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Reducing Memory Latency via Read-after-Read

Memory Dependence Prediction
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Abstract—We observe that typical programs exhibit highly regular read-after-read (RAR) memory dependence streams. To exploit
this regularity, we introduce read-after-read (RAR) memory dependence prediction. This technique predicts whether: 1) A load will
access a memory location that a preceding load accesses and 2) exactly which this preceding load is. This prediction is done without
actual knowledge of the corresponding memory addresses. We also present two techniques that utilize RAR memory dependence
prediction to reduce memory latency. In the first technique, a load may obtain a value by naming a preceding load with which an RAR
dependence is predicted. The second technique speculatively converts a series of LOAD;-USE;,...,LOADy-USEy chains into a
single LOAD,-USE; ... USEy producer/consumer graph. This is done whenever RAR dependences are predicted among the LOAD;
instructions. Our techniques can be implemented as small extensions to the previously proposed read-after-write (RAW) dependence
prediction-based speculative memory cloaking and speculative memory bypassing. On average, our RAR-based techniques provide
correct values for an additional 20 percent (integer codes) and 30 percent (floating-point codes) of all loads. Moreover, a combined
RAW- and RAR-based cloaking/bypassing mechanism improves performance by 6.44 percent (integer) and 4.66 percent (floating-
point) over a highly aggressive dynamically scheduled superscalar processor that uses naive memory dependence speculation. By
comparison, the original RAW-based cloaking/bypassing mechanism yields improvements of 4.28 percent (integer) and 3.20 percent

(floating-point). When no memory dependence speculation is used, our techniques yield speedups of 9.85 percent (integer) and

6.14 percent (floating-point).

Index Terms—Memory dependence prediction, load, cache, dynamic optimization.

1 INTRODUCTION

ODERN high-performance processors use techniques

that rely on regularities in typical program behavior
to enhance performance. A well-understood example is
caching. Caching exploits the tendency of programs to
access the same or in-close-proximity memory data. It does
so to approximate a fast and large memory (that is either
impossible to build or prohibitively expensive), using
smaller yet faster memories. Other examples are branch
and value prediction. The accumulated experience with
regularity-based techniques suggests that, in our search for
higher performance, it may be useful to further study
typical program behavior, trying to identify other pre-
viously unknown regularities. Such regularities could then
be exploited to our advantage. Following this rationale, in
this paper, we identify that typical programs exhibit highly
regular “read-after-read” (RAR) memory dependence
streams. An RAR dependence exists between two loads if
they access the same address and no store to the same
address appears between them in the sequential execution
order. We have found that if, at some point during
execution, two loads are RAR dependent, then, with high
probability, these loads will again be RAR dependent soon,
even though they may be accessing a different address.
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We also present techniques that exploit this regularity to
our advantage. In particular, we present: 1) history-based
RAR memory dependence prediction and 2) two techniques
that use this prediction to reduce memory latency. In RAR
memory dependence prediction, an earlier detection of an
RAR dependence is used to predict the dependence the next
time the same loads are encountered. We demonstrate how
to use this prediction to create a new name space free of
aliases through which loads can get speculative values. In
our technique, a load can get a value by identifying a
preceding load that reads the desired value (i.e., an RAR
dependence exists with that load). Using instruction-
address-based (PC-Based) prediction, this identification
takes place early in the pipeline without actual knowl-
edge of memory addresses. This is a value speculative
technique and requires verification through memory
(either by accessing the memory value or by establishing
that no memory dependences were violated). To further
reduce memory latency, we propose using RAR memory
dependence prediction to transform a number of
LOAD;-USE;,...,LOADy-USEyx chains into a single
LOAD;-USE; ... USEx producer/consumer graph. As a
result, the first load that accesses a memory location
propagates its value to the consumers of all its RAR-
dependent loads. This is also a speculative technique and is
applicable only when all dependent loads appear within the
current instruction window.

An advantage of our techniques is that they can be
implemented as small extensions to the previously pro-
posed speculative memory cloaking (cloaking) and speculative
memory bypassing (bypassing), respectively [22]. While we
discuss the details in Sections 3.1 and 3.2, we present an
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Fig. 1. Speculative memory cloaking and bypassing: (a) Original proposal: exploiting read-after-write dependences. (b) Newly proposed techniques:

exploiting read-after-read dependences.

overview of the four techniques in Fig. 1. Fig. 1a shows the
original cloaking and bypassing, while Fig. 1b shows our
RAR memory dependence-based techniques. As originally
proposed, cloaking uses history-based read-after-write
(RAW) memory dependence prediction to speculatively
pass values from stores to loads. Bypassing, an extension of
cloaking, further reduces memory latency by converting
DEF-STORE-LOAD-USE dependence chains into direct,
albeit speculative, DEF-USE ones. As shown in Fig. 1b,
our RAR memory dependence prediction-based cloaking
and bypassing complement their RAW counterparts, in-
creasing overall coverage. Our techniques predict loads that
the original cloaking and bypassing cannot. These are loads
that do not experience RAW dependences. However, the
utility of our techniques also extends to loads that have
RAW dependences with distant stores. Such RAW depen-
dences often escape detection due to the limited scope of the
underlying detection mechanisms. A more detailed discus-
sion of this issue is given in Section 3.1.
The contributions of this paper are:

1. We demonstrate that regularity exists in the RAR
memory dependence stream of typical programs,

2. We introduce history-based RAR memory depen-

dence prediction,

We propose applications of this prediction, and

4. We compare the accuracy of our techniques and of
load value prediction [18] and show that the two
approaches are complementary.

et

The rest of this paper is organized as follows: In Section 2,
we demonstrate that regularity exists in the RAR memory
dependence stream of typical programs. In Section 3, we
discuss the rationale for our RAR memory dependence
prediction-based methods for reducing memory latency. In
Section 3.1, we present our RAR version of cloaking and
discuss how it can be implemented as an extension of RAW
cloaking. In Section 3.2, we do the same for RAR memory
dependence prediction-based bypassing. In Section 4, we
review previous work. In Section 5, we evaluate the
accuracy and performance of our techniques. Finally, in
Section 6, we summarize our findings.

