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Abstract- Image detection under low-light-level conditions is 
treated as a hypothesis-testing problem in which the observations 
are modeled as a shot-noise process. Since computing the likeli- 
hood ratio for shot-noise processes is not feasible, we propose 
the use of a one-dimensional test statistic obtained by filtering 
and sampling the observations. The filter is chosen to maximize a 
generalized signal-to-noise ratio. The likelihood ratio for the one- 
dimensional test statistic is evaluated numerically by inverting 
the corresponding characteristic function under each hypothesis. 

Index Terms- Hypothesis testing, generalized signal-to-noise 
ratio, shot noise, and filtered point process. 

I. INTRODUCTION 

HEN images are produced under high-level illumina- W tion, they are often modeled as the sum of a “signal” 
image plus signal-independent Gaussian noise. However, when 
an image is formed under low-light-level illumination, it can 
be better modeled as a filtered point process, also known as 
shot noise, described as follows. 

The process of image acquisition consists of the measure- 
ment of arriving photons in the image plane. In practical 
situations, i t  is difficult to measure the exact location of the 
photons since these are filtered by the finite response of the 
imaging device. What is measured, instead, is the superposition 
of the responses of the imaging system to each arriving photon. 
This superposition, measured at a point .I’ E IR2, can be 
described by the random variable 

Z(.r) = l t ( J  - SI,) 
I /  

where denotes the set of positions at which photons 
are detected, and h represents the impulse response or point- 
spread function of the imaging device. A block diagram of the 
imaging system is shown in Fig. 1. 

We consider the following hypothesis-testing problem. 
Under hypothesis HI, i = 0.1, the {XI,} are points of a two- 
dimensional Poisson process with nonnegative intensity A, ( x ) ,  

Special cases of this problem that have previously been 
addressed include the following. 

1) The exact locations of the photons are available. This is 
equivalent to the point-spread function h ( . r )  being equal to a 
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Fig. I .  Imaging \ystem model. 
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Dirac delta function h(:r ) ,  in which case one has a detection 
problem with Poisson-process observations. When one has 
Poisson-process observations, the likelihood ratio (LR) is, of 
course, well known [Y, p. 941. In  [4], a suboptimal detection 
scheme that could be easily implemented was considered. This 
led to the consideration of a correlation detector in which 
the Poisson-process observations were passed through a linear 
filter (taken to be one of the intensity functions) and sampled. 
This led to a hypothesis test based on a single shot-noise 
random variable. 

2) Counts of photons in  disjoint regions are available, and 
hence one is faced with a Poisson counting process detection 
problem. This case can be regarded as a filtered Poisson 
process with a special form of la, followed by sampling. 
The LR is well known for this special case also [9, p. 941. 
In [lo], a correlation scheme was used for classification. 
The Poisson counting process observations (with counts being 
either 0 or 1 with high probability) were cross-correlated with 
various reference functions. Three reference functions were 
considered, one of which was constructed so that the value of 
the correlation between that function and the observed image 
approximates the value of the logarithm of the LR. 

Little work has been done for the more general case of 
filtered point-process observations due to the difficulty of 
computing the density and distribution functions involved [3].  

11. HYPOTHESIS TESTING WITH SHOT-NOISE OBSERVATIONS 

A. Preliminury Considerations 

Using the mathematical model described in Section I, we 
would like to decide whether A0 or A 1  is the true intensity 
of the underlying Poisson process that gives rise to our 
observations {Z(:I‘)}. Clearly, a likelihood ratio test (LRT) 
is called for [7, p. 111. Unfortunately, a formula for the 
LR of the continuum of observations {Z(:I‘)} does not seem 
to be available in the literature. In fact, even if we based 
our decision in a finite number of samples of {Z(.I‘)}, say 
Z ( r 1 ) .  . . . . Z ( . r ~ c ) ,  the LR would be obtained by inverting the 
K-variate characteristic function of Z ( : r l ) .  . . . . Z(.rli) under 
each hypothesis to obtain the K-variate density under each 
hypothesis. The quotient of these densities would yield the 
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for some nonnegative f (  satisfying 
L inear  
F i l t e r  Sampler 2 1, f l ( T ) d T  = 1 -(,-I,. 

