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Pilot-Based Estimation of Time-Varying Multipath
Channels for Coherent CDMA Receivers

Marc-Antoine R. Baissas and Akbar M. Sayebtember, IEEE

Abstract—Reliable coherent wireless communication requires for designing pilot-based linear MMSE channel estimators
accurate estimation of the time-varying multipath channel. This and for assessing the impact of estimation errors on receiver
paper addresses two issues in the context of direct-sequenceyarformance. Our framework is based on a canonical linear
code-division multiple access (CDMA) systems: i) linear min- . .
imum-mean-squared-error (MMSE) channel estimation based on channel merI that captures the e;sentlal_degrees_ of freedom in
a pilot transmission and ii) impact of channel estimation errors the channelin terms of a fixed basis. The fixed basis waveforms
on coherent receiver performance. A simple characterization of are defined by uniformly spaced delays and Doppler shifts of
the MMSE estimator in terms of a bank of filters is derived. A the signaling waveform [5]-[8]. Unlike other existing models
key channel characteristic controlling system performance is the for time-varying channels (see, e.g., [9]-[11]), the canonical

normalized coherence time, which is approximately the number o . . .
of symbols over which the channel remains strongly correlated. model eliminates the need for estimating actual physical delays

It is shown that the estimator performance is characterized and Doppler shifts encountered during propagation—channel
by an effective signal-to-noise ratio (SNR)—the product of the estimation boils down to estimating the multipath-Doppler

pilot SNR and the normalized coherence time. A simple uniform expansion coefficients with respect to the fixed basis that
averaging estimator is also proposed that is easy to implement characterize the effects of the channel.

and delivers near-optimal performance if properly designed. The : - .

receivers analyzed in this paper are based on a time—frequency We co_nS|de_r both time— and frequency-selef:nve chgnnels
RAKE structure that exploits joint multipath-Doppler diversity. ~ and provide simple characterizations of the optimal estimator
It is shown that the overall receiver performance is controlled by in terms of a bank of filters, each associated with a particular
two competing effects: shorter coherence times lead to degraded multipath-Doppler channel component. We show that the key
channel estimation but improved inherent receiver performance 4 rameter controlling the estimator performance igfiective

due to Doppler diversity, with opposite effects for longer coherence . It - tio (SNRWwhich is th duct of the pilot
times. Our results demonstrate that exploiting Doppler diversity signal-to-noise ratio ( W 'C_ IS the pro uct ot the prio
can significantly mitigate the error probability floors that plague ~ SNR and the channebherence timaormalized by the symbol

conventional CDMA receivers under fast fading due to errors in  duration. The coherence tim&t. is the duration over which

channel estimation. the channel coefficients remain strongly correlated [1], [2].
Index Terms—Doppler diversity, fast fading, MMSE estimation, Essentia”y,Atc limits the duration over which time averaging
RAKE receivers. can be done to reduce the effects of noise. Thus, longer

coherence times improve the effective SNR and, hence, the

estimator performance. We also consider a simple suboptimal

|. INTRODUCTION . . . ;
estimator—uniform averager—that is particularly easy to

M OBILE wireless channels are characterized Dy, jiement, We show that a properly designed uniform averager
time-varying 'mult!path. propggatmn effects, and aGelivers near-optimal performance.
curate channel estimation is critical to reliable coherent cpanne| estimation errors incurred due to the relatively small
communication [1], [2]. Indeed, emerging wireless standardg; in fast fading scenarios have a significant impact on the
accommodate pilot signal transmissions dedicated to chant formance of coherent CDMA RAKE receivers [12]-[16].
estimation [3], [4]. In this paper, we address time-varyindg renorted in several studies (see, e.g., [12]-[15]), the con-
channel estimation for spread-spectrum code-division m“'?‘%ntional RAKE receiver exhibits a bit-error-probability (BEP)
access (CDMA) systems that have emerged as & promisiigy que to degraded channel estimation in such conditions.
core wireless technology. Our focus is primarily on single-Us@ypije shorter coherence times (large Doppler spreads) degrade
systems employing short codeswWe develop a framework channe| estimation, it was shown in [5] that they can be ex-
ploited for additional diversity—Doppler diversity—via a time-
frequency RAKE receiver structure. Consequently, when joint
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SNRs, time—frequency RAKE receivers can significantly mitidifferent multipath delays and Doppler frequencies. The overall
gate the BEP floors that plague the performance of conventiomalisy signal at the receiver is given by
RAKE receivers.

The next section describes the canonical channel model un- r(t) = x(t) +n(t) (6)
derlying our framework. Section Il develops useful represent@heren(t)
tions for the linear MMSE estimator and discusses design ru GN).
for the uniform averager. Section IV analyzes the performance
of the estimators. Section V studies the impact of channel gg- Canonical Channel Representation

timation errors on receiver performance. Numerical results arephysical channel modeling, as exemplified by the discrete

presented to illustrate the estimator and receiver performan . S X
under a variety of conditions. Section VI briefly discusses so nggdel (4), requires estimation of the delayg,(Doppler shifts

: : . . 1), and fading coefficients}) associated with each path. The
exte_nsmns, including multluser_systems and long codes. C Anonical channel characterization [5], [6], [8], [7], on the other
cluding remarks are presented in Section VII. hand, eliminates the need for (nonlinear) estimation of delays
and Doppler shifts by exploiting the fact that the receiver has
limited resolution in frequency and time due to the finite dura-

The complex baseband signglt) at the output of a mobile tion 7" and (essentially) finite bandwidth, respectively, of the
wireless channel is related to the transmitted complex basebagthbol signaling waveforma(t). More specifically, the canon-
waveforms(t) by the relation [2] ical representation asserts that the received sig@@alcan be

