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Time-Scale Detection of Microemboli In
Flowing Blood with Doppler Ultrasound
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Abstract—Small formed elements and gas bubbles in flow- Without proper emboli detection, major medical complica-
ing blood, called microemboli, can be detected using Doppler tions can occur, including strokes and even death. Because
ultrasound. In this application, a pulsed constant-frequency ultra- they are highly nonstationary, embolus detection based on
sound signal insonates a volume of blood in the middle cerebral . 2 , .
artery, and microemboli moving through its sample volume t|me-frequency representano_n_s (TFR’s) have been co_nsu_jered.
produce a Doppler-shifted transient reflection. Current detection methods utilize the spectrogram, which is the

Current detection methods include searching for these tran- squared magnitude of the short-time Fourier transform (STFT),
sients in a short-time Fourier transform (STFT) of the reflected or the Wigner distribution [5] to detect embolus transients
signal. However, since the embolus transit time through the j, the reflected ultrasound signal [6]. This detector would

Doppler sample volume is inversely proportional to the embo- . - - . .
lus velocity (Doppler-shift frequency), a matched-filter detector potentially be optimal if the duration of the embolus signal

should in principle use a wavelet transform, rather than a short- remained constant with frequency (velocity). However, the
time Fourier transform, for optimal results. Closer examination transit time of the embolus through the Doppler sample volume
of the Doppler shift signals usually shows a chirping behavior s inversely proportional to its velocity, which suggests the use
apparently due to acceleration or deceleration of the emboli of a matched-filter detector using a wavelet transform.

during their transit through the Doppler sample volume. These Th | t of f D | . Is f boli h
variations imply that a linear wavelet detector is not optimal. € real part ot four Doppler signals from emboli are shown

We apply linear and quadratic time-frequency and time-scale N Fig. 1. The emboli in Fig. 1(a) and (b) clearly depict a
detectors to a set of noise-corrupted embolus data. Our results scale (inverse relation between frequency and time-duration)
show improvements of about 1 dB using the time-scale detectors relationship, which is precisely the expected physical rela-
versus an STFT-based detector signifying that embolus detection yj,nshin petween emboli traveling at different velocities (with

is best approached as a time-scale problem. A time-scale-chirp . . ) .
detector is also applied and is found to have the overall best proportional Doppler shifts) through a fixed-length insonated

performance by about 0.5-0.7 dB while coming fairly close (about S€ction of an artery. Fig. 2(a), which plots the half-maximum-

0.75 dB) to a theoretical upper bound. amplitude time-durations of 95 emboli versus their center
Index Terms—boppler ultrasound, microemboli, time-frequen- frequenmes, also conﬂrms the inverse relgt|onsh|p beMeen
cy, time-scale, wavelet detection. inverse frequency (that is, scale) and duration in experimen-

tally measured signals. This suggests that a time-scale-based,
or wavelet-based, detector might yield an optimal matched-
filter detector for such signals [7], which motivates the study
HE detection of small formed elements (such as bloatkscribed in this paper. However, the scale relationship is not
clots) and gas bubbles in the bloodstream, known asitary because the amplitude of an embolus is not adjusted
microemboli, using pulse Doppler ultrasound is an impoin accordance with its signal duration. Therefore, we expect
tant biomedical problem [1]-[4]. A small volume region inhigher total energy [and, thus, higher effective signal-to-noise
an artery is insonated using a constant-frequency ultrasouatos (SNR’s)] in the longer-duration emboli than in the
signal, and the reflections are sampled then processed in ostasrter ones, which complicates the detection problem slightly
to detect Doppler-shifted returns from these blood artifactget still suggests the use of a wavelet-based detector.
As will be discussed in Section Il, the continuous wavelet
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Fig. 2. Estimated emboli characteristics. (a) Center frequency versus duration. The
(b) Chirp rate of each embolus.

