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The Goddard memory-integral expansion for the stress tensor of viscoelastic fluids differs from
previous expansions in that it uses a deformation rate referred to a co-rotating reference frame. It is
shown how to get the kernel functions in the Goddard series in terms of the structural parameters
occurring in the kinetic theory of macromolecular solutions. That the series has much better
convergence properties than previously used expansions is demonstrated by comparison with exact
kinetic theory results for steady-state shear flow and elongational flow.

I. INTRODUCTION

In the earliest researches on the kinetic theory of
macromolecules, investigators had the limited objective
of obtaining the stress components for specialized simple
flows, such as steady state shear flow or small-ampli-
tude oscillatory motion. Then in 1956 Lodge! succeeded
in obtaining the complete expression for the stress ten-
sor in terms of the kinematic history (i. e., the “rheo-
logical equation of state” or “constitutive equation”) for
a network model describing concentrated polymer solu-
tions or melts. At about the same time Giesekus? and
Prager® made the pioneering attempts to obtain the con-
stitutive equation for a dilute solution of rigid macro-
molecules, using the rigid-dumbbell model. They con-
sidered only homogeneous flows which are slowly vary-
ing in time and obtained the coefficients of the first few
terms in the “retarded-motion expansion” for the stress
tensor in terms of the structural parameters of the mod-~
el. Then more recently it was shown? how to express
the rigid-dumbbell kinetic-theory results in terms of an
Oldroyd model. In addition Armstrong and Bird®®
showed how to obtain kinetic theory expressions for the
first few kernel functions of the covariant convected
memory-integral expansion developed by Green, Rivlin,
and Spencer, 8 Coleman and Noll, ® and Pipkin'® (we
shall refer to this as the GRSCNP expansion). In this
paper we show that the Goddard!* memory-integral ex-
pansion is potentially more useful for presenting kinetic
theory results.

We consider the flow of an incompressible fluid with
velocity field v(r,?). We use the following kinematic

tensors:
¥ =Uv+ (Vv) =rate of deformation tensor (1)
w = Vv - (Vv)' = vorticity tensor (2)
=1[v % v]=angular velocity vector . (3)

Note that w,,=25,€,,;w;, that (Vv);;=(8/8x;)v;, and that
T denotes the transpose.

Kinetic theory equations have customarily been for-
mulated and solved for an observer translating (but not
rotating) with a fluid particle. Here, however, we wish
to formulate the equations for an observer translating
with a fluid particle and rotating with angular velocity
equal to the local fluid angular velocity vector w= ifv
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xv]. Provided both observers solve their kinetic equa-
tions completely, they will of course obtain equivalent
answers. If, however, they perform perturbation solu-
tions we shall see that their respective expansions have
very different convergence properties. Let us endow
both the translating and the rotating observer with a set
of mutually orthogonal unit vectors (8;, 55, 63 and §;,
52, 83, respectively) which they use as basis for resolv-
ing vectors and tensors into their components. The two
sets of vectors coincide at the present time £, and are
at other times ¢’ related by the orthogonal matrix func-
tion Q;,=Q;(t,¢") as follows:

gi(t'):jZQU bj - (4)

(Note: Goddard and Miller'? used a rotation tensor Q:,
related to our matrix elements by Q% =3;5,Q,:58:5;.)
The time rate of change of §,(¢’) following a fluid par-
ticle is
D

o 8= Wit x8]= - 3lw(t) 5] . (5)

Then from Eqs. (4) and (5) we obtain the following dif-
ferential equation for the @;;:

1 -

7 Q=5 2 Qnwnlt), (6)
m

with @, =6, att'=¢.

By standard rules for transformations under a change
of reference frame!®!* it follows that the components of
the stress tensor, the rate of deformation tensor, and
the vortlclty tensor as seen by the rotating observer
(that is, 'ri,, Vi » wi,) are related to those seen by the
nonrotating observer (7, 'y”, w;;) as follows:

zjzz Z Qimeanny (7)

5523 Qi mn@ia= Ty, 1), 8)

(;.')”: ZQim(zwanjn*'zD_,;l_Qjm) =0, (9)

The fact that c;,-j =0 follows directly from Eq. (6); hence
to the rotating observer the entire flow history appears
to be irrotational. If the rotating observer performs a