I, represented arbitrarily accurately in termsfigkd, uniformly
x(t) = / h(t, 7)s(t — ) dr (1) spaced multipath delays and Doppler shifts of the transmitted
0 symbol waveform [5]-[8]

where h(t, 7) is the time-varying impulse response of the N K
channel. The maximum delay is denoted By, which is the  z(t) ~ Z Z hions (t _ ﬂ) JERT) g << T
multipath spreadf the channel. An equivalent representation n=0 k=—K B

of z(¢), which clearly shows temporal and spectral dispersion, (7)
is [2], [6] whereN = [T,,B] and K = [TB,| denote the numbers of

. B resolvablemultipath delays and Doppler frequencies, respec-
2(t) = / " / ‘ H(O, 7)s(t — 7)™ dgdt,  (2) tively. We assume théfm_ < T (neglig_ible_intersymbol inter-
0 —By ference), which is a realistic assumption in CDMA systems.
, The above representation states that the received signal is a
H(0, 1) = /h(t, T)e 2 dt (3) linear combination of a set of basis waveforms

is zero-mean complex additive white Gaussian noise

Il. SIGNAL AND CHANNEL MODELS

where the channel is characterized by the multipath-Doppler ~ k,n(t) =5 (t - %) JETRIT 0<t<T  (8)
spreading functior (8, 7). The maximum Doppler frequency
is denoted byB,, which is theDoppler spreadf the channel.
A discrete version of (2) is often used in practice (see, for e.
[9]) to model dominant propagation paths

that arefixed a prioriand do not depend on the actual physical

gelays and Doppler shifts. For CDMA waveforms with chip du-
ation T, chip rate sampling® = 1/7.) yields an approxi-
mately orthogonal basis [5]. Sub-chip-rate oversampling by a

L~ oo factor O (B = O/T.) may be used to improve the accuracy
2(t) = Bis(t — m)e? ™ (4)  of (7) but results in a nonorthogonal basis in general. All infor-
=1 mation about the channel is linearly represented by the coeffi-

where L denotes the total number of paths, and ftie cients{% .}, which are samples of a smoothed version of the
path is associated with delay < [0, 7;,], Doppler shift spreading function [see (12)]. We note that the Doppler coeffi-
6, € [- By, By], and fading gairg;. cients (indext) capture the temporal channel variatiomighin
For statistical channel characterization, the wide-sent® symbol duratiol’. Temporal channel variations over sym-
stationary uncorrelated scatterer (WSSUS) model [1], [6], [ZP!s are captured by the variation Ofx, ,, } over symbols.
is widely used in practice in which the temporal variations The representation (7) also reveals the inherent multipath-
in h(t, 7) are represented as a stationary Gaussian procdagppler diversity afforded by the channel [5]. The level of di-
and the channel responses at different lags are uncorrelaM®isity iS(N+1)(2K +1) ~ 14215, ByTB+1, B+2T'By ~
For a zero-mean channel (Rayleigh fadinghe second-order 277 Bq1'B, which can be increased by increasifigh or both.
statistics are given by Spread-spectrum signaling’ 8 > 1) is particularly advanta-
geous for exploiting channel diversity sin€g B, < 1 for typ-
E[H(0, T)H*(¢', 7')] = W(8, 7)6(6 — ¢)6(r — ')  (5) ical (underspread) channels.

whereé(.) denotes the Dirac delta function, addé, 7) isthe B. Pilot-Based Channel Estimation

multipath-Dopplescattering functio?], [6] that characterizes We assume that the channel spre@isand B, are known

the channel statistics and quantifies the channel power denSi%%riori Based on (7), channel estimation thus boils down to

2We focus on Rayleigh fading throughout this paper. estimating{ ;. »} for each symbol. The representation (7) also
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dictates projection ontéuw,. ,,(¢)} as the front-end processing For notational convenience, concatenafe, ,.(¢)} into a

at the receiver (2K + 1)(N + 1)-dimensional vectoh(z). Similarly, define
T the vector of waveforms(t) in terms of the basis waveforms
Zign = (T, Uk,n) =/ r(t)uy, (1) dt. (9) {ur,n(t)} in (8). The received signal in (10) can then be
0

compactly expressed as
The channel coefficient§hy ., } for the symbol of interest are i
estimated by processing the_ matched-filter outguts,, } over _ r(t) ~ Z ul (t — iT)h(@) + n(t). (14)
a frame of symbols to exploit the temporal channel correlation.
For a WSSUS channel, we can assume the symbol of interest to
be the0th symbol without loss of generality. We assume that Bhe matched-filtered outputs for each symbol in (9) can be ex-
frame of(2I + 1) pilot symbols is used to estimate the channdiressed as

i=—1

coefficients{hs, .} corresponding to théth symbol. The re- N ey p g
ceived signal corresponding to this frame can be represented as 2() = {r(#), u(t — 1)) = Ph() + w(i) (15)
N K wherePisa(2K +1)(N+1) x (2K +1)(N +1) matrix of cor-

Z Z Z Pien(D)tuge, n(t — iT) +n(t)  (10) relations between different multipath-Doppler basis waveforms
i=—I n=0 k=—K

T
_ * o Try 2 _ * T
where{h;, ,(¢)} are the channel coefficients corresponding toP o /u (¢ —iT)w (¢ —iT) dt _/0 wi(tu (t)dt (16)
theith symbol (I < ¢ < (i + 1)T), andn(t) is zero-mean and PR G : : ith
complex AWGN with power spectral density (PSE). w(i) s zero-mean vector Gaussian noise wit

The canonical channel coefficierts ,, () can be computed Elw(i)w(i/)"] = o;P6;—. Note thatP ~ I for chip-rate
as [5], [6] ’ sampling B = 1/T) and a unit energy signaling waveform

s(t).