(b)

solid curve is the @¢stfiibction whereC' is a constant.

a common phenomenon in real data. This effect alters treason, we also investigate a quadratic time-scale detector as
signal such that the constant-frequency wavelet is no longemeans of dealing with variation in the embolus waveform.
an optimal matched filter for detection. For this reason, we In this paper, we employ time-frequency and time-scale
introduce in this paper a linear chirp-wavelet (time-scal@etectors to detect these nonstationary emboli from reflected
chirp) detector in the hopes of improving the detection doppler-ultrasound data. These include both linear and
such emboli. However, we note in Fig. 1(d) that the frequenguadratic time-frequency and time-scale detectors, as well
variation can be even more complicated (this embolus appeassa linear time-scale-chirp detector. The detection results are
to undergo both deceleration and acceleration), thus renderaggnpared to a theoretically optimal “oracle” detector in which
suboptimal the use of a time-scale-chirp detector. For thige know the exact form of each embolus prior to detection. In
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the next section, we provide a brief review of time-frequenayf the scalogram and is characterized by an affine smoothing
and time-scale representations. In Section lll, time-frequenof the WD [9]

and time-scale detection theories are reviewed, followed

by a discussion of their implementation and formation of . u—t

the necessary statistics in Section IV. Experimental results Co(t; ;1) ://WS(U’U)H< c ’Cv> dudv(5)
comparing the various detectors’ performance for embolus

detection are presented in Section V, and some conclusigiisere the kernell completely characterizes the TSR(II).

are presented in the final section. Cohen’s class and the affine class can be expressed as a
weighted sum of spectrograms and scalograms, respectively,
Il. TIME-FREQUENCYTIME-SCALE REPRESENTATIONS as [11]
TFR's are powerful methods for analyzing and processing Pi(t; f; @) = Z)\k|(STFTs(taf%Uk)|2 (6)
nonstationary signals with time-varying spectral content. A k
one-dimensional signals(t), is mapped by a TFR into a Cy(t; f311) = ZNk|(CWTs(t7f§Uk)|2 (7)
two-dimensional (2-D) signalZ(t, f), which is a function &

of both time and frequency. This joint representation exploits
the nonstationary characteristics of a signal and, therefore, G | e " iivelv. of the I t
be very useful in detecting nonstationary signals. onormal eigenvectors, respectively, ol the linear operator

The simplest and most popular TFR is the STFT, which efined by the kernef. This same relationship is true for
defined as [9] ' the ux's and v,’s with the kernelll.

ere theA,’s and u’'s represent the eigenvalues and or-

STFT,(t, f: g) = /S(T)g*(T R (1) Ill. TIME-FREQUENCYTIME-SCALE DETECTION
We will consider the following hypothesis testing problem

. o ) of the form
whereg(¢) is called the analysis window. It can be interpreted
as a local Fourier transform of(¢) created by sliding the Hy :y(t) = s(t; 7, f ore) +n(t)
analysis window across the signal. The squared magnitude of Hy : y(t) = n(t) (8)

the STFT is known as the spectrogram.

The continuous wavelet transform (CWT), the most popularheret € T is the observation intervaly is the observed
time-scale representation (TSR), jointly represents a signaldignal, s is the underlying signal to be detected, and
terms of time and scalé: > 0), and is defined as [10] is additive noise. In the embolus detection problem, the

hypothesisH represents the case that no embolus is present,
1 ST while H; is the situation in which an embolus is present
CWT,(t. ¢ 9) = e /S(T)g < c ) dr (@) along with the background electronic or bloodflow noise. Two
different classes of detectors, linear and quadratic, will be
where ¢ is the scale at which the mother wavelgf), is discussed in the remainder of this section.
projected onto the signad(¢). Scale is a unitary operator
which expands and compresses the duration of a signal while Linear TF/TS Detection
conserving signal energy. The squared magnitude of the CWTthe nderlying assumption for using linear detectors is
is known as the scalogram. that the signal to be detected is known and deterministic. In
Bilinear or quadratic TFR's (Cohen’s class) and TSR case, it is well known that, in white Gaussian noise, the

(affine class) are more flexible than linear time-frequengyatched filter is the optimal detector [12] and corresponds to
representations and potentially offer improved detection pgfie test statistic

formance. Both classes are defined as smoothed versions of
the Wigner distribution (WD), which is defined as L(y) = (y(t), s(t)). 9)

B ™ . TN _iompr In certain situations, the received signal may undergo unknown
Ws(t7f):/3(t+§)3 (t_ 5)6 dr. (3) time, frequency, andior scale shifts. This is known as a
composite hypothesis test, in which the goal is to detect

