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Abstract-Our electrical impedance tomography (EIT) system 
uses the optimal current method to inject currents and the 
regularized Newton-Raphson algorithm to reconstruct an image 
of resistivity distribution. The optimal current patterns, however, 
are a function of the unknown resistivity distribution, thus they 
cannot be obtained analytically. In this paper we developed 
iterative methods to derive the optimal current patterns through 
iterative physical measurements. We also developed direct meth- 
ods to first determine the resistance matrix of a resistivity distri- 
bution through a set of experimental measurements, then used the 
singular value decomposition (SVD) to obtain the optimal current 
patterns. In both the iterative and direct methods, we injected a 
complete set of current bases and stored the measured voltage 
responses. This permitted iterative reconstruction techniques to 
operate on the stored data without requiring lengthy data taking 
from the object. This reduced the effects of motion artifacts. We 
concluded that the direct methods have superior performance 
as compared to the iterative methods in both optimal current 
and voltage generation. We studied three sets of current bases: 
Fourier, diagonal, and neighboring. The Fourier-based method 
produced most accurate results but required multiple current 
generators. The diagonal-based method produced slightly less 
accurate but comparable results using the simple hardware of 
a single current generator. 

1. INTRODUCTION 
LECTRICAL impedance tomography (EIT) is a new E imaging technique that uses electrical measurements to 

obtain an object's resistivity distribution. It provides informa- 
tion about an object that is different from that obtained by 
conventional techniques such as X-ray computed tomography 
(CT), magnetic resonance imaging (MRI), ultrasonic imaging, 
and microwave imaging. Bhat [ 101 summarized the clinical 
applications of EIT in various physiological systems including 
the cardiovascular system, respiratory system, and gastroin- 
testinal system. Lytle and Dines [9] described EIT applications 
in geophysical prospecting. 

An EIT data-collection system has a certain amount of 
measurement error including analog and digital electronics 
error and quantization error. The measurement error contam- 
inates some of the useful information in the measured data, 
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depending upon both signal and measurement error levels. 
This limits the accuracy of image reconstruction under any 
reconstruction algorithm. Different data-collection methods of 
injecting currents and measuring the voltages affect the signal- 
to-noise ratios (SNR's) in the measured data. 

Isaacson [8] proposed a data-collection method that provides 
maximal distinguishability. Let R(p) denote the resistance 
matrix for original resistivity distribution p, R(6) for the 
estimated resistivity distribution j. The voltage difference for 
a given current pattern 1 is 

V" - VI = [R(p)I - R ( j ) I ]  = [R(p) - R(j )]1  = DI (1) 

where D = R(p) - R(;) .  The current patterns that maxi- 
mize the norm of the voltage difference for a unit current, 
llV" - V I  11/11111, are defined as the optimal current patterns. 
The voltage difference is an important term in the updating of 
resistivity estimation [7], whose maximization can accelerate 
the convergence of a reconstruction algorithm and minimize 
the effects of measurement error. Isaacson [8] concluded 
that the optimal current patterns are the eigenvectors corre- 
sponding to the largest eigenvalues of matrix D. Note that we 
limit our study to resistance measurement, and the results can 
be extended to capacitance measurement. 

For the acquired current and voltage data, we can use 
reconstruction algorithms to obtain the resistivity distribution. 
There are many reconstruction algorithms for static images 
including backprojection, perturbation, double constraint, and 
modified Newton-Raphson algorithms. Yorkey et al. [ 121 
compared these methods and concluded that the modified 
Newton-Raphson algorithm converges the fastest with the 
least error. We used the regularized reconstruction algorithm 
by Hua et al. [6] which improved the performance of the 
modified Newton-Raphson algorithm by integrating a priori 
information into the reconstruction algorithm. Fig. 1 shows the 
flow chart of the algorithm. We first guess an initial resistivity 
distribution pk ,  and use the finite element method (FEM) [7] 
to calculate its voltage response f ( p k )  for a given current 
distribution. We then compare the calculated voltage f ( p k )  
with the measured voltage Vo from the real object to see if the 
mean squared error @ is small enough. If it is, we stop and 
display the resistivity distribution. Otherwise, we update the 
resistivity distribution by Apk according to the given formula 
until the number of iterations reaches a preset value. In order 
to avoid local minimum problems, it is useful to start with 
an educated guess. Note that D is a function of the calculated 
resistivity distribution; therefore, we update the optimal current 
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Fig. 1 .  The modified Newton-Raphson algorithm performs k iterations to 
minimize the mean-squared error between the voltages from the real object 
l b  and f ( p k ) .  f ' (pL)  is the Jacobian matrix, X is a smoothing parameter, and 
Y is a positive definite matrix corresponding to the prior information used. 

patterns every few iterations with respect to the new resistivity 
distribution, and repeat the procedure. 