2 QUuANTIFYING RAR MEMORY DEPENDENCE
STREAM REGULARITY
In this section, we demonstrate that the RAR-dependence

stream of the SPEC95 programs is regular (our methodol-
ogy and benchmarks are described in Section 5.1). We show

that most loads exhibit temporal locality in their RAR-
dependence stream. That is, once a load experiences an
RAR dependence, chances are that it will experience the
same RAR dependence again soon. Moreover, we demon-
strate that the working set of RAR dependences per load is
relatively small. These properties enable history-based
prediction of RAR dependences.

We represent RAR dependences as (PC;,PCs) pairs,
where PC; and PC, are instruction addresses of RAR-
dependent loads. Generally, given a set of loads that
access the same memory address, RAR dependences exist
between any pair of loads in program order (provided, of
course, that no intervening store writes to the same
address). We restrict our attention to RAR dependences
between the earliest in program order load (source) and
any of the subsequent loads (sinks). For example, given
the sequence LD; A,LD, A,LD3; A, we will account for the
(LD; A,LD,) and (LD; A,LD3 A) dependences only and
not for the (LD A,LD;3 A) dependence. This definition is
convenient for RAR dependence prediction and for its
applications, which we present in Section 3, as it allows us
to keep track of a single RAR dependence per executed load
(ignoring data granularity issues, i.e., a load that reads two
bytes, each of which was read separately by different
preceding loads).

To show that RAR-dependence streams are regular, we
measure the memory dependence locality of loads with RAR
dependences. We define memory-dependence-locality(n) as the
probability that the same RAR dependence has been
encountered within the last n unique RAR dependences
experienced by preceding executions of the same static
load. Memory-dependence-locality(1) is the probability that the
same RAR dependence is experienced in two consecutive
executions of this load. A high value of memory-dependence-
locality(1) suggests that a simple, “last RAR dependence
encountered”-based predictor will be highly accurate. For
values of n greater than 1, memory-dependence-locality(n) is a
metric of the working set of RAR memory dependences per
static load. Of course, a small working set does not imply
that the dependences are predictable.

Fig. 2a shows locality results for sink loads for the
SPEC95 programs (see Table 1 for additional information on
the programs used in this study). Given a (source, sink) RAR
dependence, we define the source to be the earliest in
program order load. From our definition of RAR depen-
dences, it follows that sink loads will typically have a single
source load. The locality range (value of 1) shown is 1 to 4
(left to right). The Y axis reports fractions over all sink loads
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Fig. 2. Memory dependence locality of read-after-read dependences for the SPEC95 programs (X axis). Details about the programs are given in
Table 1. Locality range shown is 1 to 4. (a) Infinite address window. (b) 4K entry address window.

executed. Locality is high for all programs. More than
70 percent of all loads experience a dependence among the

four most recently encountered RAR dependences.
We also measured how locality would change had we

placed a restriction on how far back we could search to find
the earliest source load. Such a restriction is interesting from
the perspective of history-based prediction as we need a
mechanism to detect RAR dependences. To be of practical
use, this mechanism will have to be of finite size.
Accordingly, we include locality measurements for a
4K address window. We define s, the size of an address
window to be the maximum number of unigue addresses that
can be accessed between a source and a sink load. The
metric is inspired by a practical memory dependence
detection mechanism, where a table tracking the s most
recent addresses accessed is used to detect memory
dependences. As seen by the results of Fig. 2b, locality is
high, in some cases higher than it was when all accesses
were considered. This implies that shorter dependences
seem to be more regular than distant ones.

3 RebucIiING MEMORY LATENCY VIA RAR MEMORY
DEPENDENCE PREDICTION

In this section, we review the RAW-based cloaking and
bypassing techniques and then explain how our RAR-based
techniques fit under the same framework.

Memory can be viewed as a storage mechanism or as an
interface that programs use to express desired actions.
Viewing memory as an interface allows us to separate
specification from implementation: Just because we have
chosen to express an action via memory we do not have to
implement it in exactly the same way. The previously
proposed cloaking and bypassing methods approached
memory as a way of specifying interoperation communica-
tion, that is, of passing values from stores to dependent
loads [22]. This specification is implicit and it introduces
overheads which are not inherent to communication:
address calculation and disambiguation. Unfortunately,
caching, the current method of choice to speeding up
memory communication, cannot reduce these overheads.
Moreover, these overheads may increase as pipelines grow
deeper and as windows get wider. Fortunately, we can

TABLE 1
Benchmark Execution Characteristics
Program | I1C | Loads | Stores | SR Program | 1C | Loads | Stores | SR
SPECint’95 SPECp’95

099.go 133.8 | 209% | 7.3% | N/A | 101.tomcatv 320.1 | 319% | 8.8% 1:2
124.m88ksim | 1963 | 18.8% | 9.6% | 1:1 | 102.swim 188.8 | 27.0% | 6.6% 1:2
126.gcc 3169 | 24.3% | 17.5% | N/A | 103.sucor 279.9 | 33.8% | 10.1% 1:3
129.compress | 153.8 | 21.7% | 13.5% | 1:2 | 104.hydro2d | 1,128.9 | 29.7% | 82% | 1:10
130.1i 206.5 | 29.6% | 17.6% | N/A | 107.mgrid 95.0 | 46.6% | 3.0% | N/A
132.ijpeg 129.6 | 17.7% | 8.7% | N/A | 110.applu 168.9 | 31.4% | 7.9% 1:1
134.perl 176.8 | 25.6% | 16.6% | 1:1 | 125.turb3d 1,666.6 | 21.3% | 14.6% | 1:10
147.vortex 3769 | 26.3% | 27.3% | N/A | 14].apsi 1259 | 31.4% | 13.4% | N/A
145.foppp 214.2 | 48.8% | 17.5% 1:2

146.wave5 290.8 | 30.2% | 13.0% 1:2

Instruction counts (“IC” columns) are in millions.
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while (1)

LOAD foo (1)
LOAD ADDRESS bar (|)
LOAD DATA i [t

g foo(list) LOAD
LoAD t += I->data
LOAD’ ADDRESS

- LOAD

STORE{ ADDRESS hygr (ist )
if (I->data =*KEY) ...

