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Abstract— Image detection under low-light-level conditions is
treated as a hypothesis-testing problem in which the observations
are modeled as a shot-noise process. Since computing the likeli-
hood ratio for shot-noise processes is not feasible, we propose
the use of a one-dimensional test statistic obtained by filtering
and sampling the observations. The filter is chosen to maximize a
generalized signal-to-noise ratio. The likelihood ratio for the one-
dimensional test statistic is evaluated numerically by inverting
the corresponding characteristic function under each hypothesis.

Index Terms— Hypothesis testing, generalized signal-to-noise
ratio, shot noise, and filtered point process.

I. INTRODUCTION

HEN images are produced under high-level illumina-
Wtion, they are often modeled as the sum of a “signal”
image plus signal-independent Gaussian noise. However, when
an image is formed under low-light-level illumination, it can
be better modeled as a filtered point process, also known as
shot noise, described as follows.

The process of image acquisition consists of the measure-
ment of arriving photons in the image plane. In practical
situations, it is difficult to measure the exact location of the
photons since these are filtered by the finite response of the
imaging device. What is measured, instead, is the superposition
of the responses of the imaging system to each arriving photon.
This superposition, measured at a point x € IR2, can be
described by the random variable

Z(r) =Y hir-X,) (1.1)

where {X,} denotes the set of positions at which photons
are detected, and h represents the impulse response or point-
spread function of the imaging device. A block diagram of the
imaging system is shown in Fig. 1.

We consider the following hypothesis-testing problem.
Under hypothesis H;, i = 0.1, the {X,} are points of a two-
dimensional Poisson process with nonnegative intensity A;(x),
r e R2

Special cases of this problem that have previously been
addressed include the following.

1) The exact locations of the photons are available. This is
equivalent to the point-spread function h(x2) being equal to a
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Fig. 1. Imaging system model.

Dirac delta function 8(x), in which case one has a detection
problem with Poisson-process observations. When one has
Poisson-process observations, the likelihood ratio (LR) is, of
course, well known [9, p. 94]. In [4], a suboptimal detection
scheme that could be easily implemented was considered. This
led to the consideration of a correlation detector in which
the Poisson-process observations were passed through a linear
filter (taken to be one of the intensity functions) and sampled.
This led to a hypothesis test based on a single shot-noise
random variable.

2) Counts of photons in disjoint regions are available, and
hence one is faced with a Poisson counting process detection
problem. This case can be regarded as a filtered Poisson
process with a special form of %, followed by sampling.
The LR is well known for this special case also [9, p. 94].
In [10], a correlation scheme was used for classification.
The Poisson counting process observations (with counts being
either 0 or 1 with high probability) were cross-correlated with
various reference functions. Three reference functions were
considered, one of which was constructed so that the value of
the correlation between that function and the observed image
approximates the value of the logarithm of the LR.

Little work has been done for the more general case of
filtered point-process observations due to the difficulty of
computing the density and distribution functions involved [3].

II. HYPOTHESIS TESTING WITH SHOT-NOISE OBSERVATIONS

A. Preliminary Considerations

Using the mathematical model described in Section I, we
would like to decide whether Ag or A; is the true intensity
of the underlying Poisson process that gives rise to our
observations {Z(r)}. Clearly, a likelihood ratio test (LRT)
is called for [7, p. 11]. Unfortunately, a formula for the
LR of the continuum of observations {Z(z)} does not seem
to be available in the literature. In fact, even if we based
our decision in a finite number of samples of {Z(x)}, say
Z(ry). . Z(x), the LR would be obtained by inverting the
K -variate characteristic function of Z(xy).---.Z(xy ) under
each hypothesis to obtain the K-variate density under each
hypothesis. The quotient of these densities would yield the
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LR. This approach is impractical unless K is very small. It is
because of these considerations that we introduce the following
suboptimal approach.