Remark: In general, F, ( i )  could have jumps at points t # 0. 
depending on the behavior of 6. In our examples, this does 
not occur. 

we perform the LRT: 

$+--rp 
Fig 2 Detector \tructure 

LR, This approach is impractical unless K is very small, It is Assuming likely if we observe = ', 
because of these considerations that we introduce the following 
suboptimal approach. 

B A Suboptimal Detector 

H1 

A(] - AI > 0. f = 0 < 
As a suboptimal detector scheme, we propose that the 

received image {Z(.r)} be passed through a linear filter (to 
be chosen later in Section 11-E) and then sampled, as shown 
in Fig. 2. The final discrimination of hypotheses will be based 
on the sample T .  More precisely, let 

J 7 ( x )  a q(.r - ?L)Z(l/) &U (2.1) i' 
where Z(.) is given by (1.1). (Here and in the sequel, integrals 
are understood as being over all of R 2  unless otherwise 
indicated. One-dimensional integrals over IR are indicated by 
/'Tx.) Observe that if we set 

then 

Y (  1.) = CIj(.r - X r , ) .  (2.3) 
I ,  

Clearly, (2.3) has the same form as (1.1). In other words, 
when the shot-noise process {Z(.r)} is passed through the linear 
system g, the output v(.r)} is also a shot-noise process. The 
final processing step shown in Fig. 2 is sampling. We set 

The numerical calculation of f o  and f l  is discussed in 
Appendix A. 

D. The Probability of Error 

The probability of error incurred using the LRT (2.6) is 
denoted by Pc,; we can write an expression for P, as follows. 
First, let Do denote the set of t such that we decide in favor 
or If". Clearly, 0 E Do if and only if A0 < A,.  For t # 0, 
f E Do if and only if f o ( t )  < f l ( f ) .  Let D1 denote the 
complement of Do. We write D1 = DT,. Then, under equally 
likely hypotheses, 

1 
Pp = 7 2 {Pl[T E Do] + Po[T E 011)  

T I'(0) = 9(-Xz,) (2.4) Let I a ( t )  denote the indicator function of a set A.  In other 
U words, I A ( t )  = 1 if f E A and I A ( t )  = 0 otherwise. Using 

(2.7) and (2.5), we can then write and perform an LRT based on T .  

1 
C. The Likelihood Ratio for T p, = 7 [ ( - ' I  -("-"]IDo(0) 

Let F,(t) a P,(T 5 f ) ,  I = 0.1, be the cumulative proba- 
bility distribution of T given that A, is the true intensity of 
the underlying Poisson process that models the location at 
which arriving photons strike the imaging system. Clearly, if 
no photons arrive, T = 0. The probability of this event is 

P;(T = 0) = (!-.', + .I,,, ( .f l( t)  - fidf)) df } 

G , ( f )  a i, .f,(.) {h. 

(2.8) 

where 
In our applications, Do will turn out to be an interval or a 
union of disjoint intervals. Hence, the last term in (2.8) can 
easily be computed if we have a simple way to evaluate 

A( A ; ( . r ) ~ L r .  

In our applications, we have A, < x. We thus expect F , ( t )  
to have the form 

i' 
(2.9) 

t < 0  
(2.5) 

We discuss this further in Appendix B. 
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E .  Selecting the Filter y 

Ideally, we would like to select 9 to minimize the probability 
of a decision error P,. Since the dependence of P, on ,q is not 
readily apparent, we introduce the following ad hoc criterion 
for selecting g. We would like to choose y to maximize 

and 2 a [Z(.rl). . . . . Z ( . ~ K ) ] ’ .  Let m,  a E,[Z] and I’, 4 
E, [(’ - m,) ( z  - m l ) ’ l  ’ Then 

p,  = w’m, and 0; = w T , w  (2.16) 

= and 

where the kth entry Of the vector mt  is Lcf. (2.11)1 
the generalized “signal-to-noise ratio” (cf. [ 1, eq. (18)], [2, 
e¶. (611): 

