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Time-Scale Detection of Microemboli in
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Abstract—Small formed elements and gas bubbles in flow-
ing blood, called microemboli, can be detected using Doppler
ultrasound. In this application, a pulsed constant-frequency ultra-
sound signal insonates a volume of blood in the middle cerebral
artery, and microemboli moving through its sample volume
produce a Doppler-shifted transient reflection.

Current detection methods include searching for these tran-
sients in a short-time Fourier transform (STFT) of the reflected
signal. However, since the embolus transit time through the
Doppler sample volume is inversely proportional to the embo-
lus velocity (Doppler-shift frequency), a matched-filter detector
should in principle use a wavelet transform, rather than a short-
time Fourier transform, for optimal results. Closer examination
of the Doppler shift signals usually shows a chirping behavior
apparently due to acceleration or deceleration of the emboli
during their transit through the Doppler sample volume. These
variations imply that a linear wavelet detector is not optimal.

We apply linear and quadratic time-frequency and time-scale
detectors to a set of noise-corrupted embolus data. Our results
show improvements of about 1 dB using the time-scale detectors
versus an STFT-based detector signifying that embolus detection
is best approached as a time-scale problem. A time-scale-chirp
detector is also applied and is found to have the overall best
performance by about 0.5–0.7 dB while coming fairly close (about
0.75 dB) to a theoretical upper bound.

Index Terms—Doppler ultrasound, microemboli, time-frequen-
cy, time-scale, wavelet detection.

I. INTRODUCTION

T HE detection of small formed elements (such as blood
clots) and gas bubbles in the bloodstream, known as

microemboli, using pulse Doppler ultrasound is an impor-
tant biomedical problem [1]–[4]. A small volume region in
an artery is insonated using a constant-frequency ultrasound
signal, and the reflections are sampled then processed in order
to detect Doppler-shifted returns from these blood artifacts.
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Without proper emboli detection, major medical complica-
tions can occur, including strokes and even death. Because
they are highly nonstationary, embolus detection based on
time-frequency representations (TFR’s) have been considered.
Current detection methods utilize the spectrogram, which is the
squared magnitude of the short-time Fourier transform (STFT),
or the Wigner distribution [5] to detect embolus transients
in the reflected ultrasound signal [6]. This detector would
potentially be optimal if the duration of the embolus signal
remained constant with frequency (velocity). However, the
transit time of the embolus through the Doppler sample volume
is inversely proportional to its velocity, which suggests the use
of a matched-filter detector using a wavelet transform.

The real part of four Doppler signals from emboli are shown
in Fig. 1. The emboli in Fig. 1(a) and (b) clearly depict a
scale (inverse relation between frequency and time-duration)
relationship, which is precisely the expected physical rela-
tionship between emboli traveling at different velocities (with
proportional Doppler shifts) through a fixed-length insonated
section of an artery. Fig. 2(a), which plots the half-maximum-
amplitude time-durations of 95 emboli versus their center
frequencies, also confirms the inverse relationship between
inverse frequency (that is, scale) and duration in experimen-
tally measured signals. This suggests that a time-scale-based,
or wavelet-based, detector might yield an optimal matched-
filter detector for such signals [7], which motivates the study
described in this paper. However, the scale relationship is not
unitary because the amplitude of an embolus is not adjusted
in accordance with its signal duration. Therefore, we expect
higher total energy [and, thus, higher effective signal-to-noise
ratios (SNR’s)] in the longer-duration emboli than in the
shorter ones, which complicates the detection problem slightly
yet still suggests the use of a wavelet-based detector.

As will be discussed in Section II, the continuous wavelet
transform is the ideal detector for constant-velocity (and,
therefore, constant-frequency) emboli. However, many mea-
sured emboli signals exhibit varying frequency content, as
can be observed in Fig. 1(c) and (d). These apparently reflect
acceleration and deceleration of the emboli, perhaps due to the
pulsatile nature of blood flow, interaction with the artery walls,
or from turbulence or eddies in the flowing blood. Constant
acceleration or deceleration causes a linear chirping effect [8]
as clearly observed in Fig. 1(c). Fig. 2(b) plots the estimated
chirp rate1 of 95 measured emboli, confirming that this is

1The chirp rate was estimated using a least-squares linear fit of the embolus’
instantaneous frequency.
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(a) (b)

(c) (d)

Fig. 1. Real part of typical emboli.