B. A Suboptimal Detector

As a suboptimal detector scheme, we propose that the
received image {Z(x)} be passed through a linear filter ¢ (to
be chosen later in Section II-E) and then sampled, as shown
in Fig. 2. The final discrimination of hypotheses will be based
on the sample 7. More precisely, let

Y(x) 2 /g(;l’f —u)Z{(u)du 2.1
where Z(-) is given by (1.1). (Here and in the sequel, integrals
are understood as being over all of R unless otherwise
indicated. One-dimensional integrals over IR are indicated by
f:;) Observe that if we set

glx) 2 / glx = u)h(u) du (22

then

Yir) = Z;}(:I? -X,).

v

(2.3)

Clearly, (2.3) has the same form as (1.1). In other words,
when the shot-noise process {Z ()} is passed through the linear
system g, the output {Y"(x)} is also a shot-noise process. The
final processing step shown in Fig. 2 is sampling. We set

TE2Y(0) =) §(-X,)

v

(2.4)

and perform an LRT based on 7.

C. The Likelihood Ratio for T

Let Fi(t) 2 P{(T < t), i = 0.1, be the cumulative proba-
bility distribution of T given that A, is the true intensity of
the underlying Poisson process that models the location at
which arriving photons strike the imaging system. Clearly, if
no photons arrive, 7" = . The probability of this event is

PAT = 0) = ¢

[acrer

In our applications, we have A; < oc. We thus expect F;(t)
to have the form

Fi(t) = {f_x Filr) dr. L <0

where

=

. 2.5
e N4 [:x filmydr. t20 (2-3)

for some nonnegative f; satisfying
/ filrydr=1—c"Y.

Remark: In general, F;(#) could have jumps at points t # 0,
depending on the behavior of §. In our examples, this does
not occur.

Assuming equally likely hypotheses, if we observe T' =,
we perform the LRT:

(2.6)

The numerical calculation of f, and f; is discussed in
Appendix A.

D. The Probability of Error

The probability of error incurred using the LRT (2.6) is
denoted by P,; we can write an expression for P, as follows.
First, let Dy denote the set of ¢ such that we decide in favor
or Hy. Clearly, 0 € Dy if and only if Ag < A;. Fort # 0,
t € Dq if and only if fo(t) < fi(t). Let Dy denote the
complement of Dy. We write D1 = D{. Then, under equally
likely hypotheses,

1
P. = 5{731[7“ € Do) + Po[T € Dy}

:%%+AJMW%MRm$

Let 7.4(t) denote the indicator function of a set A. In other
words, [4(t) = 1 if + € A and I4(t) = O otherwise. Using
(2.7) and (2.5), we can then write

2.7)

e % {1 + [e7 M = e ]I, (0)
+ '/;oﬂ{(J}<‘ (fl(f) - fn(f)) (H}
1

= — {1 + [(1"\‘ - (3”‘\"]1[;0(0)

+Lﬁmw<mmm}

In our applications, Dq will turn out to be an interval or a
union of disjoint intervals. Hence, the fast term in (2.8) can
easily be computed if we have a simple way to evaluate

(2.8)

GW%[VMﬂM 2.9)

We discuss this further in Appendix B.
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E. Selecting the Filter y

Ideally, we would like to select g to minimize the probability
of a decision error F,. Since the dependence of P. on g is not
readily apparent, we introduce the following ad hoc criterion
for selecting g. We would like to choose g to maximize
the generalized “signal-to-noise ratio” (cf. [1, eq. (18)], [2,
eq. (6)]):

2

(1 — po)”

: 2.10
ol + 08 (2.10)

where ji; and o? are the mean and variance of T under
hypothesis ¢ = 0.1. Since Y in (2.3) is a shot-noise process,
it follows from (2.4) and [5, pp. 382—383] that

i = E;[T)

— [at=o o s @.11)
and .
ﬁéE*T—mﬂ
= /g}(—zl:):)/\i(w) dr. (2.12)

Using (2.11) and (2.12), it follows from the Cauchy—Schwarz
inequality that g maximizes (2.10) if and only if

S Ai(z) = dele)
y=w)=c A(z) + Ao(z)

where ¢ is an arbitrary constant. Using (2.2), (2.13) then
becomes

/m—x—wmm

(2.13)

du e A(x) — Ao(x)
“A(x) + o)’