A quadratic TFR in Cohen’s class, which is a generalization?; 7, f or ¢) with unknown parameters. A uniformly most
of the spectrogram, involves convolutional smoothing of thgowerful rule [12] does not exist in this case, and in practice
WD [8] a generalized likelihood-ratio test (GLRT) is usually adopted.
The GLRT is defined as follows, with the linear detector form

explicitly shown:
Ps(t;f;q))z//Ws(u,v)q)(u—t,v—f)dudv (4)

LeLrr(y) = max L7 (y)

T,forc

where the 2-D kernel> completely characterizes the TFR = max (y(), s(t; 7, f or ¢)). (10)
P,(®). A quadratic TSR in the affine class is a generalization . fore
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We note that in the special case where the deterministic wavjust a scaled and shifted versionR§,. This is shown in the
form to be detected undergoes unknown time and frequerfoflowing statistical summary of the above hypothesis-testing
shifts, the required inner products at the various time and frezenario:

guency offsets are exactly the outputs of a short-time Fourier

transform using the matched filter as the window! Similarly, s(t;T,c) = 1 30<t _ T)

for unknown time and scale shifts, the necessary inner products ¢ ¢

are values of the continuous wavelet transform adopting the so(t) ~ N(0,Ro)

matched filter as the wavelet. This equivalence forms the R(m)(t t2) = ER t1—7 ta—T
fundamental theoretical basis for optimal time-frequency and ° L2 ¢ 0 c ¢

time-scale (wavelet-based) detection, as well as offering a n(t) ~ N(0,02T) (14)

means for their efficient implementation. As argued in the

Introduction, the physical process creating Doppler-ultrasoufithere A’ represents a Gaussian distributidnis the identity

embolus signals suggests wavelet-based (time-scale) deteci@ssix, ands? is the noise variance.

are ideally matched to this detection problem. We will briefly assume that scale and time shifts are not
A chirp parameter can be also be introduced by addiRgesent. In this case, classical detection theory then tells us

a third dimension into the GLRT search for the time-scal@at the optimal detector compares a quadratic function of the

detector. This chirp parameter modifies the underlying signghservations to a threshold to decide whetli&r or Hy is

in the matched filter by true. This optimal test statistic can be written in the form [12]
s(t; 7, e,0) = s(t; T, c)ejet (11) L(y) = (Qu, 1) (15)

where 6 is the newly introduced chirp-rate parameter. This b)) = o (W (4 16

linear time-scale-chirp detector can be defined as follows: Qltr 22 Z A + 02 k(t)vi(t2) (16)

Larra(y) = max L9(y) = max(y(t), s(t:7,c,0)).

3Gy 3Gy

whereQ is a positive-definite linear operator with thg's and
(12) Ai's as the eigenvectors and corresponding eigenvaluBg of
Referring back to the case of known scale and time shifts,
As mentioned in the Introduction, the acceleration or decelap-is dependent upo(r, ¢), since the autocorrelation function,
ation of emboli through the Doppler transit volume causesR{™, changes with scale and time shifts. Therefore, we must
chirping in the received ultrasound signal, thereby suggestipptain an eigenexpansion of the autocorrelation function in

the use of a chirp parameter in the GLRT detector. order to obtainQ(™®) in the form of (16).
_ _ Since scaling and time shifting are unitary operators, the
B. Quadratic TF/TS Detection eigenvalues o™ are the same as those B, whereas

A glance at the signals from the emboli in Fig. 1 is sufficierille eigenvectors are simply time-shifted and scaled versions of
to confirm that, even after time and frequency or scale changd eigenvectors dR,. Therefore, we can now write (16) as
these signals are not exactly identical. The linear detectors are . 1 .

(7, (’) 1— 7 ok 2— 7
known to be optimal only for detecting deterministic signalg)™/ (¢, ¢,) Z )\k+0_2 \/_ <—> vy, <— .

in Gaussian noise and, thus, a more sophisticated detector may ¢ Ve ¢
be required to obtain optimal performance in this problem. We a7
will now consider the following hypothesis testing problem
[7]: Substituting this result into (15), bringing the integrals inside
the summation, and using the definition of the CWT in (2)
H,: y(t) = S(t; 7, C) + n(t); we obtain
Ho = y(t) =n(t)
y(t) : Observed signal Ly ZO‘”CWT (, s om)” (18)
s(t; T, ¢) : Zero-mean Gaussian signal A
k
(7,¢) : Known time and scale parameters whereay = Nt ol (19)
n(t) : White Gaussian noise (13)