(a) (b)

Fig. 2. Estimated emboli characteristics. (a) Center frequency versus duration. The solid curve is the best fitC=t function whereC is a constant.
(b) Chirp rate of each embolus.

a common phenomenon in real data. This effect alters the
signal such that the constant-frequency wavelet is no longer
an optimal matched filter for detection. For this reason, we
introduce in this paper a linear chirp-wavelet (time-scale-
chirp) detector in the hopes of improving the detection of
such emboli. However, we note in Fig. 1(d) that the frequency
variation can be even more complicated (this embolus appears
to undergo both deceleration and acceleration), thus rendering
suboptimal the use of a time-scale-chirp detector. For this

reason, we also investigate a quadratic time-scale detector as
a means of dealing with variation in the embolus waveform.

In this paper, we employ time-frequency and time-scale
detectors to detect these nonstationary emboli from reflected
Doppler-ultrasound data. These include both linear and
quadratic time-frequency and time-scale detectors, as well
as a linear time-scale-chirp detector. The detection results are
compared to a theoretically optimal “oracle” detector in which
we know the exact form of each embolus prior to detection. In
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the next section, we provide a brief review of time-frequency
and time-scale representations. In Section III, time-frequency
and time-scale detection theories are reviewed, followed
by a discussion of their implementation and formation of
the necessary statistics in Section IV. Experimental results
comparing the various detectors’ performance for embolus
detection are presented in Section V, and some conclusions
are presented in the final section.

II. TIME-FREQUENCY/TIME-SCALE REPRESENTATIONS

TFR’s are powerful methods for analyzing and processing
nonstationary signals with time-varying spectral content. A
one-dimensional signal, , is mapped by a TFR into a
two-dimensional (2-D) signal, , which is a function
of both time and frequency. This joint representation exploits
the nonstationary characteristics of a signal and, therefore, can
be very useful in detecting nonstationary signals.

The simplest and most popular TFR is the STFT, which is
defined as [9]

(1)

where is called the analysis window. It can be interpreted
as a local Fourier transform of created by sliding the
analysis window across the signal. The squared magnitude of
the STFT is known as the spectrogram.

The continuous wavelet transform (CWT), the most popular
time-scale representation (TSR), jointly represents a signal in
terms of time and scale , and is defined as [10]

(2)

where is the scale at which the mother wavelet, , is
projected onto the signal . Scale is a unitary operator
which expands and compresses the duration of a signal while
conserving signal energy. The squared magnitude of the CWT
is known as the scalogram.

Bilinear or quadratic TFR’s (Cohen’s class) and TSR’s
(affine class) are more flexible than linear time-frequency
representations and potentially offer improved detection per-
formance. Both classes are defined as smoothed versions of
the Wigner distribution (WD), which is defined as

(3)

A quadratic TFR in Cohen’s class, which is a generalization
of the spectrogram, involves convolutional smoothing of the
WD [8]

(4)

where the 2-D kernel completely characterizes the TFR
. A quadratic TSR in the affine class is a generalization

of the scalogram and is characterized by an affine smoothing
of the WD [9]

(5)

where the kernel completely characterizes the TSR .
Cohen’s class and the affine class can be expressed as a

weighted sum of spectrograms and scalograms, respectively,
as [11]

STFT (6)

(7)

where the ’s and ’s represent the eigenvalues and or-
thonormal eigenvectors, respectively, of the linear operator
defined by the kernel . This same relationship is true for
the ’s and ’s with the kernel .

III. T IME-FREQUENCY/TIME-SCALE DETECTION

We will consider the following hypothesis testing problem
of the form

or

(8)

where is the observation interval, is the observed
signal, is the underlying signal to be detected, and
is additive noise. In the embolus detection problem, the
hypothesis represents the case that no embolus is present,
while is the situation in which an embolus is present
along with the background electronic or bloodflow noise. Two
different classes of detectors, linear and quadratic, will be
discussed in the remainder of this section.