Unfortunately, (2.14) may not have a solution. For example,
if g and h are square integrable, the left-hand side of (2.14)
will be a continuous function of x, while the right-hand side
need not be, as is the case in our examples in Section III-C.
In order to avoid this problem, we a priori constrain g to be
of the form

(2.14)

K

g(r) = Z wrb(T + T)) (2.15)
k=1
where K and the locations z,.---,zx are chosen in some

heuristic fashion, perhaps as a uniform grid, and the weights
are chosen to maximize (2.10). Observe that if (2.15) holds,
then it follows from (2.1) that

K
Y(r)= ZwkZ(:E + Tk).
k=1
and thus
K
TEY(0)= wiZ(zi).
k=1

i.e., the test statistic T is a weighted superposition of the mea-
surements Z(zq).---. Z(zg). Now, let w £ [wy, -, wg]
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and Z 2 [Z(x1). . Z(xx)). Let m; £ E;[Z) and T; =
E:[(Z—mi)(Z—m,)'|. Then T = w'Z, and

pw =wm; and o =w'Tw (2.16)
where the kth entry of the vector m; is [cf. (2.11)]
/ hirg —2)Ai(x)de 2.17)
and the k/ entry of the matrix T'; is [cf. (2.12)]
/h(a:k —2)h(xe — ) Ni(z) da. (2.18)

Letting m = my — mg and I' = Ty + I';, we see that under
the constraint (2.15), (2.10) becomes

[w'm/’

W Tw (2.19)
By the Cauchy—Schwarz inequality, w maximizes (2.19) if
and only if 'w = ¢m, where ¢ is an arbitrary constant. For
the numerical examples in Section III-C, we take ¢ = 1, and
T'w = m is easily solved using the NAG routine FO4ASF. The
NAG routine DO1FCF is used to compute (2.17) and (2.18).

Remark: One of the reviewers has suggested selecting g so
that

Ai(z)
Ao(z)

the idea being that (2.4) would then be equal (up to an additive
constant) to the logarithm of the LR of the point process itself.
A related idea was used in [10]. Unfortunately, (2.20) may not
have a solution for the same reasons given following (2.14).

g(—z) = /g(—.r —u)h(u)du = In (2.20)

III. HYPOTHESIS TESTING AND ERROR PERFORMANCE

In this section, we apply the preceding ideas to several
examples. For comparison, we also discuss the consequences
of assuming that T has a Gaussian distribution under each
hypothesis; this assumption was used, under somewhat higher
light levels, in [4], [10] based on the Central Limit Theorem.
Under certain conditions, this approximation is adequate [6],
and it avoids the burden of computing f;(t) and G;(t) by the
numerical evaluation of inverse Fourier transforms. However,
under the low-light-level conditions considered here, we do
not expect the Gaussian approximation to work well, and this
is indeed the case.

A. Likelihood Ratio Test

Following the observation T' = ¢, the LRT is given by (2.6).
In the numerical examples discussed below, we plot fo(t) and
f1(t) (Figs. 4-6), and we see that the equation

fi(t) -1
fo(t)

has at most one solution of interest, denoted by 7. Hence, if
t # 0, the LRT reduces to the single threshold test
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B. Gaussian Test (GT)
A simple test to write is the following. Let
1
V2r o,

where y1; and ¢? are given by (2.16). In other words, we are
assuming that 7" is normal, but with the correct mean and
variance. We consider the test

c-(f*uw)g/%f

pi(t) & 3.1)

pi(f) >
po(t) <
Hy

In the examples discussed below, af > 08, and the decision
regions for this test are easily shown to be

b

Dﬂz{tem:—w—ﬁgtSW——}
a

a

and
Dy = D§

A A
where @ £ 07 —~ 02, b = py02 — pooi, and

1
1 0.2 b??

a 2 2 i 2 2 2 2
v=|—<0o50] In —= + pjo5 — psor r +—=1| .
Y [0{01 (702 K109 /01} e

In the examples discussed below, the integrals f__;_b/"
pi(t)dt are negligible, and so we consider the following
single-threshold test. We set n = v — b/a and use Dy =
(—>.n). Even with this choice of Dy, the probability of
error is given by (2.8), which requires complicated numerical
integration as discussed in Appendix B. However, we also
consider FPg., the “Gaussian approximation” of P, that we
define by

I
Pcpé—{/ pl(t)dt+/
2 —a< s

In the examples below, Pg. was computed easily with the
NAG routine S15ABF for evaluating the cumulative distribu-
tion of the standard normal density.

oC

pg(f,)dt}.