We now have a relationship for the optimal test statistic for
The key difference between this and the linear hypothesis tesly (, ¢) in terms of magnitude-squared CWT'’s, also known
is that the signals to be detected are no longer deterministis, scalograms. In additior,(™%)(y) is a TSR, since it is
but are random Gaussian signals with a known autocorrelatithe weighted sum of scalograms. Therefore, every point in
structure. This model provides a mechanism for capturihe TSR is the optimal test statistic for the corresponding
some of the variations in the signals from different emboliime-shift and scale.
We will also defines, with autocorrelation functiolR, as our When(r, c) are unknown parameters, the hypothesis testing
nominal signal. Therefore, everft; 7, c) is just a scaled and scenario of (13) becomes a composite hypothesis test with
time-shifted version ofg, and since scale and time shifts ar@arameterg~ € R,¢ > 0). A uniformly most powerful rule
just linear operators, the autocorrelation functions@f, r,c¢) does not exist in this case and the GLRT which corresponds
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to the maximume-likelihood (ML) estimate dfr,c) is used. B. Quadratic TF/TS Detectors

This is expressed as [7] Implementation of the quadratic TF/TS detectors requires
) a statistical model of the emboli centered at some nominal
time and frequency/scale. The DC components of the emboli
Using the bank of scalograms as in (18) and taking twere extremely small anyway, anq were simply removed _to
. . ) o . It the zero-mean Gaussian model in (13). The autocorrelation
maximum value, we can obtain this statistic and |mplemep ; . ; ) .
) unction, Ry, at some nominal TF/TS point was required in
the GLRT via wavelet transforms. . : . .
The time-scale detector corresponds to a quadratic timor_oler to obtain the eigenvalues and eigenvectors used in the
b 4 Setector. This is not straightforward, since all of our signals

. . 7C) .
scale representation with a kemel relatedQ6) in (16). .are centered at various frequencies/scales and have different

_Quadratlc tlme—_frequency detectors_can be derived in a Slthe shifts. Therefore, the training signals must be aligned
ilar manner, with frequency replacing scale and short-time

Fourier transforms replacing continuous wavelet transformg modulating/scaling and time-shifting the data to the same
P 9 nopwinal point in the TF/TS plane. This aligned data was then

in the above analysis. These equivalences lead to a varietyuged to formRo. As in the linear detector cas®, is also

implementation alternatives and additional insights; while W sendent on the Dobpler samole volume and the vessel denth
discuss here only those aspects most relevant to the problem (ﬁor alignment, a F;Eferencepemboli shown in Fig 2(a§) '

ultrasound embolus detection, a much more complete devel- . . . o
oo . was selected, and the signal portion of this realization was

opment of quadratic time-frequency and time-scale detectorst u T
can be found in [7] extracted to serve as a “template.” This template was corre-
' lated with modulated/scaled and time-shifted versions of the

other emboli, the scale/frequency and time shifts yielding the

IV. DETECTOR FORMATION AND IMPLEMENTATION maximum correlation with the template were determined, and

In this section, we outline the formation and implementatioi€ other emboli signals were shifted in the TF/TS plane to
details of the GLRT detectors used for our studies. As R¢ aligned with the template. This procedure is intuitively
the previous section, the linear detectors are discussed figgtPealing, although many of the emboli do not have constant
followed by the quadratic ones. Three different linear detectdf§duency/scale over the entire signal, and the alignment is
are considered: time-scale (CWT), time-frequency (STFT§ccasionally not visually pleasing. Theoretical examples can
and time-scale-chirp (Chirp-CWT). Time-scale (TS) and timd€e constructed which suggest that this alignment procedure is

frequency (TF) detectors are considered in the quadratic ca3@t optimal; nonetheless, it has yielded good results in practice.
After obtaining a set of aligned data, we compute the

correlation statistics by computing outer products of the vec-
_ ) _ ) _ tors, adding up the results, and dividing by the number of