E n
DN =H. 2 =
e (8) = Hi <T’ B) (11) ll. LINEAR MMSE CHANNEL ESTIMATOR

. (+1)T , We are interested in estimatiitg0) from the matched-filter
Hi(0, 7) = / h(t, T)e 720" dt outputs{z(i): —I < i < I}. Letz = [27(~1), ..., 27 (D]”
be the(27 + 1)(2K + 1)(N + 1) x 1 vector of matched-filter
/ / Je Jm(6-6)T j2wiT(e-¢')  OUPULS for the entire frame, which takes the form

z=Qhtw 17)
-sind(# — &)T)sind(r — 7/)B)d#’' dr’  (12)

whereh is the concatenated vector corresponding lng:) },
where sin¢z) = sin(rz)/(nz). It can be shown that y corresponds tqw(i)}, andQ = diagP, P, ..., P)is a
for any particular symbol the different coeff|C|entS(2_7+ (2K +1)(N +1) x (21 + 1)(2K + 1)(N + 1) block
{hr,n(é)} are approximately uncorrelated if the scatgiagonal matrix. Note thatv is a zero-mean Gaussian vector
tering function is sufficiently smooth [5], [6]. Thus,with covariance matr|xr2Q
throughout this paper, we assume that for any given A linear estimator ofh( ) from z can be represented as

B, w05 0 (D)] = E[ [Pk, n(6)*] dn—n’ ki, Wheres, f‘ﬁ ) = GHz, whereG is a (2] + 1)(2K + 1)(N + 1) x

denotes the Kronecker delta function. However, the chanr@K_H)(N_H) matrix. The linear MMSE channel estimation
is correlated across symbols, and the temporal correlatlgfbmem is thus formulated as

function for a particular coefficient can be computed using (11)

and (12) as Gopy = argmin E [I(0) — G"z|?] (18)
T (m) =Elhy, n(i)hy, (i —m)] and the solution is the well-known Wiener filter given by
1
/ / (6, 7)sinc (k — 67) Gop = (E[zz"]) " E[zh"(0)]

— (QEMRhY]Q+02Q) ™ QE[LRY(0)]

H 2\ 1 H
The frame size parametérin (10) depends on the channel o (E[hh Q-+ JPI) E[bh™(0)]. (19)
coherence timet.. While I can be chosen arbitrarily large inwe next investigate the structure 6f,,; in special cases to
the case of optimal estimatotsts choice is critical in the case gain more insight. We start with the case of orthogonal basis
of suboptimal estimators, such as a uniform averager that simplsveforms.
averages the matched-filter outpujs,, (¢) over the frame. Es-
sentially,2] should be on the order of the normalized coherenée Orthogonal Basis

time At./T ~ 1/2T B, for suboptimal estimators. This case corresponds to chip-rate sampling of the

3The optimal estimator implicitly averages over an effective frame size cont_patChed'ﬁl_ter outputs,_that_isB = I/T. in (7). As_men'
mensurate with\z... tioned earlier,P ~ I in this case. Furthermore, since the

-siné(n — 7B)e? ™ 4 dr. (13)
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different h,, .S are uncorrelated, it follows that each z () Z.0) S A (v N ()
can be estimated separately. For edéhn), we concate- 2O FT 5 - - SO FT-1
nate the coefficientdhy ,,(¢)} for different symbols into a Snl¥) +5;

(21 + 1) vectorhy ,,. Similarly, definezy,,, andwy,_,, with
z = hy , + wy The estimator for eachk n) can be Fig. 1. Frequency-domain Wiener filter representation for the optimum
o e S ) NI X estimator of a particular multipath-Doppler channel coefficient.
expressed a8y, »(0) = 8. nZk, s with the optimal estimator
iven b . : -
g y tical for different channel coefficiems
8t,m,opt = (R, +051) 10, (20) E[h@)h ()] = r(i — )T (23)

whereRy, ,, = E[hy ,hi’ ], andry , = E[hg A%, (0)]. The where we assume, withoutloss of generality, that) is the cor-
(21 + 1)-dimensional cross-correlation vectey , is given by  relation function of thek, n) = (0, 0) coefficient, and the di-
agonal matrix® denotes the powers in the different coefficients
relative to that of th€0, 0)th coefficient. Consider the eigende-
o = [Phn(=D)s oy 7 (DT (21) compositionP/?I'P+/? = UAU¥, whereU is a unitary ma-
trix, andA is a diagonal matrix. It is shown in the Appendix that
and the elements of the!l + 1) x (21 + 1) correlation matrix the overall estimato&.,, in (19) can be expressed as

R; . are given by Gop = Q—l/QVGOmVHq—l/Q (24)