C. Examples

We compare the error performance of the two tests in three
examples. In each example, we consider three cases, sampling
at K = one, five, and ten points. For this purpose, let

R ={x=(u.v): 0<u<1l and 0<wv<1}
olo(r n. T
/\o(.r):{(';‘.) olw) +n :;g
Amm:{QQWHW-Eég

h("r) = (’,“50(“34—1‘2)

where Ip(x) and Ie(x) are the indicator functions of the
shaded regions in Fig. 3, and n is a constant background level.
The sampling points, ;. - - .z, are shown in Fig. 4, and are

7k,

]
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v
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?
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/
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Fig. 3. (a) Region for hypothesis 0. (b) Region for hypothesis 1.
6 4 6 4
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Fig. 4. The sampling points.
TABLE
THE SAMPLING POINTS
k Th S Rt
1 (0.5,0.5) 6 (0.275,0.825)
2 (0.7.0.175) 7 (0.5,0.65)
3 (0.725,0.325) 8 (0.725,0.5)
4 (0.725,0.825) 9 (0.5,0.325)
5 (0.275,0.5) 10 (0.5,0.175)
TABLE Il
PARAMETERS FOR EXAMPLE 1
N=1 N =5 K =10
1o 1.52 —1.27 —1.38
o} 0.422 1.53 1.61
1 4.40 3.25 3.21
a3 2.58 2.98 2.99

explicitly listed in Table I. When K = 1, we set w; = 1, and
hence T = Z(z1).

Example 1: In this example, ¢ = ¢; = 100 and n = 10.
Then, Ag = 43.00 and A; = 44.87. The weights {ws} for the
case K = 5 are 1.100019, 2.603646 x 10~!, —8.424318 x
1071, —1.044526 x 1072, —8.713632 x 1072, and for
K = 10, 1.191592, 3.038038 x 107!, —9.131236 x 1071,
4.417913 x 1073, —7.798749 x 1072, 1.564578 x 1072,
—2.080950 x 1071, 9.888259 x 1072, -9.350529 x 1072,
4.023416 x 1073, Table II contains the means and variances
of the filtered point process for the three cases. Table III
contains the thresholds for the two tests under consideration,
the corresponding decision regions Dy and the probabilities of
error. The value of Pg. is also included. A plot of f, and f;
for each case is shown in Fig. 5. From Table III, we see that a
reduction of 44.1% in P, is obtained for the LRT when using
K = 5 instead of K = 1, and a further reduction of 3.25%
is obtained by using K = 10.
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Fig. 5. Probability “density” function of 7" under I, (solid squarcs) and under H; (open squares) for Example 1. (a) A = 1. (b) i = 5. (¢) i = 10.

TABLE 111 TABLE IV
TEST PERFOMANCE IN EXAMPLE | PARAMETERS FOR EXAMPLE 2

IN Test n Dy D, D¢, KN=1 K=5 K =10
1 LRT 2.57 0. 0.0936 — my 0.759 —0.63 —0.691

GT 2.65 [0.) 0.0949 0.0887 at 0.211 0.760 0.800
5 LRT 0.720 (—x.n) 0.0523 — ny 2.20 1.62 1.601
- GT 0.773 (—x.n) 0.0525 0.0628 ot 1.29 1.49 1.50
10 LRT 0.650 (—>.n) 0.0506 —