The implementation of the linear detectors is relativelyagjizations. In theory, this is asymptotically optimal, but a
straightforward. An appropriate wavelet/window is selectegight complication arises here due to a consistent variation
for the CWT and STFT via experimentation, and the GLRY, energy across scales. Our model assumes that scaling
maximum magnitude search consists only of computing the 5 unitary (and, therefore, energy-conserving) operation.
magnitude of the corresponding CWT or STFT, determiningo\ever, in Doppler ultrasound measurement of microemboli,
the maximum over the range of scales or frequencies b qurationsvary with velocity (and, thus, scale or frequency),
which emboli can appear, and comparing this maximum ot theamplitudesare not affected by their velocity. This poses
threshold. We selected a truncated bandpass Gaussian Wa‘é?'EFobIem when trying to formR, from the experimental
for the CWT, and the STFT was computed using a lengtata without letting lower frequency or large-amplitude em-
128 Hamming window. It should be noted that the embolusyoji dominate the statistics. The solution we chose was to
signal envelope and, therefore, the optimal choice of wavelgiergy-normalize the aligned data vectors before estimating
and STFT window, is dependent upon the Doppler sampige correlation matrixRo, thus, giving each embolus an equal
volume which will change with the depth of the vessel. contribution toRy.

' An equivalent number of detector points were computed p|gts of the eigenvaludof the R, for the quadratic TF

in the CWT and the STFT. The CWT used 128 scales agflg TS detectors are shown in Fig. 3. The first eigenvalue
one-sample time shifts, whereas the STFT computed Sdéminates in both the TF and TS case, and the overall
frequencies with window shifts of four samples. The CWEjgenvalue spread is better for the TS detector than the
was computed efficiently utilizing the chirp-z transform angg getector (93.6% of the eigenvalue sum is contained in
fast convolution [13]. The time-scale-chirp detector used thge first ten eigenvalues of the TS detector while the TF
same CWT for nine different chirp rates, and the GLRJetector contains only 80.9% in its first ten). Since most
search was done over this parameter space. The search @y&he eigenvalues are very small, it is pointless to include
frequency/scale in the GLRT was done only for a ranggejr weight in the test statistic in (17). Thus, a reduced-
bounded by the center frequencies/scales of the measuiggk detector utilizing only the significant eigenvalues can be

emboli. implemented, and the overall cost of the quadratic detectors

2Although different windows were chosen for the two detectors, Gaussixwll be apprOX|materN times that of a linear detector, where

and Hamming windows (of optimized duration) gave virtually identical
performance for each. These windows were chosen to reflect existing practicé R is normalized so that the sum of its eigenvalues is equal to one.

Larrr(y) = max LT (y) (20

A. Linear Detectors
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N is the chosen rank. The individual scalograms are simply 1
the squared magnitude of continuous wavelet transforms (or
STFT's in the quadratic time-frequency detector) using theos
eigenvectors as the wavelets (or windows).
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V. RESULTS

8
S07-

A patient with a mechanical aortic valve, who was previs
ously diagnosed to have middle cerebral artery (MCA) embolie
signals that could be traced by both common carotid arteri§§6'
to the heart, was restudied with a novel pulse Doppler. Tl
Doppler pulse repetition frequency was 8 kHz, and eacH”|
transmit burst was comprised of 24 cycles at 2.4 MHz. The
sample gate depth was 5 cm. Signals were acquired through
the temporal bone using a wide-beam probe (7-mm diameter).
A customized headgear was positioned on the patient so th¥[/

x L L

probe could be trained on the MCA and held in position for i ” o o 2 p
several hours at a time. Embolic signals were gathered, and the
time-series Doppler shift signal within a two-second windowig. 4. Probability of detection results for quadratic TF detectBys= .01.
surrounding it was digitized and saved to disk.

The SNR of the raw measurements is relatively high (abOUIProbabiIity of detection results can be compared to that of

30 dB), allowing easy visual identification and isolation of th§n “oracle detector.” By oracle detector, we refer to a detector

embolus signals. For this experiment, 95 length-1024 records.oh assumes exacs priori knowledge of the individual

eqch containing a signal from a.smgle passing embolus (Seemebolus signals and, thus, applies the perfect matched filter for
Fig. 1) were extracted from the time-series ultrasound data, . .
d%tectlon. Hence, the oracle detector serves as an unrealizable