(©

Fig. 3. An example of data-sharing. (a) Program segment with two loads that will access a common memory location communicate. (b) Time-line of

execution. (c) Code with RAR dependences.

eliminate these overheards if we express memory commu-
nication explicitly. In an explicit specification, the load and
the store can locate each other directly. Cloaking uses RAW
memory dependence prediction to create this representa-
tion on-the-fly in a program transparent way. As a result,
store-to-load communication may happen before address
calculation and disambiguation. It is possible to further
reduce by communication latency by exploiting the fact that
dependent stores and loads do not change the commu-
nicated value (ignoring sign-extension and data-type
issues). They are simply used to pass a value that some
other instruction (producer) creates to some other instruc-
tion(s) that consumes it. Bypassing extends cloaking by
linking actual producers and their consuming instructions
directly.

Following a similar line of thinking, we observe that
another common use of memory is data-sharing, that is, to
hold data that is read repeatedly. Data-sharing is also
expressed implicitly and similar overheads are introduced.
This can be seen using the example of Fig. 3. In Fig. 3a, two
load instructions, LOAD and LOAD’, are shown which, at
runtime, access the same memory location. Fig. 3b shows a
possible sequence of events. Initially, LOAD is fetched, its
address is calculated, and a value is read from memory.
Later on, LOAD’ is encountered. At this point, both loads
have been seen and the value is available. Yet, LOAD’ has to
calculate its address and go to memory to read the same
value. Moreover, depending on whether memory depen-
dence speculation is used, accessing the memory value may
be further delayed to establish that no intervening store
accesses the same memory location. It is important to note
that, while LOAD and LOAD’ are accessing a common
address every time they are encountered, this address may
be different every time. For example, this is the case in the
example of Fig. 3c, where each of the elements of list “1” is
accessed twice from within different functions.

As with memory communication, an explicit representa-
tion of data-sharing can eliminate the aforementioned
overheads. In the preceding example, LOAD’ could obtain
a value by just naming LOAD. Creating an explicit
representation of data-sharing is the goal of our RAR
dependence prediction-based methods. Observing that
data-sharing gives rise to RAR dependences, we propose
PC, history-based RAR memory dependence prediction and

use it to explicitly represent data-sharing. We also observe
that, similarly to interoperation communication, loads that
access a common memory location do not change the value
they read. Accordingly, we propose an RAR extension to
bypassing in which consumers of loads with RAR depen-
dences are linked directly to the earliest possible load that is
predicted to access the common memory location. The
effect of our RAR extensions is illustrated in Fig. 1b.

3.1 RAR Memory Dependence Prediction-Based

Speculative Memory Cloaking
In this section, we explain how we use RAR memory
dependence prediction to streamline data-sharing. Our
method works as follows: The first time an RAR depen-
dence is encountered, the identities of the dependent loads
are recorded and a new name is assigned to them (i.e., with
their PCs). The next time these instructions are encountered,
the previously assigned name can be used to propagate a
value from the first in program order load to the second.
This we illustrate with the example of Fig. 4, where we
show how an earlier detection of an RAR dependence
between LOAD and LOAD’ is used the second time these
instructions are encountered to provide a speculative value
for LOAD'. The first step is detecting the RAR dependence.
This is done by the Dependence Detection Table (DDT) [22].
The DDT is an address indexed cache which records the PC
of a load or a store that accessed the corresponding address.
The PC of a load or a store is their instruction address. After
the first instance of LOAD calculates its address, it also
creates a new entry in the DDT at commit time (Fig. 4a).
Later, LOAD’ may access the DDT using the same address
(Fig. 4b) where it will locate the entry for LOAD. At this
point, we have detected an RAR dependence between the
two instructions. As a result, an association of the two loads
with a preferably unique name, a synonym, is created in the
Dependence Prediction and Naming Table (DPNT) (action 1).
This is a PC-indexed table and two entries are created, one
for LOAD and one for LOAD’. When a later instance of
LOAD is encountered (Fig. 4b), its PC is used to access the
DPNT, predicting whether a RAR dependence will be
observed (action 2). Provided that the dependence is
predicted, storage for the synonym is allocated in the
Synonym File (SF) (action 3). The SF is a synonym-indexed
structure. Initially, the SF entry is marked as empty as no
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Fig. 4. (a) RAR-based cloaking. (b)-(d) RAR-based bypassing.

value is yet available. When LOAD’s memory access
completes, the value read is also written into the SF,
marking the entry as full (action 4). When LD’ is
encountered, its PC is used to access the DPNT and to
predict the RAR dependence (action 5). Using the DPNT
provided synonym, LD’ can access the SF and obtain a
speculative value (action 6). This value can be propagated
to dependent instructions (action 7). Eventually, when
LOAD’ calculates its address and completes its memory
access, the value read from memory can be used to verify
whether speculative value was correct (action 8). If it was,
speculation was successful. If not, value miss-speculation
occurs. While we assumed that LOAD’s memory access
completes before LOAD’ is encountered, this technique is
useful even when this is not so.

We have deliberately used the same support structures
as in the original RAW-based cloaking. In fact, the two
techniques are virtually identical provided that we treat the
first load in an RAR dependence as the producer of the
memory value. However, while, in RAW-based cloaking,
the value becomes available as soon as the store receives it
from the instruction that produces it, in RAR-based
cloaking, the value has to be fetched from memory by the
first load. These observations suggest that our RAR-based
cloaking technique can be implemented as a small extension
to RAW-based cloaking. For this purpose, we need to
record loads in the DDT. Moreover, we need to mark loads
as producers in the DPNT. For this, we use two predictors
per entry, one for consumer prediction and one for
producer prediction. In the DDT, we chose to record loads
only when no preceding store had been recorded for the
same address. Moreover, we record a load in the DDT only
when no other load has been recorded for the same address.
This is done to annotate the earliest in program order load
as the producer of a value for cloaking purposes.
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At this point, we can explain why our RAR-based
method can be used to predict some of the loads that have
RAW dependences with distant stores. The size of the DDT
limits how far we can search to locate the source instruction
for both RAW and RAR dependences. When a load has a
dependence with a distant store, it is likely that the latter
will be evicted from the DDT long before the load is
encountered. Consequently, the RAW dependence will go
undetected and RAW-based cloaking will not be per-
formed. However, if the load has RAR dependences with
not-so-distant loads, these dependences may be detected
and subsequently used to predict the load’s value using
RAR-based cloaking.