The injection of an optimal current pattern requires multiple 
current generators. We used a 32-electrode data-acquisition 
system which is composed of 32 current generators, a volt- 
meter, and a personal computer (Macintosh 11). The current 
sources are gain-controlled so that they can provide arbitrary 
current distributions. The voltmeter can be multiplexed to any 
of the 32 electrodes and is composed of buffers, amplifiers, 
a demodulator, and filters. The computer controls the current- 
injection and voltage-measurement method. 

Equation (1) shows that the D matrix is a function of the 
unknown resistivity distribution, thus its eigensystem, i.e., the 
optimal current patterns, cannot be determined analytically for 
an arbitrary resistivity distribution. Isaacson [8] derived these 
patterns for some special resistivity distributions. Gisser et al. 
[2] proposed an iterative method to derive one optimal current 
pattern corresponding to the dominant eigensystem. However, 
their method requires lengthy acquisition time. In this paper, 
we developed both iterative and direct methods to determine 
a complete set of optimal current patterns for an arbitrary 
resistivity distribution. 

11. METHODS TO DETERMINE OPTIMAL CURRENT PATTERNS 

A. Iterative Method 

For a IV-electrode system, the matrix D has eigenvalues 
Xo, XI, . . . , X N - ~  in a decreasing order, and corresponding 
eigenvectors I o , I l ,  . . . , I N -  1. Then the matrix can be de- 
composed into the following form: 

Since D depends on the real resistivity distribution which is 
an unknown, Gisser et al. [2] proposed an iterative method to 

< End 

Fig. 2. The algorithm of Gisser et al. 121 performs k iterations to yield a 
dominant optimal current pattern. 

derive the dominant eigensystem, i.e., the largest eigenvalue 
with its eigenvector. Fig. 2 shows a flow chart of their al- 
gorithm. In our implementation of this algorithm, we set an 
initial current pattern, measure its voltage response from the 
real object, and calculate its voltage response for the estimated 
resistivity distribution. We then calculate and normalize the 
voltage difference, and use it as the updated current pattern. 
Eventually, the current pattern will converge to the eigen- 
vector. This procedure requires no advance knowledge of the 
resistivity distribution and is numerically stable. However, it 
does require repetitive measurements from the real object. 

and I O ,  we form 
another matrix D' as follows: 

After finding the dominant eigensystem 

Then using the algorithm again with D' substituted for D ,  
we obtain the dominant eigensystem of D', i.e., XI and 11. We 
repeat the above procedure to obtain the rest of the desired 
current distributions. 

In  vivo applications of the algorithm have two major draw- 
backs. 

1) The acquisition time is lengthy. For our 32 electrode 
hardware system, the acquisition time to obtain one set of 
voltage measurements is 24 ms. We found that more than 
ten iterations are necessary to obtain a converged current 
projection with 12 bit resolution. Therefore, the acquisition 
time for one optimal current projection will be 240 ms. For 
31 patterns, the total acquisition time is 7.2 s.  

Many factors can cause resistivity change during this data- 
acquisition interval. If we image the human thorax, the heart 
rate is about one beat/s, and cardiovascular ejection time 
is about 250 ms. The blood has a lower resistivity than 
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Independent 
current 

other tissues in the chest, and thus ejection will change the 
resistivity distribution during the cycle of data collection. The 
pulmonary ventilation cycle lasts about 8 s. The air exchange 
and morphological changes also result in resistivity change. 
Any of these changes during the data-collection period will 
result in distorted measurements and a blurred image. 

