
estimators that satisfy the required system constraints. 

While this work was motivated by problems in sensor fusion, the 
ideas can also be applied in a general nonlinear estimation context. In 
other words, estimators of the form (7) constitute a class of nonlinear 
estimators, and the algorithm presented here can be used to obtain a 
locally optimal nonlinear estimator from this class. 
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