A. Linear TF/TS Detection

The underlying assumption for using linear detectors is
that the signal to be detected is known and deterministic. In
this case, it is well known that, in white Gaussian noise, the
matched filter is the optimal detector [12] and corresponds to
the test statistic

(9)

In certain situations, the received signal may undergo unknown
time, frequency, and/or scale shifts. This is known as a
composite hypothesis test, in which the goal is to detect

or with unknown parameters. A uniformly most
powerful rule [12] does not exist in this case, and in practice
a generalized likelihood-ratio test (GLRT) is usually adopted.
The GLRT is defined as follows, with the linear detector form
explicitly shown:

or

or

or
or (10)
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We note that in the special case where the deterministic wave-
form to be detected undergoes unknown time and frequency
shifts, the required inner products at the various time and fre-
quency offsets are exactly the outputs of a short-time Fourier
transform using the matched filter as the window! Similarly,
for unknown time and scale shifts, the necessary inner products
are values of the continuous wavelet transform adopting the
matched filter as the wavelet. This equivalence forms the
fundamental theoretical basis for optimal time-frequency and
time-scale (wavelet-based) detection, as well as offering a
means for their efficient implementation. As argued in the
Introduction, the physical process creating Doppler-ultrasound
embolus signals suggests wavelet-based (time-scale) detectors
are ideally matched to this detection problem.

A chirp parameter can be also be introduced by adding
a third dimension into the GLRT search for the time-scale
detector. This chirp parameter modifies the underlying signal
in the matched filter by

(11)

where is the newly introduced chirp-rate parameter. This
linear time-scale-chirp detector can be defined as follows:

(12)

As mentioned in the Introduction, the acceleration or deceler-
ation of emboli through the Doppler transit volume causes a
chirping in the received ultrasound signal, thereby suggesting
the use of a chirp parameter in the GLRT detector.

B. Quadratic TF/TS Detection

A glance at the signals from the emboli in Fig. 1 is sufficient
to confirm that, even after time and frequency or scale changes,
these signals are not exactly identical. The linear detectors are
known to be optimal only for detecting deterministic signals
in Gaussian noise and, thus, a more sophisticated detector may
be required to obtain optimal performance in this problem. We
will now consider the following hypothesis testing problem
[7]:

Observed signal

Zero-mean Gaussian signal

Known time and scale parameters

White Gaussian noise (13)

The key difference between this and the linear hypothesis test
is that the signals to be detected are no longer deterministic,
but are random Gaussian signals with a known autocorrelation
structure. This model provides a mechanism for capturing
some of the variations in the signals from different emboli.
We will also define with autocorrelation function as our
nominal signal. Therefore, every is just a scaled and
time-shifted version of , and since scale and time shifts are
just linear operators, the autocorrelation function of

is just a scaled and shifted version of . This is shown in the
following statistical summary of the above hypothesis-testing
scenario:

(14)

where represents a Gaussian distribution,is the identity
matrix, and is the noise variance.

We will briefly assume that scale and time shifts are not
present. In this case, classical detection theory then tells us
that the optimal detector compares a quadratic function of the
observations to a threshold to decide whether or is
true. This optimal test statistic can be written in the form [12]

(15)

(16)

where is a positive-definite linear operator with the’s and
’s as the eigenvectors and corresponding eigenvalues of.
Referring back to the case of known scale and time shifts,
is dependent upon , since the autocorrelation function,

, changes with scale and time shifts. Therefore, we must
obtain an eigenexpansion of the autocorrelation function in
order to obtain in the form of (16).

Since scaling and time shifting are unitary operators, the
eigenvalues of are the same as those of , whereas
the eigenvectors are simply time-shifted and scaled versions of
the eigenvectors of . Therefore, we can now write (16) as

(17)

Substituting this result into (15), bringing the integrals inside
the summation, and using the definition of the CWT in (2)
we obtain

(18)

where (19)

We now have a relationship for the optimal test statistic for
any in terms of magnitude-squared CWT’s, also known
as scalograms. In addition, is a TSR, since it is
the weighted sum of scalograms. Therefore, every point in
the TSR is the optimal test statistic for the corresponding
time-shift and scale.

When are unknown parameters, the hypothesis testing
scenario of (13) becomes a composite hypothesis test with
parameters . A uniformly most powerful rule
does not exist in this case and the GLRT which corresponds
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to the maximum-likelihood (ML) estimate of is used.
This is expressed as [7]

(20)

Using the bank of scalograms as in (18) and taking the
maximum value, we can obtain this statistic and implement
the GLRT via wavelet transforms.

The time-scale detector corresponds to a quadratic time-
scale representation with a kernel related to in (16).
Quadratic time-frequency detectors can be derived in a sim-
ilar manner, with frequency replacing scale and short-time
Fourier transforms replacing continuous wavelet transforms
in the above analysis. These equivalences lead to a variety of
implementation alternatives and additional insights; while we
discuss here only those aspects most relevant to the problem of
ultrasound embolus detection, a much more complete devel-
opment of quadratic time-frequency and time-scale detectors
can be found in [7].