where V. = diagU, ..., U), and G,y = (E[zz"])!
Ry, n(l, m) = 73, n(l = m), 1<l m<2l+1 (22) E[zh? (0)] acts on the transformed matched filter outputs
o _ 7z = [ (-D--2" D" = VIQ 2z = h + w. Gp
wherery, »(m) is given by (13). Due to the Toeplitz structurgs the MMSE estimator of the transformed channel coef-
of Ry, induced by the WSSUS channel, in the limit ofjsients n(0) from z. Recall thatQ = diagP, ..., P),
large I, the estimator for each multipath-Doppler channglng thys, the transformation for each symbol takes the form
coefficient can also be interpreted as a linear time-invaria@&) = UHP-1/25(7). The matrixQ—1/? whitens the noise
filter {g,n,opt(m)} that acts on the sequendex,n()}: w(4), and the unitary matrixU¥ further decorrelates the
i, n (i) = 30— o Ghn, opt(M)2a, n(i — m). Consequently, transformed channel coefficients without affecting noise
for large I, the estimator also admits a frequency-domaycture. Sincgz(i)} are only correlated across symbols, the
representationy, (i) = f_{/Q G,y opt (V) Z1, n(v)e?*™" dv,  structure ofG,,,, is similar to that in the orthogonal case; the
where Gy, n opt(V) = 3200 Gk n opt(m)e™727™ s the  (k, n)th component ofh(0) can be estimated independently
discrete-time Fourier transform (DTFT) 0§, n, o (m)}, and by processingzi, ., = [z, n(—1), ..., z o(I)]* via the
similarly, Z, () isthe DTFT of{ 2, (¢) }. The frequency do- estimatorgy ,, opt
main representation is depicted in Fig. 1, where the optimal esti-

mator is represented 5., opt () = (Sk, n(¥)/ Sk, n(V)+07) () =é£fn,optik,n

in terms of the PSDS, ,,(v) associated with the correlation - v 1

sequencery ,(m): Sk n(V) = Yoo 7k, n(m)e iZmm, 8k,n, opt = (A n R+ 0, D)7 Mg ot (29)
This is also the eigen-domain representation of the estimajgtare {AK,0,-++) Ak,ns -+, Ak, N} denote the diagonal

since complex exponentials are the eigenfunctions of (Toeplitgkms ofA. R = Ro o, andr = ro . Note that the form of
Ry, in the limit of larges [17]. the estimator in (25) is identical to the estimator in (20) under

the assumption of identical temporal correlation structure for
B. Nonorthogonal Basis different channel components.

At chip-rate sampling, there may be some loss in the signaIDue to the Toeplitz structure AR, the estimator (24) also

representation (7) due to the bandwidth approximation. &dmits a frequency domain representation for lafgevhich

noted earlier, oversamplingd( = ©/T.) the matched-filter is illustrated in Fig. 2. Note that the pre and postprocessing
. infig. 2 is in terms of? and U sinceQ = diagP, ..., P)

outputs improves its accuracy. In this case, the correspondlﬂd: . : ; )
basis waveforms (8) are no longer orthogonal; thaPis# 1. andY = dlag(U,Jr-c;o-, U). 5(1’2j'257rg‘ye PSD associated with
However,{h;. ,, } are still approximately uncorrelated if over(m): S(v) = 35,2 r(m)e . The different vector
sampling commensurate with signal bandwidth is empby&(j)mponents in Fig. 2 are uncorrelated after the preprocessing
[5]. In this case, the noise vectev(¢) in (15) has correlated by

P1/2UH P is completely determined by the basis wave-
components, and thus, joint processing is needed across mifimsu(?), andU depends o and the channel statisti€s
path-Doppler coordinates as well as across symbols. However,

ey . .’ Suboptimal Uniform Avager
as demonstrated next, with simple pre and postprocessing, this P 9

case can be transformed into the simple orthogonal-basis cas&Ve have shown that the optimal MMSE estimator can be de-
where joint processing is needed only across symbols. composed into a bank of independent estimators [see (20) and

In Qfdef to deri\_/e the estimator StrL.JCtu reinthis F:asje' We makeThis delay/frequency separabilityf the spreading function is assumed in
the mild assumption that the correlation structure in time is idetther works as well, see, e.g., [18].
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A0S where
-

o AL
_ wlot c
= SNKF e

~ 31
O’%ZTBO{ rng (31)

iz

20 [ 129 g2 gn 5_)___’3_-:_?_(1)___»;[, P'Hzg\;)FTﬂ and we have used the approximate relativty, =~ 1/2B,

DA S 402 between coherence time and Doppler spread [2]. The estimator
: performance in this idealized case is characterized by the
; ; effective SNR (SNR'/) that is the product of the pilot SNR
S = SNRF“”* = r(0)/02 and the normalized coherence time

At./T. As is evident from (30)0? ;,.,, is @ monotonically

. . . . . . decreasing function of SNR/. Thus, asAt./T increases,
Fig. 2. Frequency-domain representation of the optimum estimator in t

. " L » ff i i i i
case of a nonorthogonal basis. The Fourier transform acts in tir{e@n} . ﬁ\|R€ mcrgases, rESU|t'ng n reducﬁ, ideal? which '_S
P-1/2U¥ andUP~'/2 act on the different vector components. consistent with the fact that largek¢. /7 enables averaging

over more symbols to reduce the effects of noise. The idealized
xpression (30) is very useful in practical design since it re-
ires minimal information about the channe{() and At.].
particular, as shown next, it can be appropriately calibrated
mimic the true MMSE in (29) fairly accurately.

We now present some numerical results to illustrate the utility
of the idealized MMSE expression (30) and to compare the per-
formance ofg,,: andg,.;s in a single-path channel. For all
unif = Gunifl (26) numerical simulations in this paper, the time-varying channel
is simulated using the Jakes Model [1], [19] corresponding to
a data rate of 2500 Hz and a carrier frequency of 1.8 &Hz.
We consider a spread-spectrum system with a spreading gain of
64. Four samples per chip (256 samples per symbol) are used
to simulate the signals. A randomly generated binary spreading
code is used in the simulations for the pilot channel. The MSE
can be computed analytically fge,; via (28) and fogg,,..; r via

(32). For the numerical results, the theoretical MSE is computed
IV. ESTIMATOR PERFORMANCE via these two expressions by using statistics estimated directly