(2.17) 

and the kB entry of the matrix r, is [cf. (2.12)] 
(2.10) 

h(sk - .r)h(.rt - .r)X,( .r)  (In.. (2.18) 
J where 11, and 0: are the mean and variance of T under 

hypothesis / = 0. 1. Since Y in (2.3) is a shot-noise process, 
it follows from (2.4) and [S, pp. 382-3831 that 

Letting m 
the constraint (2.15), (2.10) becomes 

ml - WI and r = rO + r l ,  we see that under 

and 

(2.19) 
/w/mI2 

By the Cauchy-Schwarz inequality, w maximizes (2.19) if 
and only if r w  = rm, where c is an arbitrary constant. For 
the numerical examples in Section 111-C, we take c = 1, and 
r w  = m is easily solved using the NAG routine F04ASF. The 
NAG routine DOlFCF is used to compute (2.17) and (2.18). 

Remark: One of the reviewers has suggested selecting ,y so 
that 

[ i I  a E,[T] 
wlrw ‘ 

= / ,y(-r)A/( . r )dr  (2’1 

mf E, [(T - p Z ) ’ ]  

(2.12) 

(2.20) Using (2.11) and (2.12), it follows from the Cauchy-Schwarz 
inequality that j maximizes (2.10) if and only if 

Al (J -1  - Xo(.r) the idea being that (2.4) would then be equal (up to an additive 
constant) to the logarithm of the LR of the point process itself. 
A related idea was used in [lo]. Unfortunately, (2.20) may not 

(2‘13) &.r) = c 
A l ( J )  + X O ( J - )  

where I’ is an arbitrary constant. Using (2.2), (2.13) then have a solution for the Same reasons given following (2.14). 
becomes 

Unfortunately, (2.14) may not have a solution. For example, 
if 9 and h are square integrable, the left-hand side of (2.14) 
will be a continuous function of ,r, while the right-hand side 
need not be, as is the case in our examples in Section 111-C. 
In order to avoid this problem, we a priori constrain g to be 
of the form 

h 

,9(.r) = / n k ~ ( r  + .rk) (2.15) 
k = l  

where K and the locations .r1. . . . . . r ~  are chosen in some 
heuristic fashion, perhaps as a uniform grid, and the weights 
are chosen to maximize (2.10). Observe that if (2.15) holds, 
then it follows from (2.1) that 

and thus 
K 

T Y ( 0 )  = w k . Z ( . ~ k ) .  

i.e., the test statistic T is a weighted superposition of the mea- 
surements Z(x1) .  . . . . Z ( - C K ) .  Now, let w & [tu1. .  . . . wK]’ 

k = l  

111. HYPOTHESIS TESTING AND ERROR PERFORMANCE 

In this section, we apply the preceding ideas to several 
examples. For comparison, we also discuss the consequences 
of assuming that T has a Gaussian distribution under each 
hypothesis; this assumption was used, under somewhat higher 
light levels, in [4], [ lo] based on the Central Limit Theorem. 
Under certain conditions, this approximation is adequate [6], 
and it  avoids the burden of computing f i ( t )  and Gi(t) by the 
numerical evaluation of inverse Fourier transforms. However, 
under the low-light-level conditions considered here, we do 
not expect the Gaussian approximation to work well, and this 
is indeed the case. 

A.  Likelihood Ratio Test 

Following the observation T = t ,  the LRT is given by (2.6). 
In the numerical examples discussed below, we plot fo(t) and 
f l ( t )  (Figs. 4-6), and we see that the equation 

has at most one solution of interest, denoted by q. Hence, if 
t # 0, the LRT reduces to the single threshold test 

H1 

HO 
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B. Gaussian Test (GT) 

A simple test to write is the following. Let 

(3.1) 

where and cr: are given by (2.16). In other words, we are 
assuming that T is normal, but with the correct mean and 
variance. We consider the test 

Hi 
Pl(t) > 1. 
P O ( t )  

Ho 

In the examples discussed below, a: 2 U:, and the decision 
regions for this test are easily shown to be 

and 

In the examples discussed below, the integrals ~ ~ ~ - 6 ' ' '  

p ,  ( t )  rlt are negligible, and so we consider the following 
single-threshold test. We set 7 = y - b / n  and use Do = 
(-x. 7 ) .  Even with this choice of Do, the probability of 
error is given by ( 2 2 9 ,  which requires complicated numerical 
integration as discussed in Appendix B. However, we also 
consider PG?, the "Gaussian approximation" of P,, that we 
define by 

Fig. 3 .  (a) Region for hypothesis 0. (b) Region for hypothesis 1 

I I - IQ; 
10 2 

F! 
1 0  2 

I I I I 

Fig. 4. The sampling points. 