IV. DETECTOR FORMATION AND IMPLEMENTATION

In this section, we outline the formation and implementation
details of the GLRT detectors used for our studies. As in
the previous section, the linear detectors are discussed first,
followed by the quadratic ones. Three different linear detectors
are considered: time-scale (CWT), time-frequency (STFT),
and time-scale-chirp (Chirp-CWT). Time-scale (TS) and time-
frequency (TF) detectors are considered in the quadratic case.

A. Linear Detectors

The implementation of the linear detectors is relatively
straightforward. An appropriate wavelet/window is selected
for the CWT and STFT via experimentation, and the GLRT
maximum magnitude search consists only of computing the
magnitude of the corresponding CWT or STFT, determining
the maximum over the range of scales or frequencies at
which emboli can appear, and comparing this maximum to a
threshold. We selected a truncated bandpass Gaussian wavelet
for the CWT, and the STFT was computed using a length-
128 Hamming window.2 It should be noted that the embolus
signal envelope and, therefore, the optimal choice of wavelet
and STFT window, is dependent upon the Doppler sample
volume which will change with the depth of the vessel.

An equivalent number of detector points were computed
in the CWT and the STFT. The CWT used 128 scales and
one-sample time shifts, whereas the STFT computed 512
frequencies with window shifts of four samples. The CWT
was computed efficiently utilizing the chirp-z transform and
fast convolution [13]. The time-scale-chirp detector used the
same CWT for nine different chirp rates, and the GLRT
search was done over this parameter space. The search over
frequency/scale in the GLRT was done only for a range
bounded by the center frequencies/scales of the measured
emboli.

2Although different windows were chosen for the two detectors, Gaussian
and Hamming windows (of optimized duration) gave virtually identical
performance for each. These windows were chosen to reflect existing practice.

B. Quadratic TF/TS Detectors

Implementation of the quadratic TF/TS detectors requires
a statistical model of the emboli centered at some nominal
time and frequency/scale. The DC components of the emboli
were extremely small anyway, and were simply removed to
fit the zero-mean Gaussian model in (13). The autocorrelation
function, , at some nominal TF/TS point was required in
order to obtain the eigenvalues and eigenvectors used in the
detector. This is not straightforward, since all of our signals
are centered at various frequencies/scales and have different
time shifts. Therefore, the training signals must be aligned
by modulating/scaling and time-shifting the data to the same
nominal point in the TF/TS plane. This aligned data was then
used to form . As in the linear detector case, is also
dependent on the Doppler sample volume and the vessel depth.

For alignment, a reference emboli, shown in Fig. 2(a),
was selected, and the signal portion of this realization was
extracted to serve as a “template.” This template was corre-
lated with modulated/scaled and time-shifted versions of the
other emboli, the scale/frequency and time shifts yielding the
maximum correlation with the template were determined, and
the other emboli signals were shifted in the TF/TS plane to
be aligned with the template. This procedure is intuitively
appealing, although many of the emboli do not have constant
frequency/scale over the entire signal, and the alignment is
occasionally not visually pleasing. Theoretical examples can
be constructed which suggest that this alignment procedure is
not optimal; nonetheless, it has yielded good results in practice.

After obtaining a set of aligned data, we compute the
correlation statistics by computing outer products of the vec-
tors, adding up the results, and dividing by the number of
realizations. In theory, this is asymptotically optimal, but a
slight complication arises here due to a consistent variation
in energy across scales. Our model assumes that scaling
is a unitary (and, therefore, energy-conserving) operation.
However, in Doppler ultrasound measurement of microemboli,
thedurationsvary with velocity (and, thus, scale or frequency),
but theamplitudesare not affected by their velocity. This poses
a problem when trying to form from the experimental
data without letting lower frequency or large-amplitude em-
boli dominate the statistics. The solution we chose was to
energy-normalize the aligned data vectors before estimating
the correlation matrix, , thus, giving each embolus an equal
contribution to .