The performance in more substantial noise was investigat ical bound h ; ¢ th .
by adding white Gaussian noise at various SNR levels (té poretical upper bound on the periormance ot the varlous

realizations per embolus). Since the energy of each emboﬂgectors. In order to remain consistent with the other detectors
varied, SNR was defined to be the ratio of the average peBk€Ms of the number of detector points and the CFAR
magnitude squared to the noise variance. A constant fafBgeshold, the oracle detector was implemented using the time-
alarm rate (CFAR) of 0.01 was set over a block of 1028cale detector with tha priori known embolus used as the
samples, thereby establishing a threshold to determine Wvelet for each of the 95 emboli. _

number of emboli detected. While this false alarm rate is Fi9- 4 shows the detection results for quadratic TF detectors
unrealistically high for a real application, it allowed accurat8f rank one through three. We can easily see the performance
relative comparisons of performance with a modest numb@in of a higher ranked detector; however, the gain is only
of trials; we expect that theelative performance of the about 0.25 dB for the rank-3 over the rank-1 detector. This is
various detectors will remain consistent at realistic CFARS expected, since the first eigenvalue of the aligned correlation
levels. White noise appears to be a fairly accurate model ®@ftrix dominates the rest as shown in Fig. 3(a). The same
both electronics noise and the background reflections frgphenomenon occurs with the quadratic TS detector results
individual corpuscles and other blood components (at least sipown in Fig. 5. We observe an even smaller performance
to the maximum velocity), so we believe that these results again from rank-1 to rank-3 in this case (about 0.15-0.25 dB)
indicative of the performance in real low-SNR environmentshan the TF case. Since the first eigenvalue dominates more
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1 ( st TF detector has about a 0.5-dB performance gain over the
‘ STFT, showing that variations among emboli are important
4 when using the time-frequency model. However, linear and
guadratic TS detectors perform better than the quadratic TF
__% ngasCEank_s { detector, thus confirming the notion that microemboli detection
o 8% S::tf is best app_roached as a tlme.—scale probl_em.
: Another important observation (one which was unexpected
at first) is that the linear CWT detector very slightly outper-
1 forms the rank-3 quadratic TS detector in some regions. This
can be reasoned by noting that the linear CWT detector is
] experimentally optimized to perform well in terms of detection
probability for the embolus set. It takes into account that
1 certain emboli are harder to detect than other emboli due to
varying signal energies. The quadratic TS detector is based
|/ upon a statistical formulation of the 95 emboli with each
, ‘ . , : . having anequal contribution to the resulting detector. It,
SNR therefore, does not take advantage of certain emboli being
easier to detect than others, leaving room for the linear
detector to have a performance advantage. On the other

0.91

0.8

o
3

o
@

Probability of Detection

o
0

0.4

03/

1 . , 1 —e—c=—c—= hand, by providing a robustness to variations in emboli, the
‘ ' guadratic detector is able to have nearly the same performance.
1 Apparently, accounting for these variations may not be as
important as compensating for emboli which are harder to
05 Oracle 1 detect. The fact that the CWT’s performance relative to the
C Chirp-CWT guadratic TS detector is better at high detection probabilities,
So7 8\§VgRank_3 4 but worse at lower detection probabilities, also supports this
§ g;f;ﬂank% hypothesis. We could have easily weighted the harder-to-detect
Zos - emboli (lower energy) in the quadratic detector formation to
g achieve better results; however, this would be statistically
“os 41 biased and the results might be suspect. Furthermore, it is
possible that the nonideal alignment for quadratic detector
0.4 4 formation as well as insufficient amount of training data may
also be a cause of this slight performance difference.
0.3 1
‘6 - ? awm’ 2 ¢ VI. CONCLUSION
Fig. 6. Probability of detection comparison of linear and quadratic detectors: 1Nis paper has reviewed the theory of linear and quadratic
Py = .01 time-frequency and time-scale detectors and performed a

relatively thorough case study of their application to the

in the TS case [see Fig. 3(b)] than in the TF case, this resplpppler ultrasound detection of microemboli. The use of time-
is also expected. The rank-3 quadratic TS detector is abéquency or time-scale detectors in practice should ideally be
1.25-1.5 dB from the oracle bound while the rank-3 TF isotivated by solid justification based on physical principles
about 1.5-1.75 dB away. related to a given detection problem. In the case of embolus