GT 0.706 (—>x.n) 0.0507 0.0617

1.191592, 3.038038 x 10_1, —9.131236 x 10~1, 4.417913 x

) 1073, —7.798749 x 1072, 1.564578 x 1072, —2.080950 x

Example 2. In this example, Cop=¢C1 = 50 and n = 5. Then, 1(]71’ 9.888259 x 10—2, —9.350529 x 1072, 4.023416 % 1073_
Ao = 21.5 and Ay = 22.4. The weights {w;} for the case  Table IV contains the means and variances of the filtered point
K =5 are 1.100019, 2.603646 x 107!, —8.424318 x 107!,  process for the three cases. Table V contains the thresholds for
—1.044526 x 1072, —8.713632 x 1072, and for K = 10, the two tests under consideration, the corresponding decision
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Fig. 6. Probability “density™ function of T under Hy (solid squares) and under H; (open squares) for Example 2. (a) ' = 1. (b) N =5 (c) K = 10.

TABLE V
TEST PERFOMANCE IN EXAMPLE 2

K Test 1 Dy D Py,

1 LRT 1.29 [0.) 0.177 —
GT 1.44 [0.7) 0.182 0.157

s LRT 0.389 (—>. 1) 0.129 —

- GT 0.464 (—>c.np) 0.129 0.138

10 LRT 0.360 (—>c.n) 0.126 —
GT 0.423 (—>.) 0.127 0.137

regions Dy and the probabilities of error. The value of Fg. is
also included. A plot of fy and f; for each case is shown in
Fig. 6. From Table V, we see that a reduction of 27.1% in P,
is obtained for the LRT when using K = 5 instead of K =1,

and a further reduction of 2.32% is obtained by using K = 10.

Example 3: In this example, ¢ = ¢; = 16 and n = 5.
Then, Ag = 10.28 and Ay = 10.58. The weights {w;} for
the case K = 5 are 7.590372 x 1071, 1.791687 x 1071,
—5.971229 x 1071, —8.206410 x 1073, —5.451747 x
1072, and for K = 10, 8.767560 x 1071, 2.073143 x 1071,
—6.402233 x 1071, 7.654726 x 1073, —4.801134 x 1072,
1.534052 x 1072, —1.978471 x 107!, 7.396542 x 1072,
—1.243330 x 1071, 2.736930 x 1072, Table VI contains the
means and variances of the filtered point process for the three
cases. Table VII contains the thresholds for the two tests under
consideration, the corresponding decision regions Dy and the
probabilities of error. The value of Pg. is also included. A plot
of fo and f; for each case is shown in Fig. 7. From Table VII,
we see that a reduction of 6.87% in P, is obtained for the LRT
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Fig. 7.

TABLE VI
PARAMETERS FOR EXAMPLE 3

Probability “density” function of T under Hy (solid squares) and under H, (open squares) for Example 3. (a) i’ = 1. (b) ¥ = 5. (¢) I = 10.

TABLE VII
TEST PERFOMANCE IN EXAMPLE 3

N=1 KN=5 K =10 I Test n Dy D, D,
mo 0.457 —0.0894 —0.122 1 LRT 0.675 [0.9) 0.335 —
o} 0.174 0.199 0.204 GT 0.893 [0.m) 0.348 0.310
my 0.918 0.414 0.398 5 LRT 0.188 (—>.n) 0.312 —
o 0.518 0.305 0.316 GT 0.236 (—>c.n) 0.313 0.303

10 LRT 0.172 (—>.n) 0.309 —
GT 0.212 (—nc. ) 0.311 0.300

when using K = 5 instead of K = 1, and a further reduction
of 0.962% is obtained by using K = 10.