3.2 RAR Memory Dependence Prediction-Based
Speculative Memory Bypassing

The process of RAW-based bypassing is shown in Fig. 1a.
As shown, bypassing speculatively converts a DEF-STORE-
LOAD-USE dependence chain into a DEF-USE one, in effect
bypassing the store and load instructions. Consequently,
the value can flow directly from the producer (DEFRx) to
the consumer (USE Ry). The goal of our RAR-based
extension to bypassing is shown in Fig. 1b. We assume
that a RAR dependence exists between “LOAD Ry” and
“LOAD Rz.” While RAR cloaking will allow “LOAD Rz” to
obtain a speculative value by naming “LOAD Ry,” its
consumer, “USE Ry,” will have to wait for “LOAD Ry” to
propagate this value. With our method, “USE R;” is
speculatively linked directly to “LOAD Ry.” As with
cloaking, the proposed method can be implemented as an
extension to the RAW-based bypassing. This can be done by
treating the oldest in program order load of an RAR
dependence, similarly to a store of a RAW dependence. The
only difference is that this “producing” load cannot be
eliminated. Fig. 4b illustrates how the cloaking provided
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synonym is used to propagate the target register tag (TAG1)
of “LD Ry” to “USE Rz.”

4 REeLATED WORK

An obvious alternative to cloaking is register allocation,
which eliminates load and store instructions altogether.
However, register allocation is not always possible for
numerous reasons, ranging from fundamental limitations
(e.g., addressability) to practical considerations (e.g., regis-
ter file size, programming conventions, and legacy codes)
[14], [30]. Cloaking and bypassing are architecturally
invisible. As such, we may deploy them only when justified
by the underlying technological trade-offs. Moreover, they
may capture dynamic dependence behavior.

Numerous software and hardware address-prediction
techniques have been used to reduce load access latency,
e.g., [1],12],[3],[4], [9], [15], [27], [7]. Cloaking is orthogonal to
address-prediction-based techniques as it does not require a
predictable access pattern. A technique closely related to
cloaking is load value prediction [18], a special case of value
prediction [17], [10]. Cloaking does not directly predict the
loaded value, rather, it predicts its producer or another load
that also accessed the same location. This property may be
invaluable for programs with large data sets.

Moshovos et al. introduced RAW memory dependence
prediction for scheduling loads [20], [21]. Tyson and Austin
[29] and Moshovos and Sohi [22] introduced RAW-based
cloaking. The memory renaming proposal of Tyson and
Austin combines cloaking with value prediction. Lipasti’s
Alias prediction [16] is also similar to cloaking. Moshovos
and Sohi proposed RAW-based speculative memory by-
passing [22]. Jourdan et al. proposed a method [12] where
address information and prediction is used to eliminate
loads and to increase coverage. Reinman et al. investigated
a software-guided cloaking approach [25] and compared
various load latency reduction techniques [24].

5 EVALUATION

In this section, we present experimental evidence in support
of the utility of the technique we propose. We use a two step
approach. Initially, we investigate cloaking and bypassing,
ignoring timing considerations. This allows us to study
cloaking and bypassing without having to be concerned
with side effects introduced by their interaction with other
execution techniques. Once we have studied the potential of
cloaking and bypassing, we then consider how a particular
implementation performs.

The rest of this section is organized as follows: In
Section 5.1, we describe our methodology. The first step in
using cloaking is that of building dependence history. For
this reason, in Section 5.2, we measure the fraction of
memory dependences observed as a function of DDT size.
In Section 5.3, we investigate an aggressive cloaking
mechanism and study its accuracy. In Sections 5.4 through
5.6, we present a characterization of the speculated loads.
We consider their address and value locality characteristics
and also measure the instruction distance between depen-
dent loads and stores. In Section 5.7, we measure the
performance impact of a combined cloaking and bypassing
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mechanism. We also compare it to load value prediction
and study a combined mechanism.

5.1 Methodology

For our experiments, we have used the SPEC’95 programs.
We compiled these programs for the MIPS-I architecture
[13] using the GNU gcc compiler version 2.7.2 (flags: -O2 -
funroll-loops -finline-functions). For FORTRAN codes, we
used AT&T’s f2c compiler to convert them to C. In order to
attain reasonable simulation times we: 1) modified the
standard train or test inputs and 2) used sampling for some
programs [5], [23], [32]. Table 1 reports the dynamic
instruction count, the fraction of loads and stores, and the
sampling ratio per program. We used sampling only for the
timing experiments of Section 5.7. We did not use sampling
for 099.go, 126.gcc, 130.1i, 132.ijpeg, 147.vortex, 107.mgrid,
and 141.apsi. For the rest of the benchmarks, we chose
sampling ratios that resulted in roughly 100M instructions
being simulated in timing mode (i.e., sample size). In all
sampling simulations, the observation size is 50,000
instructions. We report sampling ratios under the “SR”
columns as “timing:functional” ratios. For example, a
1:2 sampling ratio amounts to simulating 50,000 instruc-
tions in timing mode and then switching to functional
simulation for the next 100,000 instructions. During the
functional portion of the simulation, the following struc-
tures were simulated: I-cache, D-cache, and branch predic-
tion. In our evaluation, we will refer to the benchmarks by
using the first numbers of their name shown in Table 1.
The simulators we used are modified versions of the
Multiscalar timing simulator [5]. This simulator uses event-
driven simulation for both the processor core and the
memory system. Our base processor is capable of executing
up to eight instructions per cycle and is equipped with a
128-entry instruction window. The processor is pipelined
and it takes five cycles for an instruction to be fetched,
decoded, and placed into the instruction scheduler. It takes
one cycle for an instruction to read its input operands from
the register file once issued. Integer functional unit latencies
are one cycle except for multiplication (four cycles) and
division (12 cycles). Floating-point functional unit latencies
are as follows: two cycles for addition/subtraction and
comparison (single and double precision or SP/DP),
four cycles SP multiplication, five cycles DP multiplication,
12 cycles SP division, 15 cycles DP division. A 128-entry
load/store scheduler (load/store queue) capable of sche-
duling up to four loads and stores per cycle is used to
schedule load/store execution. It takes at least one cycle
after a load has calculated its address to go through the
load/store scheduler, which implements naive memory
dependence speculation [21]. That is: 1) A load may access
memory even when there are preceding stores that have yet
to calculate their address, 2) a load will wait for preceding
stores that are known to write to the same memory location,
and 3) stores post their address even when their data is not
yet available. Previous work has shown that memory
dependence speculation can have a significant impact on
base performance [8], [21], thus impacting the relative
importance of any load value speculative technique (the
results of Fig. 11 in Section 5.7.2 support this observation).
We have found that, for our centralized window processor
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Fig. 5. Fraction of loads that have RAW or RAR dependences as a function of dependent detection table size. Range is 32 to 2K entries in steps that
are powers of two. (a) Per program results. (b) Average over integer, floating-point, and all programs.