In this section, we analyze the performance of the proposé@Mm the Jakes model. o '
estimators under various conditions. Our results demonstraté 9. 3 illustrates the use of the idealized MMSE expression
that the simple uniform averaging delivers near-optimal perfo@o) for assessing the performance of optimal estimator.
mance for proper choice of frame lengih We also provide Fig- 3(@) shows three curves far ;4.0 @s a function of
guidelines for choosing in practice. SNR/. The solid curve corresponds to (30). The dashed

We analyze the orthogonal-basis case without loss of geturve corresponds to a calibrated version of (30) to match the
erality. Furthermore, due to the decoupling between differefitte MMSE in (28) of the optimum estimator at 30 km/h, which
channel components, we analyze the estimator for a particugcomputed using Jakes statistics. The calibration is done by
component and drop the subscri@t »). The MMSE associ- scaling SNR// in (30) with an appropriate constant. [The

ated with the optimal estimatey,,; for a given componentis true MMSE ofg,,; as well as the calibrated idealized curve
at 30 km/h are plotted in Fig. 3(b) for reference.] The asterisk

(25)]: one for each multipath-Doppler channel coefficient (oef
transformed coefficient in the nonorthogonal case). The Optiﬁ]%tf
estimator requires knowledge of channel statistics and involves
a matrix inversion. We also propose a simple suboptimum u}ﬁ)—
form averaging estimator that is easy to implement:

wherel = [1, 1, ..., 1]¥. Note thatg,.; ; performs a uniform
averaging of th€2l + 1) matched-filter outputs. For compar-
ison with the optimal estimatot,,,;¢ is chosen to minimize
the MSE and is given big,.iy = (rf’, 1/1% (Ry, , + o2)1).
Note that the actual value ef,,.; ;(>0) is not important for bit
detection in the case of linear receivers.

0% =F [|h(0) _ ggﬁzm (27) curve in Fig. 3(a) corresponds to further scaling SNRin
' the calibrated (dashed) curve by the factor 30/80 to yield an
=7(0) [1 _ LrH(R+OQI)—1r:| (28) idealized curve for predicting the performance at 80 km/h.
7(0) P Fig. 3(b) compares the theoretical performanceggf; at

B, ) 80 km/h, based on Jakes model statistics, with the predicted
— 11— 1 57(”) dv 29) performance in Fig. 3(a) (the asterisk curve). Note that the
r(0) 3 (29) _ , ,
r(0) J_rp, SW)+o; true performance of,,; at 80 km/h is approximated fairly
_ _ o accurately by the predicted curve.

where the last equality holds in the limit of lardeTo get an  Fig. 4 compares the theoretical and simulated performance

insight into the effect ofAt, andag on the MMSE, we consider gf Zopt ANdg.nir (I = 5) at a speed of 80 km/h. Theoretical
the simple case of an “idealized” uniform Doppler spectrunMSE is computed analytically using Jakes statistics via (28) and

thatis,S(v) = S, for v € [-TBq, T'By]. It can be readily (32), and simulated MSE is computed by directly averaging the
shown that in this case,? reduces to
SThe low data rate and relatively high speeds in some cases are chosen to em-
phasize Doppler effects. Time-selective signaling schemes that use sufficiently
a2 . _ 7’(0) (30) long, overlapping symbols [20], [21] may be used to induce such Doppler ef-
e, ideal ™ 14+ SN Reff fects under realistic data rates and fading conditions.
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Fig. 3. (a) Optimal estimator MMSE curves based on the idealized flat spectrum approximation in (30). (b) Comparison between the true théoretarat@er
of g,,+ and its predicted performance at 80 kmIhZX,; = 0.05) based on the calibrated idealized curve in (a).

estimator MSE over 50 000 symbols. Note that simulated an
theoretical curves are virtually indistinguishable, demonstratin  ggf - AN | o OPT.EST.(SIM.)

close agreement. However, the performancg.@f s is slightly
degraded compared wiy,,; due to mismatch of with At
(smaller! yields near-optimal performance).

We now investigate the dependence of the MSg.gf  on/
to guide its design. The MMSE @f,,,,; ¢ (Using optimumn,,; ¢)
can be expressed as

= E[|h(0) — g.5,is2I]

1 (o)

=7(0) [1-—=
MO S S i— )+ @+ 1)e2

1=—1j=—1

(32)

For the idealized flat spectrum, (32) becomes

092,, ideal, unif (I)

. 2
TBg sin[mv'(2I+1)]
( 7T§d sin(we’) dl//)

; 2
B sin[wy’ ilo
T, (B CIE) s o (21 + 1)/SNR!
(33)

11— . . ’ .
' [ — OPT. EST. (THEOR.)

1-- UNIF.EST. (THEOR.)
* UNIF. EST. (SIM.)

0.4

90 -30 -20 -10 0
, SNR (dB)

Fig. 4. Comparison of theoretical and simulated performanceggf:

and g...;s (frame length 11;/ = 5) at 80 km/h 'B, = 0.05). The
continuous lines are the theoretical curves, and the marked points correspond to
simulation data points. The theoretical and simulated data points are virtually
indistinguishable.