TABLE I 
THE SAMPLING POINTS 

1 (0.5,O.S) h (0.275,0.825) 
2 (0.7.0.175) 7 (0.5,0.65) 
3 (0.725,0.325) 8 (0.725,O.S) 
4 (0.725,0.825) Y (0.5,0.325) 
5 (0.275,O.S) 10 (0.5,0.175) 

TABLE 11 
PARAMETLRS FOK E X A M P L ~  1 

Ii = 1 Ii = j Ii = 10 

PO 1.52 -1.27 - 1.38 
0.0' 0.422 1.53 1.61 
I' I 4.40 3.25 3.21 
of 2.58 2.98 2.99 

In the examples below, PG? was computed easily with the 
NAG routine SISABF for evaluating the cumulative distribu- 
tion of the standard normal density. 

C. Examples 
We compare the error performance of the two tests in three 

examples. In each example, we consider three cases, sampling 
at K = one, five, and ten points. For this purpose, let 

Xo(.r)  = { ?Io(,r) + 7 1 .  .r E R 
.I' 6 R 

where Io(.r)  and Ie(.r) are the indicator functions of the 
shaded regions in Fig. 3, and n is a constant background level. 
The sampling points, .r1. . . . . z10, are shown in Fig. 4, and are 

explicitly listed in Table I. When K = 1, we set 7111 = 1, and 
hence T = Z(n.1). 

Example I: In this example, "0 = c1 = 100 and 71 = 10. 
Then, A0 = 43.00 and A1 = 44.87. The weights {wk} for the 
case K = 5 are 1.100019, 2.603646 x -8.424318 x 

-1.044526 x lo-*, -8.713632 x lo-*, and for 
K = 10, 1.191.592, 3.038038 x -9.131236 x lop1, 
4.417913 x lo-', -7.798749 x lo-', 1.564578 x lo-', 
-2.080950 x 9.888259 x lo-', -9.350529 x lo-*, 
3.023416 x Table I1 contains the means and variances 
of the filtered point process for the three cases. Table 111 
contains the thresholds for the two tests under consideration, 
the corresponding decision regions DO and the probabilities of 
error. The value of P G ~  is also included. A plot of fo  and fl 
for each case is shown in Fig. S .  From Table 111, we see that a 
reduction of 44.1% in P, is obtained for the LRT when using 
K = 5 instead of K = 1, and a further reduction of 3.25% 
is obtained by using K = 10. 
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Fig. 5. Probability "density" function of T under IT0 (solid squares) and under H I  (open squares) for Example 1. (a) I< = 1. (b) Ii = 5.  (c) Ii = 10. 

TABLE 111 
Trsl  P ~ K F O M A N C E  ih E X A M P L E  I 

TABLE IV 
PARAMETERS FOR EXAMPLE 2 

1 LRT 2.57 [ O .  J / )  0.0936 - 

LRT 0.720 ( - x. I / )  0.0523 ~ 

GT 2.65 [o. I / )  0.0949 0.0887 

> 
GT 0.773 (-x. I / )  0.0525 0.0628 

GT 0.706 ( -  x. I / )  0.0507 0.0617 
- I O  LRT 0.650 ( - x. 1 1 )  0.0506 

Example 2: In this example, ro = (1  = 50 and 71 = 5. Then, 
-10 = 21.5 and -11 = 22.4. The weights { w k }  for the case 
K = 5 are 1.100019, 2.6036-K x lop1, -8.423318 x lop1, 
-1.04452G x lo-', -8.713632 x lO-', and for K = 10, 