model, naive memory dependence speculation offers
performance very close to that possible with ideal specula-
tion. The base memory system is comprised of:

1. a 128-entry write buffer,

a nonblocking 32Kbyte/16 byte block/4-way inter-
leaved /2-way set associative L1 data cache with two
cycle hit latency,

3. a 64K/16 byte block/8-way interleaved/2-way set
associative L1 instruction cache with two cycle hit
latency,

4. a unified 4Mbyte/8-way set associative/128 byte
block L2 cache with a 10 cycle hit latency, and

5. aninfinite main memory with 50 cycles miss latency.
Miss latencies are for the first word accessed. Write buffers
of 32 blocks each are included between L1 and L2 and
between L2 and main memory. Additional words incur a
latency of one cycle (L2) or two cycles (main memory). All
write buffers perform write combining and hits on miss are
simulated for loads and stores. For branch prediction, we
use a 64-entry call stack and a 64k-entry combined predictor
that uses a 2-bit counter selector to choose among a 2-bit
counter base and a GSHARE predictor [19]. In our
experiments of Sections 5.2 through 5.7, we use various
cloaking/bypassing configurations. The exact configura-
tions are detailed as needed in each section.

As per the original cloaking and bypassing proposal, in
all experiments, we used a level of indirection to represent
and predict multiple RAW and RAR dependences (i.e.,
synonyms) per load and store. Instead of using the full
merge algorithm assumed by Moshovos and Sohi [22], we
used the incremental algorithm Chrysos and Emer pro-
posed in the context of memory dependence speculation/
synchronization [8]. These methods attack scenarios where
a dependence is detected between loads or stores that have
different synonyms already assigned. For example, consider
the following sequence:

ST; A,LD; A, ST, B,LD, B,ST; C,LD, C.

Initially, ST; and LD; will be assigned a synonym, say X,
because they both access address A. Then, ST, and LD, will
be assigned a different synonym, say Y, because they access
address B. When the (ST, LD,) dependence is encountered,
the two instructions have different synonyms already
assigned to them. In the original cloaking proposal, one of
the two synonyms is selected (e.g., X) and all instances of
the second one (e.g., Y) are replaced in the DPNT. In this
case, the synonyms for both LD; and ST, will be updated.
This action requires an associative lookup/update in the
DPNT. Chrysos and Emer proposed just replacing the
synonym of largest value and only for the corresponding
instruction. In our example, if X > Y, then the synonym for
ST, and only for ST; will be set to Y. This delays updating
the entries for ST; and LD; until the corresponding
dependences are encountered again. Because of the bias in
the synonym selection, eventually all relevant instructions
will be given the same synonym. We note that this
algorithm resulted in accuracy that was virtually identical
to that possible with full merging. Finally, we did not
provide explicit support for dependences between instruc-
tions that access different data types. We did so as such
dependences are rare in the SPEC95 benchmarks. This
might not be the case for other programs. Potential support
for such dependences is discussed in the original RAW-
based cloaking and bypassing proposal [22].

5.2 Memory Dependence Detection
In this section, we measure the fraction of memory
communication and data-sharing activity that is visible
with various DDT sizes. These measurements provide a
first indication of the fraction of loads that can obtain a
speculative value via cloaking. Fig. 5 reports the fraction of
dynamic (committed) loads with detectable RAW or RAR
dependences as a function of DDT size (range is 32 to
2K entries). Shown is the total number of loads with
dependences (gray shaded area) and a breakdown in terms
of the dependence type (RAW or RAR).

As shown by the averaged results (Fig. 5b), a large
fraction of loads get their value via a dependence that is
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shown.

visible even with the smaller DDTs. Overall, dependences
are more frequent for the integer codes. The relative
fractions of RAR and RAW dependences, and, for this
reason, their potential importance, are dissimilar for the two
classes of programs. In integer codes and for the smaller
DDT sizes, RAW dependences are almost twice as frequent
as RAR dependences. In the floating-point codes, the roles
are almost reversed. It seems that Fortran codes are
dominated by a large number of variables with long
lifetimes that are not register allocated. As we move toward
larger DDT sizes, more RAW dependences are detected.
While RAR dependence frequency also increases for DDTs
of up to 512 entries, virtually no increase is observed for
larger DDTs. We even observe a decrease in RAR
dependence frequency between 1K and 2K DDTs for some
floating-point codes. The increased frequency of RAW
dependences is the cause: Some of the RAR dependences
are among loads that also have a RAW dependence with a
distant store. When smaller DDTs are used, the store is
evicted from the DDT due to limited space.

The results of this section suggest that a DDT of
moderate size (e.g., 128 entries) can capture dependences
for a large fraction of loads (roughly 70 percent and
60 percent for the integer and floating-point programs,
respectively). Moreover, we have seen that the fraction of
loads that have a visible RAR dependence but no visible
RAW dependence is significant. For example, with the 128-
entry DDT, these fractions are 25 percent (integer) and
40 percent (floating-point). For the rest of the evaluation, we
focus on configurations that use a 128-entry DDT. We have
found that this table yields accuracy close to and often
better than that achieved with larger DDTs.