2) It is difficult to update optimal current patterns. Hua 
[5] showed that updating optimal currents every few recon- 
struction iterations improves the image quality in an iterative 
reconstruction algorithm. The reconstruction time depends 
upon the reconstruction algorithm, computational method and 
the computer facility. By using the sparse matrix technique to 
compute the voltages for the FEM model with 224 elements 
and 201 nodes to minimize the computing time [ l l ] ,  we can 
reconstruct one image update on a Macintosh I1 with a math 
coprocessor in 4 min. Goble et al. [3] use a Cray mainframe 
supercomputer to reduce the reconstruction time. However, the 
communication delay between the mainframe and the data- 
collection facility is lengthy. In order to update the optimal 
currents, we need to attach the instrument to a patient, and 
the resisitivity change during the reconstruction period also 
introduces measurement errors. 

Fig. 3 shows a data-synthesis-based adaptive system which 
overcomes the above problems. We apply a complete set 
of independent current patterns to the object, measure their 
voltage responses, and store these data in the independent 
voltage bank. In order to derive optimal current patterns we can 
synthesize any current pattern's voltage response based on the 
principle of superposition instead of measuring voltages from 
the instrument, because the relationship between voltage and 
current is linear. That is, since 

N - l  

I = azIz (4) 
z=n 

where a, is a scalar coefficient, and Io to IAv-l are current 
bases defined as a complete set of independent current pat- 
terns with IlIll = 1, the resulting voltage response can be 
synthesized as 

Set initial 
current 

distribution 

N-1 A-1 

V = RI = aiRIi = aiVi (5 )  
z=o i = n  

where Vi = RI,, the voltages response of a current base Ii. 
In this way, we can remove the instrument from the object 

as soon as we finish the present independent measurements and 
use reconstruction algorithms to obtain the image later, making 
the system more practical and feasible. As we explain in the 
next section, there are ( N  - 1) independent projections for an 
N-electrode system. Thus the total acquisition time = 24 ms 
x 31 = 744 ms for our 32 electrode system, which is one 
tenth of the acquisition time for the original iterative methods. 

B. Direct Method 

The resistance matrix R(p) is a function of the real resistiv- 
ity distribution p and is difficult to obtain analytically without 
knowing the resistivity distribution p. Here we developed 
experimental methods to determine the resistance matrix R( p )  
for an unknown distribution p through physical measurements. 

struction 

regularized 

Fig. 3. We make a set of independent measurements and store them in a 
voltage bank. We can then obtain a voltage response for a given current pattern 
by synthesizing data from the voltage bank. This enables us to remove the test 
object from an EIT instrument once the independent measurements are made. 

Then the D matrix and its eigensystem can be determined 
explicitly. 

Fig. 4 shows that we modeled the current and voltage 
relationship of an object in an N-electrode EIT system into 
an N-terminal network. The circuitry ground is used as a 
reference. Let vector 1 = { I ( k ) } ,  k = 0 , .  . . , N - 1, denotes 
the currents we inject into the object through the N electrodes, 
vector V = {V(k)}, k = 0, .  . . . N - 1, denotes the voltages 
we measured from the N electrodes, and matrix R(p) denotes 
the resistance between current and voltage. By Ohm's law, the 
relation among voltage V, current I ,  and resistance R(p) is 

V = R(p)I (6) 

i.e., 

(7) 

where Rij denotes the transfer resistance between terminal i 
and j .  The resistance matrix R is a generalized inverse of the 
conductance matrix Y satisfying equation YV = I from the 
node analysis of the network. Therefore, its element Rij has a 
sign (positive or negative) that is determined by the reference 
directions of current and voltage. 

The human body is a passive continuous medium at 50 kHz. 
Since there are no controlled sources in the medium, the 
resistance network is reciprocal, i.e., the matrix R is symmetric 
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Fig. 4. We model the relations among currents and voltages in an 
S-electrode system using an .\--terminal network. 

the Poisson equation, we generate a set of linear equations 
Y F ( / ~ ) V F  = I F  where Y F  is a M by M matrix whose values 
depend on the resistivity distribution ,h and the geometry of the 
elements, V F  is a M by 1 vector that denotes node voltages, 
and I F  is a M by 1 vector that denotes external current loads 
for each node. For each injected current base I t  through the 
electrodes, we can map its values into the corresponding node 
current vector I F ,  and solve the linear equations to obtain the 
node voltage vector V F .  We then extract the node voltages 
corresponding to the electrode location to yield the electrode 
voltages V , .  As a result, we can also solve for R(6) using 
(7)-( lo), thus explicitly determine the D matrix. 