SNR¥*t, Furthermore, the sensitivity of? ;. ,; ,n.;; around
the optimum frame size as well as is value increasesinigt.6

Fig. 6 compares the performancegy,: with that of g, s
as a function of SNR* for two values of’By: 0.1 and 0.2.
The lengths of the uniform averager are chosen using the plots
in Fig. 5. We use the best lengths for the uniform averager at
both 10 dB and 20 dB SNR for comparison. Using Fig. 5(b), the
best length fofI’B; = 0.1 is approximately 5 at 10 dB SNR
and 3 at 20 dB SNR. Similarly, from Fig. 5(c), the best length

Note thato? ., ...; iN (33) does not depend on detailedor By = 0.2 is approximately 3 at 10 dB SNR and 1 at 20 dB
channel statistics; it only depends on SNR, TB,, andl and SNR.We note thatthe MSE gf,.;  is very close to that of ,,.¢,
can thus be readily computed. Fig. 5 plots; .., uniy @S @ particularly at the SNR for which the length is optimdrnthis

function of the frame length2¢ + 1) for three different values

6Similar observations are reported in [16].

of T'B,: 0.02 (30 km/h)' 0.1 (150 _km/h)’ and 0.2 (300 km/h). "Note also in Fig. 6 that, as expectegl,.,, ; with longer length performs
We note that the optimum frame size depends on a8 and better at lower SNRs, whereas it performs better at high SNRs with short length.



BAISSAS AND SAYEED: PILOT-BASED ESTIMATION OF TIME-VARYING CHANNELS 2043

1 T T T 1
0.9} : : 09t
08 ..... 08_
0‘7 0.7_ ..........
QB+ -oororeeer 0.6}
w w
Zos Los)-
s s
0.4 0.4}
03 .............................. . .. 03_ . 7 ‘ ....... SNR - O dB
B S %" |=— SNR=10dB odba _— ~— SNR=20dB ||
OB, Tverenerrriie” e SNR=20dB oA »
% 20 ' 80 100 % 10 ' 40 50

20 30
FRAME LENGTH
@ (b)

02k ff i —e SNR=10dB .
' s SNR =20dB
Ot b fl e . : B
OM ) : 1 i
0 10 20 30 40 50

FRAME LENGTH
©

Fig. 5. Idealized MSE of the uniform averager [see (33)] as a function of the frame ledgth). (a) 7' B, = 0.02 (30 km/h). (b)T'B; = 0.1 (150 km/h). (c)
TB,; = 0.2 (300 km/h).

shows that for an appropriate choicelgothe uniform averager improvementn inherent receiver performance due to Doppler
can deliver near-optimal performance. Furthermore, the choidigersity. At sufficiently high pilot SNRs, Doppler diversity
of I can be based on the idealized MSE expression giveneffects can dominate, resulting in improved performance.
(33), which only depends dfiB; and SNR#“°t, The optimum  We consider binary phase-shift keying (BPSK) as the sig-
values off for g,,,,;; identified here are used in the next sectionaling scheme. The channel coefficietts, ,,} are estimated
to compare the overall receiver performance based on the twa a pilot signal corresponding to a particular spreading
estimators. code. Simultaneously, data bits are transmitted over the same
channel via a different spreading caddeThe PSDs of the
AWGN in the pilot and data channels are denoted
and o2, respectively, with the corresponding SNRs given by
SNRpiet — E[||h]|*]/o? and SNRete = E[||h||?]/03. For

The receiver considered in our analysis exploits joint multsimplicity, we ignore the interference between the pilot and
path-Doppler diversity via a time-frequency RAKE structurdata signals—interference suppression techniques tailored
[5]. In contrast to results reported in the literature for th& our framework can be readily incorporated [22], [23]. We
conventional RAKE, our results show that channel variatiorsdso assume orthonormal basis waveforms for both the pilot
that are fast fading do not always impair receiver performanead data signals. Finally, under our assumption of negligible
when a time—frequency (TF-)RAKE receiver is used. In fact, _ _ _ ,

It can be shown thath,. ..} associated with two different codes with the

the receiver performance is d_ete_rmined by tW"Peting same time-bandwidth product are nearly identical if they encounter the same
effects under fast fadingtegradationn channel estimation and propagation channel [5], [6].

V. IMPACT OF CHANNEL ESTIMATION ERRORS
ON RECEIVER PERFORMANCE
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Fig. 6. Comparison of thg,,: (I = oo) andg...;; with appropriately chosen frame length based on Fig. 5I'@) = 0.1. (b) T B, = 0.2.

intersymbol interference (ISl), the “one-shot detector,” whictvhere they is the conditional SNR per bit given by
decodes each symbol independently, suffices. We consider the y
detection of the Oth bit without loss of generality. (E [ﬁHZdD (22

The output of the matched filters for the data signal is v = - =5 R (38)
var [thd} h#R.h + [|h|[?c] + o5 tr(R.)

zg = bgh +wy (34)
whereR. = Elee’] = diag{s? , ,} is the diagonal error
wherew, is zero-mean AWGN with covariance matti¥I. The covariance matrix. We make two apprOX|mat|ons to facilitate
maximum-ratio-combiner (MRC) detector based on estimatedalysis. F|rst we replace the quadratic fottﬁ’R,h =

channel coefficients is 2k [P, nl? o-e k. DY its upper bound|h||*s? ... Where
. . 02 max = lnax{ap k) Second, we assume that the product
by =sign (real{thd}) a2tr(R.) is neghglble compared with the other terms in the

denominator of (38). With these approximations, we have

N K
=sign <real{z Z hz7nzd,k,n}> . (39 L N |hk nl?