5.3 Cloaking Coverage and Miss-Speculation Rates
In this section, we measure the accuracy of two cloaking
predictors. We use two metrics: coverage and miss-speculation
rate, both measured as a fraction over all executed loads. We

define coverage as the fraction of loads that get a correct
value via cloaking. The complement of coverage is the miss-
speculation rate, which is the fraction of loads that get an
incorrect value. For the purposes of this study, we assume
infinite DPNTs and evaluate predictors with the following
two confidence mechanisms: 1) nonadaptive 1-bit and 2) a
2-bit automaton. The second confidence mechanism enables
cloaking as soon as a dependence is detected. However,
once a misprediction is encountered, it requires two correct
predictions before allowing a predicted value to be used
again. We include results for the nonadaptive predictor as it
provides a rough upper bound on coverage (once a
dependence is detected, it will always try to use cloaking).

Fig. 6 reports cloaking coverage (Fig. 6a) and mispredic-
tion rates (Fig. 6b). A breakdown in RAW (gray) and RAR
(white) dependences is also shown. Focusing on coverage,
we observe that, on the average, RAR dependences offer
roughly an additional 20 percent (integer) and 30 percent
(floating-point) of correctly speculated loads. We also
observe that only a minor loss in coverage is incurred
when the adaptive predictor is in place. As the results on
miss-speculation rates (Fig. 6b) show, this loss comes at the
benefit of a drastic reduction in miss-speculations. Also
shown is a breakdown in terms of the dependence that
causes the misprediction (i.e., the source of the value). RAW
dependences are shown with the black bars while RAR
dependences are shown with the white bars. Their sum,
being the overall miss-speculation rate, is shown in gray
(note the Y scale is logarithmic in this graph). We can
observe that, for the integer codes, RAR miss-speculations
are frequent and, in some cases, even more frequent than
RAW dependences. This suggests that RAW dependences
are more regular than RAR dependences in the integer
codes. For the floating-point programs, RAR dependences
are either the sole source of miss-speculations or they cause
as many miss-speculations as RAW dependences do.
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Fig. 7. (a) Address locality breakdown. (b) Value locality breakdown.

However, it should be noted that, for most floating-point
programs, RAR dependences are also responsible for most
of the loads that are correctly communicated. On average,
the adaptive predictor reduces miss-speculations by almost
an order of magnitude compared to the nonadaptive
predictor. The miss-speculation rates are 2 percent, 0.35 per-
cent, and 1.01 percent for the integer, floating, and all
programs, respectively. From that, 1.1 percent, 0.17 percent,
and 0.54 percent (percentage of loads) comes from RAW
dependences. In the rest of the evaluation, we will focus on
cloaking mechanisms that use the adaptive predictor.

5.4 Address Locality Measurements

We next measure the address locality of the loads that get a
correct value via cloaking. We define address locality as the
probability that a load instruction accesses the same address
in two consecutive executions. We present these measure-
ments to offer additional insight on the type of loads that
are correctly handled by cloaking. The results are shown in
Fig. 7a. The left bar represents the fraction of all loads that
exhibit locality, while the right bar represents the fraction
of loads that get a correct value via cloaking. We break
down the loads that exhibit address locality into three
categories, depending on whether they have a RAW,
RAR, or no dependence detected by our 128-entry DDT.
We can observe that many loads covered by cloaking do
not exhibit address locality. We can also observe that,
with the exception of 145.fpppp, there are very few loads
that exhibit address locality but do not also have a

dependence (145.fpppp exhibits similar behavior if a
larger DDT is used).

5.5 Value Locality and Value Prediction
Measurements

In this section, we measure the value locality of loads and
its relation to cloaking coverage. We also compare the
accuracy of a stride-based value predictor with that of our
cloaking/bypassing mechanism. We do so as value predic-
tion can also be used to allow loads to obtain their value
early, possibly earlier than cloaking would allow. Fig. 7b
reports the fraction of loads that exhibit value locality
alongside of a breakdown of loads that get a correct value
via cloaking. Following the widely used definition of value
locality, this includes those dynamic loads that read the
same value as they did last time they were encountered. As
in the previous section, we provide a breakdown of the
loads that exhibit value locality based on whether they have
a dependence detected. For most programs, cloaking
coverage is higher than value locality. Value locality is
higher for 132.ijpeg, 104.hydro2d, 110.applu, and
125.turb3d. Moreover, cloaking covers more of the loads
with dependences. This phenomenon is more pronounced
for those loads that experience RAW dependences where
cloaking coverage is sometimes twice the fraction of loads
that exhibit value locality. However, in some cases, quite a
few loads exhibit value locality, but are not predicted by
cloaking. These observations suggest a potential synergy of
the two techniques.
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incorrect value.

We next compare a value predictor and a cloaking
mechanism, both utilizing finite resources. For this experi-
ment, we simulate a fully associative stride-based predictor
with 16K entries. The cloaking mechanism we use has a
16K DPNT, a 128-entry DDT, and a 2K synonym file. All
structures are assumed to be fully associative. Fig. 8 reports
the resulting coverage (Fig. 8a) and miss-speculation rates
(Fig. 8b). The value prediction results are shown by the
black left bar, while the cloaking prediction results are
shown by the right gray bar. Fig. 8a shows that cloaking
offers better coverage than value prediction for most
programs. Similar trends are seen by miss-speculations.
Cloaking experiences less miss-speculations than the value
prediction for all programs except 129.compress and
146.waveb.

Of course, these results cannot be generalized; different
or larger predictors may improve value prediction (and
cloaking) and the performance impact of each technique can
only be judged when timing is considered. Even so, these

results suggest that cloaking provides a way to obtain load
values early for a significant fraction of loads that do not
exhibit value locality. This observation hints at a potential
synergy between the two techniques. To better understand
how value prediction and cloaking/bypassing relate, we
measured the fraction of loads that get a correct value from
cloaking/bypassing but not from value prediction and vice
versa. The results are shown in Table 2. We also present a
breakdown of the values obtained via cloaking/bypassing
in terms of the dependence type. We can observe that,
indeed, for most programs, value prediction captures some
loads that cloaking/bypassing does not and vice versa.
Moreover, for most programs, the fraction of loads correctly
predicted only via cloaking/bypassing is higher than the
fraction of loads correctly predicted only via the value
predictor. A potential advantage of memory dependence
prediction is that it relies on regularities in the instruction
stream. This may be important when the working set of
values is relatively large.