Fig. 6 is an overall comparison of linear and quadratic Téfetection, the inverse relationship between Doppler frequency
and TS detectors. We see that the time-scale methods easild time-duration, which is exactly equivalent to that in time-
outperform the STFT detector at high SNR’s. We estimatesgale transformations, strongly suggests that the continuous
performance gain of about 1 dB for the CWT over the STFTwavelet transform or quadratic time-scale detectors are ideal.
based method. The more expensive chirp-CWT detector Tike chirping behavior due to acceleration or deceleration of an
about 0.5-0.7 dB better than the CWT and only about 0.75 @Bnbolus through the Doppler sample volume further suggests
from the oracle bound. It should be noted that in addition the use of a chirp parameter in the time-scale detector. The
having at least the same or higher detector output as the CW&mparison of the relative performance of various detectors
the chirp CWT will also have an equal or greater noise outpptesented here supports these assessments. The CWT and
level as well, thus, raising the detection threshold for the CFAIRe quadratic time-scale detectors yield equivalent detection
detector. It appears that chirp variations are indeed a problperformance to the currently-used STFT at about a 1-dB lower
for the CWT detector by itself, and that chirp is a significar8NR, and the chirp-CWT detector outperformed the time-scale
detection parameter. detectors by about 0.5-0.7 dB.

The linear STFT (the current state-of-the-art) is indeed theln determining the preferred detector for a practical system,
poorest performer of the chosen methods. The rank-3 quadratienplexity, cost, and convenience issues must be weighed
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against the relative detection performance. The use of fo<* Brian S. Klrongokli received the B.S. anddM-S- de-
aigorithms for computing the CWT allows the computa O e cngneerg 1 ose ooy
tional efficiency to approach that of the STFT for densel Champaign, where he is currently working toward
sampled transforms. However, considerable savings in co the Ph.D. degree as a Research Assistant at the
putation can be obtained with the STFT when the time-sti Cogﬂfi':gtes%rﬁﬁq'i?cfg'éibogaetoigtémed for Martin
in samples between successive FFT's is greater than o Marietta at the Oak Ridge National Laboratory, Oak
whereas the known CWT algorithms cannot efficiently expla Ridge, TN. From January to August of 1995, he
this reduction. In practice, this might mean that impleme Byl E‘fﬂlsn”;zﬂrﬁ;gf"lé‘gé’orzz“xgﬁég g’t“?hd;eé‘l)‘ef‘(’:rgroﬁis
tation of the CWT could require as much as ten timegd Telecommunlcanons Research Institute, Taejon, South Korea under a Na-
more computation than the STFT, which must be weighdidnal Science Foundation summer research fellowship. His research interests
against the improved detector performance. The quadrai[]%'rég:g'ctt'ﬁf‘nmZ;gowgl:?;fstfn%s{”fgg”:nI:'sme frequency/time-scale analysis
TSR can require several CWT computations while offering
similar performance as a single CWT, suggesting that they
it not be worth the added complexity in this particular ap-
plication. The chirp-CWT detector requires multiple CWT ‘
computations to obtain its demonstrated slightly higher pe Akbar M. Sayeed received the B.S. degree from
. . x the University of Wisconsin, Madison, in 1991, and
formance, thus costlng a few tlmes more than the _CV\; the M.S. and Ph.D. degrees in 1993 and 1996, re-
detector. This extra implementation cost must be weighi spectively, from the University of lllinois at Urbana-
against the performance gain to determine its suitability C%mﬁa'gtnghae"dzisg‘;‘igfi'f engneeNg. < 4 Re.
practice. search Assistant in the Coordinated Science Labora-
Comparison with an oracle detector revealed that all of tl tory and was also the Schlumberger Fellow in signal
methods studied here, including the relatively straightforwa processing from 1992-1995. During 1996-1997,
he was a Post-doctoral Fellow at Rice University,
STFT based deteCtOFS come Wlthln abOUt O 75 2 25 dB O Houston TX. Since August 1997 he has been with
theoretically unrealizable upper bound. In short, all of thesee University of Wisconsin-Madison, where he is currently an Assistant
methods perform qU|te well, and for this appllcatlon no othéDIrofessor His research interests are in signal processing for wireless commu-
. nications, statistical and time-varying signal processing, and time-frequency
non-TF/TS-based detection method could hope to achieyg wavelet analysis.
more than modest improvements over the methods presented
here.
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