Copyright © 1974 American Institute of Physics

Downloaded 19 Apr 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Abdel-Khalik, Hassager, and Bird: Solutions of rodlike macromolecules 4313

solution of his kinetic theory equations to obtain T,,(t)
terms of the history of 'y,,(t ) (with — w<t'<t#), this
solution may be expressed in the nonrotatmg frame sim-
ply by replacing T,, {t) by 744(t), and 'y“(t )by I i, th.
This procedure has the advantage thatthe resulting equa-
tion automatically will be a properly formulated'® con-
stitutive equation, whereas the fixed observer may have
to recast his equation somewhat in order for his result
to have a form which clearly satisfies all invariance re-
quirements. This is particularly true when a perturba-
tion expansion is performed; for example see the re-
arrangement performedin going from Eq. {22) to Egs.
(3), (23)-(26) in Ref. 6.

Il. KINETIC THEORY RESULTS FOR DILUTE
SOLUTIONS OF RIGID, RODLIKE MACROMOLECULES

For the purpose of studying the rheological behavior
of rigid rodlike macromolecular solutions, we idealize
the macromolecule as a rod of length L with N beads
uniformly distributed over its length. Each bead has a
friction coefficient ¢ and there are ny macromolecules
per unit volume. Hydrodynamic interaction, bending
of the macromolecule, and excluded volume effects are
neglected. The solution is presumed to be very dilute
so that macromolecule~macromolecule interactions may
be neglected, and the solvent is Newtonian and incom-
pressible, with viscosity 7,. The structural parame-
ters ¢ and L will always appear in the grouping

¢LENW +1)
72(N - D)RT

which is a time constant for the macromolecular solu-
tion.

A= (10)

It was shown by Armstrong and Bird® how the kinetic
theory equations for the above model can be solved for
arbitrary time-dependent flows' by means of a succes-
sive-approximation process involving perturbation
around the equilibrium state. Now the entire develop-
ment of Armstrong and Bird can be repeated with the
observer in a coordinate frame rotating with the local
angular velocity of the fluid. As mentioned in the pre-
vious section it is then necessary to solve the kinetic-
theory equations only for time-dependent, irrotational
flows. This means then that Eq. (22) of Ref. 6 can be
taken over directly by reinterpreting all tensor compo-
nents as being referred to a local co-rotating frame.
Of course, in adopting this interpretation, steady-state
shear flow v,=v,(y) as viewed by an observer fixed in
space corresponds to a two-dimensional, large-ampli-
tude, oscillatory irrotational flow as viewed by an ob-
server going with the fluid and rotating with it.

When the Armstrong-Bird stress tensor expression,
Eq. (22) of Ref. 6, is taken over in this way we obtain:

‘r='r,—n0ka[ 1"+— J' exp(—L—)r dat’

T35

9 ¢
waox [ J e=(-

t - © - L .
exp(— %i)(l"-r’+1'"~1")dt'

)

X(f\l.full+fll.r.l)dtlldtl +.”] (11)

in whlch 1’ is the solvent contr1but10n to the stress ten-

sor, l"i, ylt,8)= Yu (£), and I‘,,_l",,(t t') are defined
in Eq. {8). The complete third-order term can be writ-
ten down by analogy with Eq. (22) of Ref. 6; in that
equation, however, the erroneous coefficient 27/280
must be replaced by the correct value 27/980. Equa-
tion (11), including the third-order terms, and Eq. (29)
of Ref. 6 give identical results up through terms cubic
in the rate of deformation.

{Il. THE GODDARD EXPANSION

By using techniques similar to those employed by
previous investigators, ™!° Goddard!' showed that for an
incompressible, isotropic viscoelastic fluid the stress
tensorucan be expanded in a memory-integral expansion
using I' as a kinematic tensor. This expansion, through
third order, is

¢ °
-r=—f Gt -t)T' ar'

1t ot e e
‘EJ f Gt =4, 6 ") [ -7 4 P P at" at’

J’ff{zcm(t -t i =t"

+Gpylt - tl’ - t”, ‘o tlll)[fnl =f‘" . f|lll+ f.lnuf\n .fql]}

_ tln)f.l f.u . fwr

xat'at att - . (12)

Here G,(f - ') is identical to the “relaxation modulus”
used in linear viscoelasticity. By comparing Eqs. (11)
and (12) it is possible to obtain the expressions for the
kernel functions in terms of the structural parameters
of the rigid bead-rod model considered in Sec. II:

/ ~— Exact -
//@D ~=== Goddard
1.2 ~—-— GRSCNP

AN O R

Ay

FIG. 1. Comparison of the exact intrinsic viscosity (as com-
puted by Stewart and Sérensen!?) for solutions of rigid rodlike
macromolecules with the results obtained using a finite number
of terms of the Goddard and the GRSCNP expansions. The
number of integrals indicates the number of terms used in the
expansions.,
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FIG. 2. Comparison similar to Fig. 1, for primary normal
stress function 6(y).