TABLE 2
Fraction of Loads that Get a Correct Value from Cloaking/Bypassing and
Not from a Value Predictor (“Cloaking/Bypassing” Columns) and Vice Versa (“VP” Columns)

i VP teparid ve

099 29.18% 5.29% 101 25.58% 0.24%
124 24.85% 1.88% 102 26.41% 0.37%
126 24.04% 8.01% 103 33.08% 2.67%
129 42.18% 0.22% 104 431% 49.94%
130 32.17% 6.14% 107 2.77% 2.60%
132 13.93% 11.24% 110 11.46% 12.60%
134 23.29% 7.82% 125 2.82% 41.94%
147 32.85% 5.03% 141 13.34% 9.67%

145 40.34% 18.17%

146 22.92% 5.94%
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Fig. 9. Cumulative dynamic instruction distance distribution between source instruction and loads that get a correct value via cloaking. Range is four

to 16K instructions. Samples are taken at the following distances: 4, 16,

(b) Averaged measurements.

5.6 Dynamic Instruction Distance Distribution

In this section, we measure the distance in dynamic
instructions between the loads that get a correct value via
cloaking and the source instruction that supplied that value.
This measurement provides additional insight on the nature
of load values that our mechanisms handle. Fig. 9 reports
the fraction of loads that get a correct value via cloaking as a
function of dynamic instruction distance. The range shown
is four to 16K instructions and samples are taken at
distances that are powers of four. Fig. 9a reports the per
program measurements, while Fig. 9b reports averaged
measurements for the integer, floating-point, and all
programs.

As can be seen by the results of Fig. 9b, for 50 percent of
all correctly communicated loads, the source of the value is
within 64 instructions. This result provides an upper bound
on the fraction of loads that could also benefit from
bypassing in a 64-instruction window processor. This
percentage rises to roughly 75 percent when we consider
distances of up to 256 instructions. It can also be seen that
about 15 percent of all correct values correspond to
dependences that span more than 1K instructions. For
some programs (e.g., 129.compress and 107.mgrid), about
10 percent of all correct values correspond to dependences
that even exceed 16K instructions. This result suggests that
even the relatively small detection table we used is capable

64, 256, 1K, 4K, and 16K (powers of 4). (a) Per program measurements.

of capturing memory communication that spans large
regions of the dynamic instruction stream.

5.7 Performance Impact

In this section, we evaluate the performance impact of a
combined cloaking and bypassing mechanism. We do so
by simulating a dynamically scheduled ILP processor,
measuring its performance with and without a cloaking/
bypassing mechanism. Furthermore, we evaluate the
performance impact of our RAR-based extension over
the original RAW-based cloaking/bypassing. The rest of
this section is organized as follows: In Section 5.7.1, we
describe the cloaking/bypassing mechanism we simu-
lated. In Section 5.7.2, we measure how performance varies
when cloaking/bypassing is used for two miss-speculation
handling models. We also measure the improvements
obtained by augmenting cloaking/bypassing with our
RAR memory dependence-based techniques.

5.7.1 Configuration

The cloaking/bypassing mechanism we used is comprised
of: 1) a 128-entry fully-associative DDT with word
granularity, 2) an 8K, 2-way set-associative DPNT, and,
finally, 3) a 1K, 2-way set associative synonym file. Fig. 10a
illustrates how the various components of the cloaking/
bypassing mechanism are integrated in the processor’s

update
synonym | REG | V
DPNT SF e pdate DDT
r Y i &
PC predict
Veri Y
SRT 2
Decode v Synonym physical
Fetch & —{ Schedule —»{ Execute Commit register
Rename

(a)

(b)

Fig. 10. (a) An out-of-order processor pipeline with a cloaking/bypassing mechanism. (b) The Synonym Rename Table (SRT).



324

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002

15% =

|

0%

-5%

[h o 1S hh’fﬂ1-

° 1111: ? o

[T]1

-10%

5%
-15%
> ™
Q%g &P P S \"‘/\

M Selective/RAW [ Selective / RAW + RAR

Harmonic Mean for Selective Invalidation:
RAW: INT: 4.28%, FP: 3.20%, ALL: 3.68%

N O XA QO H N o o
ORSARSIRS RIS

(@)
[ Squash/RAW [ Squash/RAR

RAW + RAR: INT 6.44%, FP: 4.66%, ALL: 5.44%

25%

20%

15% |

Tliifﬁi[{E

0%

10% ]] I' i
o

5%
D ™ 0 O O & o»
STLPEIFY

NG ONXA QO HL N O
SIS IP

(b)

g

Fig. 11. (a) Performance of RAW and RAW+RAR cloaking/bypassing. Two miss-speculation mechanisms are simulated: selective invalidation and
squash invalidation (see text). (b) Speedup over a processor that does not use memory dependence speculation. Left dark bar: RAW cloaking/

bypassing. Right gray bar: RAW+RAR cloaking/bypassing.

pipeline. Dependence detection occurs when loads or stores
commit by accessing the DDT. DPNT updates also occur at
commit time. Dependence predictions are initiated as soon
as instructions enter the decode stage. At most eight
predictions can be made per cycle and at most eight
instructions can be scheduled for cloaking or bypassing per
cycle. Moreover, no data type information is used for
cloaking /bypassing purposes.

For the purposes of bypassing, we introduce the synonym
rename table (SRT). This is a synonym-indexed table that
maps synonyms to physical registers. Recall that, in
bypassing, we directly link consumers with the actual
producer of values passed through memory, completely
bypassing the intervening memory operations. As shown in
Fig. 10b, an SRT entry is comprised of: 1) a valid bit, 2) a
synonym identifier, and 3) a physical register identifier. The
physical register identifier points to the target register of the
actual producer of a synonym mapped value. In the case of
RAW-bypassing, this is the source register of the store,
while, in RAR-bypassing, it is the target register of the first
among the RAR-dependent loads. SRT entries are allocated
for loads and stores that are predicted as synonym
producers. Loads that are predicted as synonym consumers
inspect both the SRT and the synonym file in parallel to
determine the current location of the appropriate synonym.
If an entry is found in the SRT, the synonym resides in the
physical register file (or in a reservation station) as the
corresponding load or store has yet to commit. Otherwise,
the synonym resides in the synonym file. In our simula-
tions, we have modeled a fully associative SRT. Other
organizations are possible.