Ii = 1 Ii = 5 Ii = 10 

J ~ J O  0.759 -0.63 -0.691 
0.211 0.760 0.800 

I l l ,  2.20 1.62 1.601 
mf 1.29 1.49 1 .50 

4 

1.191592, 3.038038 x lop1, -9.131236 x lop1, 4.417913 x 
lo-', -7.798749 x lo-*, 1.564578 x lop2 ,  -2.080950 x 
lop1, 9.888259 x lop2 ,  -9.350529 x lop2, 4.023416 x lop3.  
Table IV contains the means and variances of the filtered point 
process for the three cases. Table V contains the thresholds for 
the two tests under consideration, the corresponding decision 
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Fig. 6. Probability “dcnsity” function of T under H,, (wlid squares) and under H I  (open squares) for Example 2. (a )  I< = 1. (b) I< = Z. (c) 1; = 10. 

TABLE V 
TEST PERFOMAWE I N  EXAMPLL 2 

regions Do and the probabilities of error. The value of P,, is 
also included. A plot of f(j and f l  for each case is shown in 
Fig. 6. From Table V, we see that a reduction of 27.1% in P, 
is obtained for the LRT when using K = 5 instead of K = 1, 

and a further reduction of 2.32% is obtained by using K = 10. 
Exumple 3: In this example, (‘0 = c1 = 16 and U = 5. 

Then, A\(j = 10.28 and = 10.58. The weights {WC}  for 
the case K = 5 are 7.590372 x lop1, 1.791687 x 
-5.971229 x lop1, -8.20G.210 x lop3, -5.451747 x 
lo-*, and for K = 10, 8.767560 x 2.073133 x lop1, 
-6.402233 x lop1, 7.653726: x 10-”, -1.801133 x lop’, 
1.533052 x -1.978371 x lop1, 7.396542 x 
-1.233330 x 2.736930 x lop’. Table VI contains the 
means and variances of the filtered point process for the three 
cases. Table VI1 contains the thresholds for the two tests under 
consideration, the corresponding decision regions Do and the 
probabilities of error. The value of Pcf is also included. A plot 
of f o  and f l  for each case is shown in Fig. 7. From Table VII, 
we see that a reduction of 6.87% in P,. is obtained for the LRT 
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Fig. 7. Probability “density” function of T under Ho (solid squares) and under H I  (open squares) for Example 3. (a) Ii = 1. (b) Ii = 5. (c) I< = 10. 

TABLE VI 
P A R A M t l F R S  FOR EXAMPLE 3 

TABLE VI1 
TLST PERFOMANCE IN EXAMPLL 3 

Ii = 1 Ii = j Ii = 10 

I I t O  0.457 -0.0894 -0.122 
4 0.174 0.199 0.204 
1 1 )  1 0.918 0.414 0.398 
0;  0.518 0.305 0.316 

when using K = 5 instead of K = 1, and a further reduction 
of 0.962% is obtained by using K = 10. 

Iv. DISCUSSION AND CONCLUSION 

We have treated image detection at low light levels as a 
binary hypothesis-testing problem based on a one-dimensional 