We can use many methods to obtain the eigensystem of 
this symmetric D matrix: the QR algorithm, singular value 
decomposition (SVD), the Jacobi method, etc. [4]. We chose 
the SVD method because it  is stable and straightforward 
to obtain. SVD permits decomposition of a matrix D into 
orthogonal matrices U ,  V and a diagonal matrix L so that 

UTDV = L (12) 

L = diag { X O X ~ , .  . . . X S - ~ }  are the eigenvalues of D, 
and U and V are the eigenvectors matrices. Once we obtain 
the optimal current patterns and the resistance matrix R, 
the corresponding voltages can be solved through a matrix 
multiplication. 

as follows: 

(8) R,, = R,, 

The continuous medium also ensures that none of the 
terminals is isolated from the rest of the network. Thus, the 
matrix is indefinite and satisfies the following: 111. DIFFERENT CURRENT BASIS 

S - 1  

R, ,  = c for , j  = o to N -  1 
z=o 

where c is any constant. 
Krchhoff's current law states that 

N-1 1 I ( k )  = 0 
k=O 

To determine the optimal current patterns, both the synthesis- 
based iterative method and the direct method require the 
injection of a set of independent current bases into the object 
of interest: the former for synthesizing the voltage response 
of a given current distribution, the latter for determining the 
resistance matrix. Many patterns can be used as independent 
current bases. In this section, we examine three types of bases 
in detail: Fourier, diagonal, and neighboring. 

(9) 

Equations (7) to (10) result in A. Fourier-Based Method 
A-1 

V ( k )  = 0. 
k = O  

Let I ( k )  be the current flowing through the kth electrode in 
a N-electrode system, and let Wlv be the principal Nth  root 
of unity as follows: 

(11) 

In a physical measurement, we measure the differential 
voltages between electrodes. We can use (11) to adjust the 
measured differential voltages so that the resulting voltages 
have the same reference as the estimated voltages by FEM. 

Note that due to the relationship shown in (9), there are 
only ( N  - 1) eigenvalues and eigenvectors for the resistance 
matrix R, and thus also the matrix D. By injecting a set 
of independent current bases I , .  I = 0. . . . . N - 2, we can 
measure the resulting voltages I ? .  2 = 0.. . . . N - 2. We 
use (7)-(10) to uniquely determine all the elements of the 
resistance matrix R. 

Similarly, we can inject the same set of current bases into 
our FEM, in which we model the electric field distribution 
using a finite element mesh with a total of M nodes [5]. 
By enforcing the governing equation of the electric field, i.e., 

(13) w - p / A .  
12' - 

The current pattern can be represented as a function of 
higher harmonics: 

1 
N I ( k )  = - C(n)WA(JL k = 0.1,. . . , N - 1 (14) 

n = O  

where C(n)  is the discrete Fourier transform (DFT) defined 
as 

N - 1 

C(U) = I(k)w,k7'". 
k=O 
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If c = [C(O), . . . , C ( N  - l)]', (15) can be expressed in The resistance matrix R can be obtained by a matrix 
multiplication of the voltage response V f  with the cur- 
rents F .  

The current distribution when k = 0 is all 1, which cannot 
be physically applied to an object since its sum is not zero. 
However, its voltage response is zero according to (7), (8), 
(9), and (11). The derivation of a resistance matrix in (20) 
requires the injection and measurement of 62 current patterns 
and a matrix multiplication. 

a matrix form as 

C =  FI 

where F is the N by N matrix with elements 

F n k  = WGkn, 0 5 k , n  5 N - 1. 

1)  Voltage Synthesis Method: A current pattern can thus be 
expressed as B. Diugonul-Bused Method 

In this method, we select one electrode as a reference 
and choose another electrode as an active electrode to inject 
current. We then alter the active electrode until the rest of the 
electrodes have been used as active electrodes. The current 
bases are formed as = [l/fi. " ~ O ~ " ' , - l / f l ~ . r l  = 
[". l/fi.O. ' ' ' - - ' / f iT -  

1 I = -F*C N 

where F* denotes complex conjugate of F.  Each column of 
the F * / n  matrix forms a current base I ,  and C(,,)/fl 
forms the coefficient at in (4). Therefore, the resulting voltage - 2  [O. ' ' ' - 
is / A ] ' .  