Plots of the eigenvalues3 of the for the quadratic TF
and TS detectors are shown in Fig. 3. The first eigenvalue
dominates in both the TF and TS case, and the overall
eigenvalue spread is better for the TS detector than the
TF detector (93.6% of the eigenvalue sum is contained in
the first ten eigenvalues of the TS detector while the TF
detector contains only 80.9% in its first ten). Since most
of the eigenvalues are very small, it is pointless to include
their weight in the test statistic in (17). Thus, a reduced-
rank detector utilizing only the significant eigenvalues can be
implemented, and the overall cost of the quadratic detectors
will be approximately times that of a linear detector, where

3
R0 is normalized so that the sum of its eigenvalues is equal to one.
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(a) (b)

Fig. 3. Eigenvalues of both quadratic detectors. (a) Time-frequency. (b) Time-scale.

is the chosen rank. The individual scalograms are simply
the squared magnitude of continuous wavelet transforms (or
STFT’s in the quadratic time-frequency detector) using the
eigenvectors as the wavelets (or windows).

V. RESULTS

A patient with a mechanical aortic valve, who was previ-
ously diagnosed to have middle cerebral artery (MCA) embolic
signals that could be traced by both common carotid arteries
to the heart, was restudied with a novel pulse Doppler. The
Doppler pulse repetition frequency was 8 kHz, and each
transmit burst was comprised of 24 cycles at 2.4 MHz. The
sample gate depth was 5 cm. Signals were acquired through
the temporal bone using a wide-beam probe (7-mm diameter).
A customized headgear was positioned on the patient so the
probe could be trained on the MCA and held in position for
several hours at a time. Embolic signals were gathered, and the
time-series Doppler shift signal within a two-second window
surrounding it was digitized and saved to disk.

The SNR of the raw measurements is relatively high (about
30 dB), allowing easy visual identification and isolation of the
embolus signals. For this experiment, 95 length-1024 records,
each containing a signal from a single passing embolus (see
Fig. 1) were extracted from the time-series ultrasound data.

The performance in more substantial noise was investigated
by adding white Gaussian noise at various SNR levels (ten
realizations per embolus). Since the energy of each embolus
varied, SNR was defined to be the ratio of the average peak
magnitude squared to the noise variance. A constant false
alarm rate (CFAR) of 0.01 was set over a block of 1024
samples, thereby establishing a threshold to determine the
number of emboli detected. While this false alarm rate is
unrealistically high for a real application, it allowed accurate
relative comparisons of performance with a modest number
of trials; we expect that therelative performance of the
various detectors will remain consistent at realistic CFAR
levels. White noise appears to be a fairly accurate model of
both electronics noise and the background reflections from
individual corpuscles and other blood components (at least up
to the maximum velocity), so we believe that these results are
indicative of the performance in real low-SNR environments.

Fig. 4. Probability of detection results for quadratic TF detectors:Pf = :01.

Probability of detection results can be compared to that of
an “oracle detector.” By oracle detector, we refer to a detector
which assumes exact,a priori knowledge of the individual
embolus signals and, thus, applies the perfect matched filter for
detection. Hence, the oracle detector serves as an unrealizable
theoretical upper bound on the performance of the various
detectors. In order to remain consistent with the other detectors
in terms of the number of detector points and the CFAR
threshold, the oracle detector was implemented using the time-
scale detector with thea priori known embolus used as the
wavelet for each of the 95 emboli.

Fig. 4 shows the detection results for quadratic TF detectors
of rank one through three. We can easily see the performance
gain of a higher ranked detector; however, the gain is only
about 0.25 dB for the rank-3 over the rank-1 detector. This is
as expected, since the first eigenvalue of the aligned correlation
matrix dominates the rest as shown in Fig. 3(a). The same
phenomenon occurs with the quadratic TS detector results
shown in Fig. 5. We observe an even smaller performance
gain from rank-1 to rank-3 in this case (about 0.15–0.25 dB)
than the TF case. Since the first eigenvalue dominates more
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Fig. 5. Probability of detection results for quadratic TS detectors:Pf = :01.

Fig. 6. Probability of detection comparison of linear and quadratic detectors:
Pf = :01.

in the TS case [see Fig. 3(b)] than in the TF case, this result
is also expected. The rank-3 quadratic TS detector is about
1.25–1.5 dB from the oracle bound while the rank-3 TF is
about 1.5–1.75 dB away.