IV. DISCcUSSION AND CONCLUSION

We have treated image detection at low light levels as a
binary hypothesis-testing problem based on a one-dimensional

test statistic. This statistic was obtained by filtering the re-
ceived image and then sampling at one point. The filter we
used was obtained by maximizing an ad hoc signal-to-noise
ratio. In the examples we considered, we found that the largest
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weights of the filter (for the cases K = 5 and K = 10)
correspond to the locations where the “0” and the “e” do not
overlap. This makes intuitive sense: at iz, the “e” is present
and w; is the largest positive weight; at w3, the “0” is present
and wy is the largest-magnitude negative weight. Since x; and
r3 are the most important points for discrimination between
Hy and H;, we observed little improvement in performance
when using K = 10 instead of K = 5. The lower the intensity
of the point process, the harder it is to discriminate between the
hypotheses. The samples in Example 3 bear less information
for discrimination than those in the other two examples. This
resulted in a much smaller improvement in performance in
Example 3 than in the other two examples when going from
K =110 K = 5. We compared our LRT with a test that uses
Gaussian densities. From the results of the examples, it is clear
that the distribution function of T is not Gaussian under either
hypothesis (see Figs. 5—7). It is interesting to observe, though,
that the probability of error P, is very similar for the two tests,
i.e., P. is not very sensitive to the value of 7. We note that
the Gaussian approximation Fg.. of the probability of error is
neither an upper nor a lower bound for P, since sometimes it
overpredicts (by 21.9% in Example 1, K = 10) and sometimes
it underpredicts (by 11.3% in Example 2, K = 1) the value of
P.. Hence, Pg. is not a reliable quantity for estimating P..

Further research should be devoted to studying the behavior
of P, as a function of the weights {u}, as a function of the
sampling points {r;}, and as a function of the total number
of weights of the filter ¢. It is very important that fast and
accurate methods be found in order to compute the functions
fi(t) and G;(t) since straightforward applications of numerical
integration are rather time consuming.

APPENDIX A
EVALUATION OF THE LIKELIHOOD RATIO

In order to perform the test (2.6), we need to compute the
“density” function of 7" under each hypothesis. Loosely speak-
ing, this can be accomplished by computing the inverse Fourier
transform of the characteristic function of T Several methods
have been proposed (see [3] and the references therein) for
carrying out this computation. Our numerical solution relies on
the use of the quadrature subroutines DOIFCF and DO1AMF
from the NAG library.

For the purpose of computing the LR function and the
probability of error for the test (2.6), we introduce the moment-
generating function of 7', denoted by M;(s); it is given by
[5, p. 381]

Mi(s) 2 E;[e*T]

= oxp{//\,(.r) [e"‘.’("'") - 1] (Im}, (A1)
From (2.5), it follows that
Mi(s)=e Y + Ki(s) (A.2)
where
Ki(s) 2 /'x e () dt. (A.3)
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With s = o + jw, let

Cf(w) 2 R(‘,{ / )\i(:l;)egg(f‘r) d:r}
= / Ni(x)e?=) cos(wg(—x)) da

and

We compute C?(w) and S7(w) numerically using the NAG
routine DOIFCF. If we set s = jw in (A.3) and take inverse
Fourier transforms, we obtain, since Re{K,(jw)es*'} is an

even function of w,

fit) =
% /(;oc {(>‘(~\,—(’((-‘)> ('OS(S,‘((,J) — wf) _ e—A\, COS(u}I‘,)} dw
(A4)

where, for convenience of notation, we write C; and S; instead
of C7 and SY when o = 0.

APPENDIX B
EVALUATION OF THE PROBABILITY OF ERROR

In order to compute P, we first need to compute (2.9). To
this end, let G;(s) denote the Laplace transform of G;. More
precisely,

Gi(s) 2 / Gt di.  Re{s) < 0. (B.1)
Assuming that
lim e™G;(t) = 0. Re{s} < 0.

t——oc

which is true in our applications, integration by parts yields
1

Gi(s) = —— Ki(s). (B.2)
S

Combining (B.2) with (A.2) and (A.1), we can substitute
in (B.1) and take inverse Fourier transforms (after writing
§ = 0 + jw, with ¢ < 0) to obtain

,—ot nDC <
Gl(t) = _(’; M(lw

B.3
T Jo o24w? (B3)

where
Q7 (t.w) = e~ (Mi=CT)
- [ocos(S7(w) — wt) + wsin(S57 (w) — wt)]
— eV (0 cos(wt) — wsin(wt)).

The integrals (A.4) and (B.3) are computed numerically using
the NAG routine DO1AME.
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