I )  Voltage Synthesis Method: An arbitrary current pattern 
(16) can be represented as 

1 1 
N N f  

V = m = - R F * C = - V  C 

where I =  [ I ( O ) ; . . . I ( N -  l)]' 

V f  = RF* 

The V f  matrix represents the voltage responses of current 
F * .  In order to synthesize a voltage response, we need 
to calculate the Fourier coefficients according to (15), and 
calculate the voltage response according to (1 6). 

2) Direct Method to Determine R: F ,  the matrix represen- 
tation of the DFT, is an orthogonal matrix since 

[F*F],, = N S ( m  - 71,) (18) 

01 

F*F = NI.  

We multiply F by both sides of (17) to obtain 

V f F  = RF*F = N R ,  
I.e., (19) 

Therefore, its voltage response can be calculated as 
v-2 

V = R(p)I  = fi I ( k ) V ,  (22) 
L=O 

where V ,  = R(p)I, ,  the measured voltages of the diagonal 
currents I,. Thus the estimated voltage for a given current 
is a weighted function of the premeasured voltages from 
independent currents. 

2) Direct Method to Determine R: We assemble the mea- 
sured voltages into a new matrix as shown in (23) at bottom 
of the page. Adding all the components in the Lth row and 
using (9), we obtain 

1 s - 1 

V ' ( ~ . , I )  = y { ( R L o  + ' . .  + K s - 2 )  - ( N  - 1)Ks- i}  
/=o  Jz 

1 
R = - V f F  N 
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Thus, we may decompose the nth column in the R matrix by 

We obtain the rest of the elements of R by adding Rilv-1 

to all the columns for all rows in matrix V'. It is easy to prove 
that the resistance matrix R determined by any selection of c 
produces that same voltages for a given current pattern due 
to its indefiniteness. Therefore, we select c = 0 to simplify 
computation. 

C.  Neighboring-Based Method 
Barber and Brown [l] sequentially used a single cur- 

rent generator to inject current through a pair of adja- 
cent electrodes and measure the voltages from all the 
other electrodes. The corresponding current bases are 
IO = [l/JZ, -1/JZ,0, .  . . , O ] T , I z  = [O, 1 /Jz ,  -1 /Jz ,  
0, ' .  . , O]T,  I N - 2  = [ O , .  . . ,0 ,  1/a, - l / d ] T .  

1) Voltage Synthesis Method: An arbitrary pattern can be 
represented as 

I = JZ{I(o)I ,  + ( I ( 0 )  + I (1) )II  + . ' ' 
+ ( r ( 0 )  + . . . + I ( N  - 2))1,\--2} 

Therefore, its voltage response can be calculated as 

A - 2  

v =  fix C I ( k )  v, (27) 
a=O Lo 1 

where V, = R(p)I, ,  the measured voltages of the neighboring 
currents I,. 

2) Direct Method to Determine R: The direct method to 
determine R is straightforward. However we found that the 
synthesized voltages by this method were very noisy. Thus 
the direct method to determine R is not significant and is 
omitted in this discussion. 

Iv. RESULTS AND DISCUSSIONS 

A. Comparison of Voltage-Synthesis Methods 
Equation (4) shows that V = C:li'n,V,. Since the 

measured voltage V, contains both the ideal signal S ,  and 
noise N , ,  we obtain 

V, = S, + N , .  (28) 

Thus, 

N - l  N - 1 A-1 

V = a,(Sa + N , )  = n,Sa + aaNa (29) 
z=O z=O ,=O 

where the first term is the measured signal and the second is 
the error in the synthesized voltage. 

If we assume the error is a zero-mean Gaussian noise, and 
the variance for each Ni is equal to o2 and uncorrelated, the 
variance 0," for the error in V is given by 

" N- 1 

Thus the noise level is proportional to the norm of the 
coefficient vector used in different current bases. We can prove 
that the variances in the Fourier, diagonal-, and neighboring- 
based methods are 

7 A - 2  A' ~ 2 

= J ( q 2 .  2 I ( q 2 ,  
k=O k=O 

f f 2  

respectively. Thus, the error level is a function of current 
distribution. The Fourier-based method has less error than the 
diagonal-based method. 