K
n=0k=—K e —— Y E E Ykn Yk,n =
2 )
ae, max +o

+02
k=—K n=0 e max d

Let C = realhz,) denote the decision statistic. Assuming (39)
thatb, = 1 is transmitted, the BEP iB, = Pr(C < 0). where v, is the conditional SNR per bit for thek, n)th

Exact calculation of>. in the presence of channel estimatioghannel component. This approximate system is equiv-
errors is fairly complicated if not intractable. We provide aglent to BPSK communication over a Rayleigh fading
estimate ofP, based on some simplifying assumptions that afdannel W'th(N + 1)(2K + 1) level diversity and AWGN
supported with simulation results. Conditioned on a particul@f variance 02 max T 03 [2]. The average SNR per bit

value of?,, ., we model the corresponding estimated,, as a for different channel components Ben = Elmnl =
Gaussian random variable Tk, n(O)/(Uf max + 03). Using the expressio(z) =
X (1/7) fo exp(—(22/2sin*(#))) d [24], the conditional
Pi,n = Pie,n + G, n (36) BEP in (37) can be averaged over the statistich db yield

[24]

wheree, ,, is zero-mean Gaussian with vanarmjek corre- K N
spondlng to the MSE of the channel estimatdihe BEP con- / 1—1 H

—1
’Yk n
ditioned on{/;. »} is given by [2] < i ) df. (40)

k=—K n=0

Pe(v)=Q (\/ 2’?) (37) _
A. Numerical Results
) o ) ) ) We now present some numerical examples to illustrate the
9Note that this model is strictly not correct since the channel estimate is bia

in general. However, assuming the error to be Gaussian is not unreasonable jm%aa of At., the pllOt and data SNRs, and level of dlverS|ty
the estimator is linear, and the noise is Gaussian. on the overall receiver performance with estimated channel co-

100(x) = (1/v/2m) [ e~/ du. efficients. As noted earlier, the performance of the TF-RAKE
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Fig. 7. Comparison of conventional and TF-RAKE receivers using the optimum channel estimator. (a) Simulated performancee'dt SNEO dB. (b)
Theoretical performance at SKR°* = 10 dB. (c) Simulated performance at SNR* = 20 dB. (d) Theoretical performance at SNR* = 20 dB.

is governed by two opposing effects; B#, increases, the in-  We study receiver performance in the single-path case=(
herent receiver performance improves due to Doppler diversity, We compare two receivers: a conventional RAKE that does
whereas channel estimation degrades. We consider the practicalexploit Doppler diversity and a TF-RAKE receiver that ex-
situation wherd’ B, < 0.2 so that the level of Doppler diversity ploits joint multipath-Doppler diversity [S|: The two receivers
is at most 3 £ = 1). The performance gain due to Doppler diare compared for the same type of channel estimator (optimal
versity depends on the ratio of the powerinkhe —1ork =1 or uniform averager).
Doppler components to the total power in the three componentsThe performance of the conventional and TF RAKE receivers
[5]. For a flat Doppler spectrum, this ratio can be computed asth optimum channel estimators is compared in Fig. 7. The
[5] comparison is made at three different valued'éf, (0.02, 0.1,

0.2) and two pilot SNRs: 10 and 20 dB. The optimum estima-

TBa G208 1V43 tors are based on statistics estimated directly from the Jakes
p(TBy) = —7B, SN (B—1)df ) model. Fig. 7(a) compares the simulated performance (Monte
Tk sin@(B)dp+2 [ sind(p—1)d3  Carlo averaging over 100000 symbols) at SNR = 10 dB.

The performance of the conventional RAKE progressively de-
grades with increasin@ B, due to errors in channel estima-
We note that the total channel power remains constafitas tion. Similarly, the performance of the TF-RAKE degrades as
varies; only the distribution of power over the componengBd increases from 0.02 to 0.1. However, its performance im-
changes. A4’ By increases (shortekt.) p increases, and the
diversity gain increases.

(41)

1INote that there is no multipath diversity (single path) in our comparisons
for the sake of simplicity.
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Fig. 8. Comparison of conventional and TF-RAKE receivers using the uniform averaging estimator. (a) Simulated performaneé‘<it SNEO dB. (b)
Theoretical performance at SKRR°* = 10 dB. (c) Simulated performance at SNR* = 20 dB. (d) Theoretical performance at SNR* = 20 dB.

proves relatively ag’ B, increases from 0.1 to 0.2, indicatingincreased significantly beyond the pilot SNR (the beginning of
that the diversity effects dominate estimation error effects. @mat trend is evident from the plots).
the whole, there is a net degradation in performance in goingFig. 8 repeats the comparisons in Fig. 7 for receivers using the
from T B, = 0.02 to T'B; = 0.2. The corresponding compar-uniform averaging estimator. Using Fig. 5, the following frame
ison between the theoretical performance of the two receiverdémgths are used for the uniform averagef' &, = 0.02, 0.1,
Fig. 7(b) follows similar trends. However, the theoretical curveand 0.2, respectively: 1§ = 7),5({ = 2), and 3({ = 1)
slightly overestimate the simulated performance in the caseatfSNR#*“* = 10 dB; 9(I = 4),3(I = 1), and 1(I = 0)
the TF-RAKE receiver. at SNR¥°* = 20 dB. At SNR*** = 10 dB, the simulated
The plots in Fig. 7(c) and (d) show similar simulated/theg@erformance of the RAKE and TF-RAKE receivers is virtu-
retical comparisons at SNR°* = 20 dB. In this case, the loss ally identical, even though the theoretical comparison shows
in performance of the RAKE with increasifigB, is much less slightly better performance for the TF-RAKE. Overall, the per-
pronounced due to improved channel estimation. Similarly, tfi@mance degrades with increasiii@,. On the other hand, at
improvement in performance of the TF-RAKE is much mor&NRPi°* = 20 dB, the performance of the TF-RAKE receiver
significant. It improves monotonically 33, is increased from first degrades a¥'B, goes from 0.02 to 0.1 but then improves
TBy =0.02t0o T By = 0.2, resulting in a net gain of about 7-8at7' B, = 0.2, yielding a slight net gain in performance relative
dB at a BEP of 103. The agreement between the simulateth B, = 0.02. Nevertheless, the TF-RAKE performs signifi-
and theoretical curves is also closer in this case due to improwahtly better than the conventional RAKEZEB,; = 0.2 since
channel estimation. Note, however, that the performance of tiwe latter suffers significantly due to channel estimation errors.
receivers eventually saturates (BEP floors) as the data SNRie gains due to diversity dominate the loss due to estimation
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errors in the TF-RAKE, resulting in significantly better perfor- VI. RELATED ISSUES ANDEXTENSIONS
mance compared with the conventional RAKE.