Gt -t")=2n,00-1")

+ nokTA [46(15 -t')+ 3—\ exp (— —If—ii-)] (13)

5
G,,(t—t’,t—t"):’%’i)a [246(t—t')
t—t,’
+ gg(t', t")] exp (— 7\_) (14)

in which

1 for -w<t'"<¢t
I
glt',t )—{0 for t' <t <t

and the 5(s) is defined such that:

(15)

. J bls)ds =% andf 5(s)ds=1.
0 -

Hence the rigid-rod, multibead model can be put into the
form of the Goddard expansion.

The first term of the Goddard series with Eq. (13) for
G reproduces exactly all the linear viscoelastic kinetic
theory results for rigid macromolecular solutions, in-
cluding for example, 7' and #”'. It also gives the com-
plete results for the oscillatory primary normal stresses
(i.e., the amplitude functions 6’ and 6'’, and the dis-
placement function 6%). Use of the first two terms in the
Goddard series with Egs. (13) and (14) for G; and Gy,
reproduces exactly the results for the oscillatory second-

TABLE I. The material functions for steady shear flow of so~
lutions of rigid macromolecules as obtained from the Goddard
expansion [x = (9?1,

Contribution
due to term NNy
of order: nokRTA £ o TA 8 ageTa?
5 5

. 2,3 1 1 1.1

5 51+x 1+x 21+x

1 1

2 0 0 2742
3 375x +1335x% — 1444° ~ 3x +293%° 3x =293

175(1 +x)%(25 +9x) 35(1 +x)2(25 +9x)

70(2 +x)%(25 +9x)

TABLE II. The material functions for steady shear flow of so-
lutions of rigid macromolecules as obtained from the GRSCNP
expansion [x = (¥%)%].

Contribution

due to term of =7 _ 6 )
order: ngRTX é’— nole TH g' nokT)\2
1 1 1 -1
2 102 60 60
- . _ 8 1)
35 7 Lrigx
3 12 253452 , 262 175748 , 532 175748 ,
5% 6las © 357 875 35 %7 815 ¥

ary normal stresses (i.e., the amplitude functions g’
and 8"/, and the displacement function g8%). (See Ref.
16, Sec. 7 for a summary of kinetic theory results for
the oscillatory experiments. )

IV. COMPARISON OF THE GODDARD AND GRSCNP
EXPANSIONS

Once kinetic theory results are available they can be
used to evaluate the constants or functions which appear
in the various available constitutive equations. How-
ever, some constitutive relations may be more useful
than others in that they can be used to extend the re-
sults at least approximately to higher rates of deforma-
tion. In this section we compare the Goddard expan-
sion of Sec. II [or its equivalent in Eq. (11)] with the
GRSCNP expansion used previously by Armstrong and
Bird.® It will be seen that there is an immense dif-
ference in the behavior of these two expansions. This
was to be expected in view of Goddard’s comment that
his model for steady viscometric flows “gives higher
order terms for the material functions, each of which
is composed of a power of y multiplied by a Fourier in-
tegral of a hereditary function. On the other hand, the
expansions of Coleman and Noll, or of Green and Rivlin,
consist simply of a series in powers of y.” (See Ref.
11, p. 395). Here we present a comparison of the two
kinds of expansions for two flows: steady shear flow and
steady elongational flow.

e AR S
" _\E ——— Exact
08 I
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\

FIG. 3. Comparison similar to Fig. 1, for secondary normal
stress function 8¢
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FIG. 4. Comparison of the exact elongational viscosity (as computed from the results of Bird, Johnson, and Stevenson!®) for solu-
tions of rigid rodlike macromolecules with the results obtained using a finite number of terms of the Goddard and the GRSCNP ex-

pansions.