The actual noise source, however, may not follow an ideal 
additive Gaussian distribution. A noise in the current source 
may result in multiplicative noise. Thus the above derivation 
can only provide some guidelines for a statistical measure. 

We studied the accuracy of different voltage-synthesis 
methods through experiments using our 32-electrode data- 
acquisition system with 12 bit resolution. For a given 
current pattern, we measured the voltage responses from a 
physical phantom 16 times and averaged them to generate a 
measured voltage V,. We then measured voltages for different 
independent current patterns and used the above methods to 
synthesize the voltages V,. We defined the error-to-signal 
ratio as e = IIV, - V s ~ ~ / [ ~ V n L ~ ~  where llzll denotes the norm 
of a vector 2. In order to estimate the system noise level 
N, ,  we calibrated the data-acquisition hardware and set all 
current generators. The resulting voltages were mainly the 
noise due to the high-frequency leakage by stray capacitance 
and quantization error by the analog-to-digital converter in 
a voltmeter and the digital-to-analog converter in a current 
source. We defined the noise-to-signal ratio as IINell/llVmll 
so that we can compare the synthesized voltage error with the 
system noise. 

We injected the following current patterns. 

Symmetric pulse (SP) 

I ( n )  = 1 / h  wherin = 7 
when n = 23 = - I /& 

= o  otherwise. 

Fundamental harmonics (FH) 

I (n , )  = s i n ( 2 ~ n , / N ) / J N / 2  n = 0 to N - 1. 

Higher harmonics (HH) 

I (n , )  = s i n ( 2 ~ 4 n , / N ) / m  n = 0 to N - 1. 
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TABLE I 

FOR DIFFERENT CURRENT PATTERNS I N  PERCENT 

Injected Error-to-signal ratio (%) Noise-to- 
current signal 
pattern Neighboring Diagonal Fourier ratio (%) 

THE ERROR OF DIFFERENT VOL'rAGE-SYNTHESIS MErHODS 

SP 0.3813 0.0380 0.0344 0.0305 
FH 0.5053 0.0087 0.0070 0.0043 
HH 1.0278 0.0397 0.0491 0.0308 

UDP 0.8517 0.0323 0.0336 0.0303 

4) Unsymmetrical dual-pulses (UDP) 

~ ( n )  = I /& w~ien  n = 7 arid 8 

when 71 = 16 and 23 = -1/& 
= o  Otherwise. 

Table I summarizes the experimental results. It shows that 
the noise is about 0.03% of the signal level, which is about 
1 bit of resolution in the 12 bit acquisition system. The ratios 
of the error-to-noise (error-to-signal ratiohoise-to-signal ratio) 
range from 12-28 for neighboring, 1.1-2.0 for diagonal, and 
1.1-1.6 for Fourier methods. The Fourier method introduces 
an error on the order of the noise level, and is the most accurate 
method. 

What affects the accuracy of different synthesis methods 
is the measurement error in the hardware system. For the 
neighboring-based method, the current density of a current 
base is high in the vicinity of one pair of adjacent current 
electrodes. The voltage at other electrodes is small, thus the 
signal-to-noise ratio (SNR) is small and this method has a 
large error level. The current density in the diagonal method 
is more uniform than that in the neighboring method. Thus 
the resulting voltages have a much larger SNR than those 
from the neighboring method. The synthesized voltages are 
more accurate than those from the neighboring method. The 
current densities in the Fourier method are more uniform than 
those in the neighboring and diagonal methods. Thus resulting 
voltages from the Fourier method have a much larger SNR 
than those from other methods and the Fourier method has the 
most accurate results. 

B. Comparison of Optimal Currents 
We put a 5 cm glass beaker into a 30 cm diameter tank filled 

with 100 R-cm saline solution. Fig. 5 shows the reconstructed 
image using optimal current patterns derived from both direct 
and iterative methods for different types of current bases. The 
images from optimal currents by direct methods are better than 
those by the iterative methods. The neighboring-based method 
does not produce a quality image due to the poor SNR shown 
in Table I. Both the Fourier-based and the diagonal-based 
methods produce satisfactory results. 

