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730-nm-emitting Al-free active-region diode lasers with compressively
strained InGaAsP quantum wells
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0.73um-emitting, Al-free active-region, strained\é/a~1.4%) InGaAsP single-quantum-well
diode lasers have been grown by low-pressure metal—organic chemical-vapor deposition. A broad
waveguide laser design with JBGay sAlg5)osP cladding layers is utilized to achieve a large
effective transverse spot sizd/{’=0.433um) and to minimize carrier leakage from the active
region. Threshold current densities of 514 Afcrtl00-um-wide stripe, L=1 mm), external
differential quantum efficiencies of 60%, and characteristic temperature coefficients for the
threshold currentT,, and external differential quantum efficiency characteristic temperalyre,

have values of 72 and 153 K, respectively. Continuous wave output powers of 1.4 W are obtained
from facet-coated (90%/10%) devices operating at 735 nm1998 American Institute of Physics.
[S0003-695(98)01306-7

High output power diode lasers with wavelengths in thegion. Tensile-strainedln) GaAsP active-layer lasers have
730—780 nm range are needed for a variety of applicationbeen reported operating in the 700-800 nm wavelength
ranging from laser printing and optical recording to cancerange® However, little is known about the properties of com-
treatments such as photodynamic therapy. For wavelengthmessively strained quantum-well lasers in this wavelength
less than 840 nm, typical laser structures use AlGaAs in theegion. The advantages of using compressively strained ac-
active region, which can result in long-term reliability prob- tive layers, for both InGaAs and InGaAsP quantum-well la-
lems. As the emission wavelength decreases less than 78@rs with emission at 980 nfnl..3 um,” and 1.55um? has
nm, the high aluminum content of the Aa _,As active  been well established. Similar improvements in performance
layer (x>0.1) makes reliable high-power operation increas-(i.e., lower transparency current and higher differential gain
ingly difficult to achieve. Using a specially processed oxygencan be expected from incorporating compressive strain into
gettered aluminum source for the metal—organic chemicallnGaAsP quantum wells for laser emission in the 730-780
vapor depositiofMOCVD) growth process, AlGaAs active- nm range.
layer devices(100-um-wide emission aperturenave been Lasers structures have been grown by low-pressure
reported with continuous wavew) output powers of 540 metal—organic chemical-vapor deposititrtP-MOCVD), as
mW at an emission wavelength of 715 ArMore recently, described previously.Results are reported here for struc-
compressively strained AlGalnAs active-layer lasers haveures grown on(1000 GaAs substrates misoriented 0.5° to-
been reported in the 730-nm wavelength range demonstravards(110. The laser structure shown in Fig. 1 uses a 15-
ing 2.2-W cw output powers from broad-strigg00-um-  nm-thick compressively strained InGaAsRd/a~1.4%)
wide) devices? Although high output powers have been ob- quantum well surrounded by JgGay 5P (200 A) transitional
tained from the AIGAN)As active-layer device$? long-  layers. Under these growth conditions, we find the InGaP to
term reliability is still an open question. be partially ordered Ey=1.87 eV). Since the InGaAsP/

The use of an InGaAsP active-region offers an attractive
alternative to conventional AlGaAs-based structures for
short-wavelength, high-power sources. The lower surface re-
combination velocity of InGaAsP compared with AlGaAs n-Ing 5(Gao sAlo s)o.sP p-Inos(GaosAlos)osP
leads to a dramatic reduction in facet-temperature rise during (0.75pm) (0.75um)
high-power cw operatiof.In fact, Al-free active-region la-
sers in the 800-nm-wavelength region have recently demon-
strated catastrophic optical mirror damageOMD) at an
internal power densityPcoup, 0f 17.5 MW/cn?, which is

Ing s(Gag 9Alo.1)osP
(t=0.8um)

more than twice the value reported for AlGaAs active de- P 2004 In, sGag sP
vices at the same wavelendtinother advantage of using 1504 InGaAsP
an InGaAsP-based active region is the ability to employ a (Aa/ax1.4%)
strained-layer or strain-compensated quantum-well active re- (A=730nm)
FIG. 1. Schematic diagram of Al-free active-region 730-nm-laser structure
3Electronic mail: al-muhan@cae.wisc.edu with broad-waveguide design.
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FIG. 2. Calculated optical confinement factbr,and radiation lossesy, ,
for both fundamental and second-order transverse modes vs waveguide
width, t. . A value oft,=0.8 um results in a large effective transverse spot 3.00
size @/I'=0.433um), and maintains adequate discrimination against the [
second-order transverse mode. 2.60 P