Fig. 6 is an overall comparison of linear and quadratic TF
and TS detectors. We see that the time-scale methods easily
outperform the STFT detector at high SNR’s. We estimate a
performance gain of about 1 dB for the CWT over the STFT-
based method. The more expensive chirp-CWT detector is
about 0.5–0.7 dB better than the CWT and only about 0.75 dB
from the oracle bound. It should be noted that in addition to
having at least the same or higher detector output as the CWT,
the chirp CWT will also have an equal or greater noise output
level as well, thus, raising the detection threshold for the CFAR
detector. It appears that chirp variations are indeed a problem
for the CWT detector by itself, and that chirp is a significant
detection parameter.

The linear STFT (the current state-of-the-art) is indeed the
poorest performer of the chosen methods. The rank-3 quadratic

TF detector has about a 0.5-dB performance gain over the
STFT, showing that variations among emboli are important
when using the time-frequency model. However, linear and
quadratic TS detectors perform better than the quadratic TF
detector, thus confirming the notion that microemboli detection
is best approached as a time-scale problem.

Another important observation (one which was unexpected
at first) is that the linear CWT detector very slightly outper-
forms the rank-3 quadratic TS detector in some regions. This
can be reasoned by noting that the linear CWT detector is
experimentally optimized to perform well in terms of detection
probability for the embolus set. It takes into account that
certain emboli are harder to detect than other emboli due to
varying signal energies. The quadratic TS detector is based
upon a statistical formulation of the 95 emboli with each
having an equal contribution to the resulting detector. It,
therefore, does not take advantage of certain emboli being
easier to detect than others, leaving room for the linear
detector to have a performance advantage. On the other
hand, by providing a robustness to variations in emboli, the
quadratic detector is able to have nearly the same performance.
Apparently, accounting for these variations may not be as
important as compensating for emboli which are harder to
detect. The fact that the CWT’s performance relative to the
quadratic TS detector is better at high detection probabilities,
but worse at lower detection probabilities, also supports this
hypothesis. We could have easily weighted the harder-to-detect
emboli (lower energy) in the quadratic detector formation to
achieve better results; however, this would be statistically
biased and the results might be suspect. Furthermore, it is
possible that the nonideal alignment for quadratic detector
formation as well as insufficient amount of training data may
also be a cause of this slight performance difference.

VI. CONCLUSION

This paper has reviewed the theory of linear and quadratic
time-frequency and time-scale detectors and performed a
relatively thorough case study of their application to the
Doppler ultrasound detection of microemboli. The use of time-
frequency or time-scale detectors in practice should ideally be
motivated by solid justification based on physical principles
related to a given detection problem. In the case of embolus
detection, the inverse relationship between Doppler frequency
and time-duration, which is exactly equivalent to that in time-
scale transformations, strongly suggests that the continuous
wavelet transform or quadratic time-scale detectors are ideal.
The chirping behavior due to acceleration or deceleration of an
embolus through the Doppler sample volume further suggests
the use of a chirp parameter in the time-scale detector. The
comparison of the relative performance of various detectors
presented here supports these assessments. The CWT and
the quadratic time-scale detectors yield equivalent detection
performance to the currently-used STFT at about a 1-dB lower
SNR, and the chirp-CWT detector outperformed the time-scale
detectors by about 0.5–0.7 dB.

In determining the preferred detector for a practical system,
complexity, cost, and convenience issues must be weighed
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against the relative detection performance. The use of fast
algorithms for computing the CWT allows the computa-
tional efficiency to approach that of the STFT for densely
sampled transforms. However, considerable savings in com-
putation can be obtained with the STFT when the time-step
in samples between successive FFT’s is greater than one,
whereas the known CWT algorithms cannot efficiently exploit
this reduction. In practice, this might mean that implemen-
tation of the CWT could require as much as ten times
more computation than the STFT, which must be weighed
against the improved detector performance. The quadratic
TSR can require several CWT computations while offering
similar performance as a single CWT, suggesting that they
it not be worth the added complexity in this particular ap-
plication. The chirp-CWT detector requires multiple CWT
computations to obtain its demonstrated slightly higher per-
formance, thus costing a few times more than the CWT
detector. This extra implementation cost must be weighed
against the performance gain to determine its suitability in
practice.

Comparison with an oracle detector revealed that all of the
methods studied here, including the relatively straightforward
STFT-based detectors, come within about 0.75–2.25 dB of a
theoretically unrealizable upper bound. In short, all of these
methods perform quite well, and for this application no other
non-TF/TS-based detection method could hope to achieve
more than modest improvements over the methods presented
here.
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