The final piece of the cloaking/bypassing mechanism is
responsible for: 1) verifying speculatively communicated

values and 2) recovering from miss-speculations. Miss-
speculations are signaled only when an instruction has
actually read and used an incorrect value. For the purposes
of this evaluation, we have experimented with two miss-
speculation recovery mechanisms. The first is selective
invalidation [16], [26]. This mechanism reexecutes only those
instructions that used incorrect data. The second is squash
invalidation and works by invalidating all instructions
starting from the one that was mispeculated. These
instructions have to be refetched from scratch. We also
experimented with an oracle mechanism that does not
speculate when this would result in miss-speculation. We
found that selective invalidation offers performance similar
to such a mechanism.

A challenge shared by most value speculative techniques
is data speculation resolution, that is, how quickly we can
establish that speculative values are correct. Furthermore,
as also reported in [28], care must be taken to avoid
destructive interference with other prediction techniques,
especially branch prediction. In this study, we assumed the
ability to resolve all speculation in a register dependence
chain as soon as its input values are resolved. Whether such
a mechanism is practical is still an open question. Finally, in
order to avoid interfering with branch prediction, we
disallow control resolution on branches with value spec-
ulative inputs.

5.7.2 Performance with a Cloaking/Bypassing
Mechanism

Fig. 11b shows how performance varies when cloaking/

bypassing is used. Reported is the speedup or slowdown

with respect to the base processor that uses no cloaking/

bypassing. Four bars are shown. The two on the left are
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with selective invalidation. The dark bar is for the original
RAW-based techniques, while the gray bar is for the
extended mechanism we propose. The other two bars
report performance with squash invalidation (gray for
RAW-based and white for RAW+RAR-based cloaking).
Using squash invalidation rarely results in performance
improvements. Alternative confidence mechanisms [6], [29]
could potentially improve performance under this config-
uration. However, such an investigation is beyond the
scope of this paper. In contrast to squash invalidation,
speedups are observed for all programs when selective
invalidation is used. Comparing RAW-based cloaking/
bypassing with our proposed RAW+RAR-based mechan-
ism, we observe that, for most programs, further improve-
ments are attained. In some cases, the improvements are
significant in absolute terms. In relative terms, the addi-
tional improvements are considerable, especially when we
take into account the small cost associated with extending
the original RAW-based cloaking/bypassing with RAR
prediction. On the average, performance improvements
are up to 6.44 percent (integer) and 4.66 percent (floating-
point) from 4.28 percent and 3.20 percent, respectively. An
anomaly is observed for two cases where our extended
mechanism results in somewhat lower performance. The
primary cause of this anomaly is that we use a common
DDT for both RAW and RAR dependences. As a result,
some RAW dependences are not detected by the combined
DTT because stores get evicted by more recent loads.

In Fig. 11b, we report speedups for a configuration that
does not speculate on memory dependences. In this case,
loads wait for all preceding stores to calculate their address
(see Section 5.1). We do so for completeness and as most
studies in value speculative techniques assume such a
configuration. Two bars are shown per benchmark. The left
dark one is for the original RAW cloaking/bypassing, while
the right gray one is for the combined RAW and RAR
mechanism. It can be seen that, in most cases, speedups are
significantly higher (often double) compared to Fig. 11,
where the base processor uses memory dependence
speculation (see Section 5.1). There are cases where the
speedup is lower. In those cases, other instructions (e.g.,
loads not speculated) dominate performance. This experi-
ment demonstrates that the use of memory dependence
speculation greatly impacts the performance impact of our
load value speculative techniques.

6 CONCLUSION

In this work, we have identified that typical programs
exhibit highly regular RAR memory dependence streams.
For most programs, more than 80 percent of all loads
with an RAR dependence experienced the same RAR
dependence as the last time they were executed. This
property facilitates history-based RAR memory depen-
dence prediction. We exploited this prediction to develop
two memory latency reduction techniques: RAR-based
cloaking and bypassing. An advantage of our techniques
is that they can be implemented as small extensions to
the original, RAW-dependence-based mechanism. More-
over, we studied the performance impact of the resulting
mechanism.

Our results showed that, on the average, our RAR
extensions provide correct speculative values for an addi-
tional 20 percent (integer codes) and 30 percent (floating-
point codes) of all loads. This increase is significant
compared to the 45 percent (integer codes) and 15 percent
(floating-point codes) of loads that get a correct speculative
value via the original, RAW-dependence-based cloaking
and bypassing. We studied the performance of the resulting
mechanism and its interaction with two miss-speculation
handling techniques and found that selective invalidation is
necessary for the given predictor. We observed average
speedups of 6.44 percent (integer) and 4.66 percent
(floating-point). For the same configuration, the speedups
of the original RAW-based cloaking /bypassing are 4.28 per-
cent and 3.20 percent, respectively. These improvements
come at virtually no cost as no significant changes are
required over the original RAW dependence-based cloaking
and bypassing. When we used a base configuration that
does not use memory dependence speculation, our techni-
ques yield speedups of 9.8 percent (integer) and 6.1 percent
(floating-point). We also found that the combined RAW-
and RAR-dependence-based speculative memory cloaking
and bypassing mechanism offers, in most cases, superior
accuracy and performance compared to stride-based load
value prediction.

Future research may focus on optimizing the naive, first-
cut predictors we used in this study. Another direction
stems from viewing memory as a primitive for synthesizing
elaborate actions. In this work, we considered the two most
primitive actions synthesized through memory: 1) inter-
operation communication and 2) data sharing. Further
investigation may identify other, more elaborate actions
memory is used for. It may be possible to develop
mechanisms to perform these actions faster. Finally, the
techniques we propose might be useful in the context of
explicitly parallel systems.
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