We further compare the performance of Fourier current 
bases and diagonal current bases and diagonal current bases 
through forward evaluation. We injected into the phantom a set 
of current patterns I k ( i )  = cos(27rki/32): z = 1. .  . . , 3 2 .  k = 
1, . . . .16, and measured their voltage responses V,,,. We then 
synthesized the voltages V, using the Fourier-based and the 
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Fig. 5.  A 5 cm glass beaker was placed in a 30 cm diameter tank filled 
with 100 R a n  saline. The reconstructed image using (a) the Fourier-based 
direct method, (b) the diagonal-based direct method, (c) the Fourier-based 
iterative method, (d)  the diagonal-based iterative method, and (e )  the neigh- 
boring-based iterative method. ( f )  The original image. 

t 

0 1  1 

Spatial frequency 

0 4 8 12 16 

Fig. 6. The synthesized voltage error for the Fourier-based direct method 
( 0 )  is smaller than that of the diagonal-based direct method (+). 

diagonal-based direct methods respectively. We calculated the 
absolute error between the measured and synthesized voltages, 
i.e., l/Vnl - V,II. Fig. 6 shows that the Fourier-based direct 
method has a smaller error than the diagonal-based method, 
especially for low spatial frequencies, which concludes that 
the Fourier-based direct method is the most accurate method 
among the investigated methods. 

Using the Fourier-based direct method, we can determine 
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the resistance matrix R f  and the corresponding optimal cur- 
rents and voltages. The matrix R f ,  however, is not the most 
accurate one, since the voltage responses of a set of Fourier 
current patterns do not always have the best SNR’s for an 
arbitrary resistivity distribution. Thus, in an application where 
resistivity distribution change is slow with respect to the 
data-acquisition speed, we can inject these current patterns 
into the subject again to measure their voltage responses. 
Since the injected currents are a set of eigenvectors which 
are orthogonal, we can use a simple matrix multiplication 
to determine a new resistance matrix R, based on these 
measurements. The new resistance matrix should be more 
accurate since the injected current patterns are closer to the 
ideal optimal currents, and the resulting voltages have better 
SNR’s. However, for in vivo applications the physiological 
changes may prevent us from using this approach. 

The numerical round-off error and the noise in the data- 
acquisition system introduce errors in the optimal current 
pattern generation for the iterative methods. These errors are 
accumulated in the generation of the next optimal current 
pattern, and a small stopping error and accurate representation 
of the variables are necessary. The direct methods do not 
have this error accumulation and thus perform better than the 
iterative methods. 

C. Single Versus Multiple Current Generator System 
There are generally two types of EIT: single and multiple 

(mostly 32) current generators. The multiple generator system 
can inject optimal current patterns while the single generator 
can only provide a single current. Use of optimal current 
patterns can achieve better distinguishability and produce 
better images. 

The hardware design of the multiple-generator system, 
however, is much more complicated than that of the single- 
generator system. In addition to more components, the multiple 
generator system requires good balance among all generators 
of output impedance, amplitude, and phase. For a carrier 
frequency of 50 kHz, stray capacitance causes imbalance 
problems. The balancing would be even more difficult for 
three-dimensional imaging where 64 or more generators might 
be required to achieve reasonable spatial resolution. The 
diagonal-based method described above requires one current 
generator to inject current for each projection. Table I shows 
that the voltages thus synthesized have the same order of 
accuracy as the Fourier method which requires multiple gener- 
ators to provide the desired current patterns. The reconstructed 
image in Fig. 6 has an image comparable to the one from the 
Fourier-based method. Thus we can generate optimal current 

patterns using a single generator system such as the Sheffield 
data-acquisition system [ 11 an achieve comparable resolution 
to a multiple generator system. 

This paper described methods to generate optimal current 
patterns for a 2-D study. These methods are also applicable to 
3-D studies since the linear relationship between current and 
voltage holds true for both cases. 

V. CONCLUSION 
We have shown that the voltage response for a given current 

pattern can be synthesized from preset independent measure- 
ments with the introduced error being of the same order as 
the system noise. The optimal current patterns derived by 
direct methods are better than those by iterative methods. The 
Fourier-based method produces the most accurate synthesized 
voltages and optimal current patterns. We have shown that we 
can use the single-channel current generator and the diagonal 
method to generate an optimal current pattern and its voltage 
response, and achieve slightly less accurate but comparable 
results with that of a multiple-generator system. 
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