- 1 LRT 0.675 (0. 1 1 )  0.335 
GT 0.893 [O. 1 1 )  0.348 0.310 

LRT 0.188 (-x. 1 1 )  0.312 5 

10 LRT 0.172 (-x. 11)  0.309 

- 

GT 0236 (-x. I / )  0.313 0.303 

GT 0.212 ( - X . I / )  0.311 0 3 0 0  
- 

test statistic. This statistic was obtained by filtering the re- 
ceived image and then sampling at one point. The filter we 
used was obtained by maximizing an ad hoc signal-to-noise 
ratio. In the examples we considered, we found that the largest 
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weights of the filter (for the cases K = 5 and K = 10) 
correspond to the locations where the “0” and the “e” do not 
overlap. This makes intuitive sense: at .r1, the “e” is present 
and ‘ ~ 1  is the largest positive weight; at ~ 3 ,  the “0” is present 
and 7/13  is the largest-magnitude negative weight. Since .1:1 and 
.r3 are the most important points for discrimination between 
Ho and H I ,  we observed little improvement in performance 
when using K = 10 instead of K = 5. The lower the intensity 
of the point process, the harder it is to discriminate between the 
hypotheses. The samples in Example 3 bear less information 
for discrimination than those in the other two examples. This 
resulted in a much smaller improvement in performance in 
Example 3 than in  the other two examples when going from 
K = 1 to K = 5 .  We compared our LRT with a test that uses 
Gaussian densities. From the results of the examples, it is clear 
that the distribution function of T is not Gaussian under either 
hypothesis (see Figs. 5-7). It is interesting to observe, though, 
that the probability of error P, is very similar for the two tests, 
i.e., P,. is not very sensitive to the value of T I .  We note that 
the Gaussian approximation PG~. of the probability of error is 
neither an upper nor a lower bound for P? since sometimes it 
overpredicts (by 21.9% in Example 1, K = 10) and sometimes 
it  underpredicts (by 11.3% in Example 2, K = 1) the value of 
P,. Hence, PG? is not a reliable quantity for estimating P,.. 

Further research should be devoted to studying the behavior 
of P,. as a function of the weights {wk.}, as a function of the 
sampling points {.rk.}, and as a function of the total number 
of weights of the filter q. It is very important that fast and 
accurate methods be found in order to compute the functions 
f ,  ( t )  and G ,  ( t )  since straightforward applications of numerical 
integration are rather time consuming. 

APPENDIX A 
EVALUATION OF THE LIKELIHOOD RArio 

In order to perform the test (2.6), we need to compute the 
“density” function of T under each hypothesis. Loosely speak- 
ing, this can be accomplished by computing the inverse Fourier 
transform of the characteristic function of T .  Several methods 
have been proposed (see [3] and the references therein) for 
carrying out this computation. Our numerical solution relies on 
the use of the quadrature subroutines DOlFCF and DOlAMF 
from the NAG library. 

For the purpose of computing the LR function and the 
probability of error for the test (2.6), we introduce the moment- 
generating function of T ,  denoted by Af,(s) ;  i t  is given by 
[ 5 ,  p. 3811 

With .T = (T +,;U, let 

and 

= /’ ~ ~ ( : r ) c g + x )  sin(wtj-z)) ctz. 

We compute Cf(w) and S:(w) numerically using the NAG 
routine DO1FCF. If we set s = jw in (A.3) and take inverse 
Fourier transforms, we obtain, since Re{Ki(,jw)ej”‘} is an 
even function of w. 

where, for convenience of notation, we write C, and S, instead 
of C: and S: when o = 0. 

APPENDIX B 
EVALUATION OF THE PROBABILITY OF ERROR 

In order to compute P,, we first need to compute (2.9). To 
this end, let G , ( s )  denote the Laplace transform of G,. More 
precisely, 

d,(.s) b 1% G,(t)c,”dt. R(.{.T} < 0. (B.l) 
. -x 

Assuming that 

liiii c”G,(t) = 0 .  Rc{s} < 0. 
i--x 

which is true in our applications, integration by parts yields 

, s) .  (B.2) 

Combining (B.2) with (A.2) and (A.l), we can substitute 
in (B.l) and take inverse Fourier transforms (after writing 
s = cr + jw, with (T < 0) to obtain 

1 
G,(s) = -- K ( 

S 

-\Iz (.q) E, 
(B.3) 

= ~ x p {  1 X , ( . T )  [c .s i i (p . r )  - I] d ~ } .  (A.l) 
where 

From (2.5), it follows that 
(>;(t.w) = c - ( - l > - r ( d ) )  

‘\I,(.S) = /:--I’ + K,(.s) ( A 4  . [U c o s ( S ~ ( w )  - ut) + w sin(Stu(w) - ut)] 
- e-.’$ (cr c o s ( w t )  - w s in (wf ) ) .  where 

Ki(.S) 4 c“‘ f , ( t )  dt. ( ~ , 3 )  The integrals (A.4) and (B.3) are computed numerically using 
, I-- -?i the NAG routine DOlAMF. 
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