GaAs material system has small band-gap differences, mas- 2.20

sive carrier leakage from the active region has been the ma- X /./:
jor impediment to reach COMD ifcompletely Al-free laser 1.80 £
structures in the 800-nm-wavelength regidi! The use of [
high-band-gap Al-containing cladding layers has been shown
to be effective in reducing carrier leakage in similar broad
waveguide structures, incorporating a lattice-matched
InGaAsP quantum well, emitting at 810 rifTherefore,
INo.5(Ga Alge)osP (0.75 um) cladding layers were em- L (um)
ployed to reduce carrier leakage. As the wavelength is short- ®
ened towards 730 nm, carrier leakage becomes more severe,
dggradlng device performance even further. For this reasoyg, 3. Measured length dependence of threshold current dedgityand
high-band-gap 1§5(Gay oAlg)osP material (0.8 um) has  external differential quantum efficiencyy, as a function of device cavity
been utilized in the structures reported here to reduce activéength,L. (a) Fitted curve for logarithmic threshold current density,, vs
region carrier leakage into the confining layers. 1_/L. (b) Inv_erse of external differential quantum efficiencypd/ as func-

To measure the amount of strain in the quantum well, wd'©" °f device lengthi..
grew three 75 A quantum wells separated by 1000 A GaAs
layers under the same conditions as the laser structurers, t.=0.8um, such thata,,>a,y, @,,=39.16 cm?,
Double-crystal x-ray diffraction measurements were per-u,,=0.012cm?, resulting in Jyy/Jino=6.8, which as
formed and compared with simulated rocking curves conshown here is large enough to suppress the second-order
firming the amount of straim\a/a, in the InGaAsP quantum mode. Accordingly, we obtain reasonable large equivalent
well is in the rangeAa/a=1.4%—-1.6%. transverse spot sized/T'=0.433um, while maintaining

To achieve high output powers, a broad-waveguide desingle transverse-mode operation.
sign is employed. Design curves for the broad-waveguide Broad-area(100-um-wide) lasers have been fabricated
structure are shown in Fig. 2, which includes optical confine-and characterized as a function of cavity length under low-
ment factors]’, and radiation losses to the Gaps cap and  duty-cycle pulsed current operation. Figure 3 shows the
underlying substratey, , for both fundamental and second- variation of the threshold current density,, and external
order modes. Data for the first-order mode is not shown bedifferential quantum efficiencyyy, with device lengthl.
cause its overlap with the quantum well is sm@le., I’y  Jy, for 1-mm-long devices is 514 A/cin Using published
=0). As the In5(Ga Alg1)oP waveguide widtht,, in-  relationship$® between threshold current densify,, trans-
creases, the active-layer optical confinement fadiprde-  parency current densityl;, and gain saturation parameter,
creases from the optimal valug,=0.1um, for achieving G,, we calculatedl;=173 Alcnf andGy,=549 cm L. As a
the lowest threshold current. Although the lowest possiblaesult of the use of a broad waveguide, low internal loss is
threshold current density is not obtained for latgealues, a  achieved(a;=3 cm %, 7,=75%) because the field interac-
large equivalent transverse spot sidd,, is achieved. How- tion with the highly doped cladding layers is minimdl,
ever, from our experience, excessive increase in the wavexnd 74 were measured as a function of temperature from 20
guide width,t.>1 um, results in multimode operation at to 60 °C. A best-fit analysis gives characteristic temperature
high output powers despite the difference betw&gnand coefficients of threshold currerify, and external differential
I',, which results in a relatively small increase in thresholdquantum efficiency characteristic temperatdre, values of
current for the second-order mod&y,/Jiy,=1.9. To in- 72 and 153 K, respectively. The relatively high values ob-

crease discrimination, we employ thinner confinement laytained for T, and T,, compared with those published for
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in very good agreement with the calculated fundamental

16 transverse-mode far-field distribution, and indicate the
T4r ﬁ:zi'ém second-order transverse mode is suppressed. Preliminary
2T cL=2mm burn-in measurements performed at 50(200 mW output
s 1t powen for 50 hr indicate no significant degradation. Long-
308 term reliability measurements are planned in the future.
%o.e - In conclusion, we have demonstrated 730-nm-emitting
o4 f compressively strained InGaAsP quantum-well lasers with
02 low internal loss @;=3cm 1), high To(72K) and
o L - T,(153 K), cw output powers of 1.4 W, and stable funda-
0 1 2 3 4 5 mental transverse-mode operation from a broad-waveguide

Current (A) structure. Further improvements in performance can be

achieved by optimizing the amount of the strain in the quan-

FIG. 4. Cw L—I characteristics for (90%/10%) facet-coated 730-nm- tUM We.”' and improving thermal management to reduce fila-
emitting quantum-well (10@&mx2 mm) laser. mentation.
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