A. Steady shear flow

For the steady shear flow v,=yy, v,=v,=0, three
material functions 7, 6, and 8§ may be measured; these
functions of the shear rate y are defined by

‘ryx: - 77';’ ) (16)
Tax—Tyy=— 072, (17)
Ty,—‘T"=-—ﬁ-;l . (18)

For the rigid macromolecule model defined in Sec. II,
the functions 7y), 6ly), and 8(¥) have been computed by
Stewart and Sgrensen.'” Their computed results have
been shown in Figs. 1-3 as the solid curves. On the
same graphs are shown the curves which one obtains

by using a total of one, two, or three terms inthe mem-
ory integral expansions. Thekinematic tensors needed for
the two expansions are

y siny(t -t') v cosy(t-t') O

r'={ 5 cosy(t—¢t") -y siny(t—t') 0 (19)
0 0 )
TABLE III. Elongational viscosity for

solutions of rigid macromolecules as ob-
tained from the Goddard expansion [y

=2€].
Contribution due n=3n,
to term of order: 3ngkTA
1 1
3

2 7 y

9 .2
3 s

21 2
4 T

0 Y 0
y W=l y  -2y%-¢) O (20)
0 0 0,

Substitution of this I’ and G, Gy, --- into Eq. (12) give
the results shown for the Goddard series; substitution of
the above y®? and G,, G,, - -- from Egs. (23)—(26) (Ref.
6) into Eq. (3) (Ref. 6) give the results shown for the
GRSCNP series. It is clear that even the first few
terms of the co-rotational Goddard expansion give rather
good approximations to the exact curves over a wide
range of shear rates. The GRSCNP expansion gives re-
sults which are only about as good as the Kirkwood-
Plock power series expansion [see Eq. (24), or curve

B in Fig. 1 of Ref. 18; also Eq. (6.7) of Ref. 16].

The analytical results for the two memory-integral
expansions are summarized in Tables I and II.

TABLE IV, Elongational viscosity for solutions of rigid mac-
romolecules as obtained from the GRSCNP expansion [y =&l

Contribution 17 =31
due to term. 3ngkTA
of order:
2 3
[P  —
1 5 5@ +2y) (1)
. 56y +64y%  14y-—gy’
35(1 +29)(1 +4y) 35(1—4y)(1—2y)
3 y2(6840 +36528y +60576y° +36864y%)

35{1 +2y)(1 +3y)(1 +4y) (1 +64)(10 +12y)

%720 ~ 576y +2165%)
35(1 = ) (1 ~2y9) (1 ~3y) (10~ 6y)

+ 1293y +2)
7(1 = 9)(1 +2y)(1 +39)(10 +3y)
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B. Elongational flow

For steady elongational flow v,= Ez, V,= —-%éx, v,
= - €y, one material function, the “elongational vis-
cosity” 7, may be defined:

Tee— Tee=TE . (21)

For the rigid macromolecular model under considera-
tion, the function 7(€) has been calculated by Bird,
Johnson, and Stevenson.!® Their calculated results,
extended to negative elongation rates, are shown in Fig.
4 as the solid curves. On the same graphs are shown
the curves which are obtained by using one, two, or
three terms in the two memory-integral expansions,
with the following kinematic tensors:

-1 0 ©
Ir'-{o -1 0]¢ (22)
0 0 2
~exp&lt —t') 0 0
yttl= 0 —expé(t -t 0 €
0 0 2exp[-2€(t -t")]

(23)
The Goddard expansion is term by term identical to the
power-series expansion in reE [see Eq. (16.5) of Ref.
16]. Once again it is evident that the Goddard series is
an improvement over the GRSCNP expansion. The
analytical results corresponding to Fig. 4 are sum-
marized in Tables III and IV.

V. CONCLUSIONS

(1) If one can solve the kinetic theory equations to ob-
tain the stress tensor for an arbitrary time-dependent
irrotational flow, the constitutive equation for arbitrary
flows can be written down at once [cf. Eq. (11)]. This
suggests that more efforts should be directed towards
the solution of kinetic-theory equations for time-depen-
dent irrotational flows.

(2) The Goddard series is seen to be more useful than
the GRSCNP series for presenting macromolecular
kinetic theory results, since the former has better con-
vergence properties.

(3) Since the kinetic theory model used here is known
to exhibit qualitatively many of the properties of real
fluids, the Goddard series should be more useful for ap-
plied hydrodynamic calculations than the GRSCNP
series. ¥

Note added in proof: Althoughthe modified Oldroyd ex-
pansion in Ref. 4 gives the viscosity and other steady-

state material functions correctly through third order,
the viscosity function is not realistic for all shear rates.
Specifically one obtains

[n] 1715 -1792 (A7) +128 (Ay)*

nl, 1715-910 (A7 ¥ - 880 (A7 )¢

which behaves improperly.
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