We conclude from Figs. 7 and 8 that with a reasonably strong
pilot signal, the TF-RAKE using a simple uniform averaging
estimator can significantly mitigate the BEP floors exhibited by
the conventional RAKE under fast fading. On the other hand,
a TF-RAKE armed with a better (MMSE) estimator not only o . . .
provides resistance to BEP floors but can yield significant gainsIn addition to the unlfor_m averager, another _suboptlmal esti-
in performance due to Doppler diversity. We emphasize that fgtor that may be u;ed In practice Is ttmrrel_atlon aveager
above comparison was based on a single path. The gains 8 = %orrTk,n, Which performs a correlation-weighted av-

to Doppler diversity will be relatively smaller in the presencg_raglng of the matched filter outputs. However, based on our

of multipath due to diminishing gains with increasing diversitZ!mUIanon_ results (which are not reported here), a prope_rly de-
levels. igned uniform averager performs as well as the correlation av-

erager.
B. Asymptotic Performance for Large Number of Components The framework presenteq in this paper can be. readily
eéxtended to systems employing long codes—the key difference
We now analyze the asymptotic behavior&f for a large peing that the optimal estimator becomes time-varying and,
number of channel components, which is analogous to the fRus, imposes a higher computational complexity. In (10), the
sults reported in [25) We assume that the total channel powegoefficients (A4 ,,} remain the same, but the basis functions
o, = E[|[u]]*] remains constant and is equally distribute@hange—the basis functions for tite symbol are determined
among the different multipath-Doppler components. Thus, th§ the time—frequency shifted versions of the corresponding
decision statisti€’ = realh” z,) = real}",, >, i} .74,x,») segment of the underlying long code. Consequently, the basis
is a sum of independent, ide[ltically distributed statistiGsrrelation matrixP in (]_5) and the estimator matr@opt in
Ck,n = hj 74,1, n- Recalling thaty, ,, = g, .2k With  (19) are different, in general, for each symbol. From Fig. 2,
8k, n, opt 9iven by (20), the mean and variance@f ,, can be we note that the additional computational burden is the eigen-

Here, we briefly discuss some related issues:

¢ another suboptimal estimator;

« extension to long codes;

e extension to multiuser systems;

« joint channel estimation and data detection.

computed to be decomposition of thé NV + 1)(2K + 1) x (N + 1)(2K + 1)
u , matrix P/2T'P/2 for each symbol, which is not too stringent
E[Cy,n] =17 8opt = 7(0) — o, (42) since(N + 1)(2K + 1) is typically small. It is important to
afCy ] =E[Cs ][0 21 = (r" g, )[r(0 2 note that this symbol-by-symbol recomputation is only needed
varCi, ] [Ch, ][72( + ol 5 (7 8opt)[r(0) + o] for oversampled systems employing long codes—there is no
=[r(0) = o][r(0) + 4] (43)  additional computation burden in the case of chip-rate sampled

) ) systems sinc® =~ I in that case.
where(0) is the power in each channel component, add "~ channel estimators developed in this work can also be

is the MMSE in the estimate of the channel component. Thg,ily employed in multiuser systems. Essentially, an initial
second equ_alltler_ above follow from (28). For a flat spectrufferference suppression stage is needed before the single-user
approximationy; is given by (30), and the above expressionggtimator is applied. The interference suppression stage can be
can be further simplified to implemented either in a centralized [26] or a decentralized [22]
fashion. In particular, the decentralized scheme in [22] uses pro-
[#(0) + 03]  jections onto basis functions of the form (8) thatdigtsidethe
channel spread to suppress the interference corrupting the infor-
(44) tion beari ignal within the ch I d. See [22] fi
wherea = At,/o>T. Let M = (N + 1)(2K + 1). Then, mation bearing signal within the channel spread. See [22] for
r(0) = o2 /M and more details. .
: Finally, while we addressed channel estimation and data de-
tection separately, we now make a few comments to justify this
(o3 /M + a3). approach by casting the problem in a joint fashion. Let

(45)
By applying the central limit theorem, it can be shown that as z,(¢) = Q,h+ w, (i), zq() = b(0)Quh + wy(i) (46)
M — oo, ¢! = /M C converges to a zero-mean Gaussian
random variable with variancejoj; At. /2077 > 0. Conse- pe the matched filter outputs for the pilot and data signals. Let
quently,Pe = PI‘(C < 0) —> 05 as the nu'mber of Channelz(i) — [Z’IZJ(IL) Z?;(IL)]T We are interested in decoding the bit
components /) grows arbitrarily large. This shows that foryectorb = [b(—1), ..., B(1))T from {z(i): i = —1, ..., I}.

any given pilot and data SNRs, the overall receiver performanggnsider maximum likelihood (ML) estimation bf

eventually starts degrading as the number of diversity compo-

nents increases. This is due to progressively significant errors -
. o . prog y s b=arg max p(z|b, h, I) 47
in channel estimation since power in each component becomes be{—1,1}N

vanishingly small.

12The number of multipath-Doppler components increases Withfor a  Wherep(z|b, -h, I) denoFeS the cpnditional density afgiven
fixed spread factof’,,, B,. b, h, and/. Sinceh constitutes nuisance parameters, we replace

r2(0)a
1+7(0)a’

2(0)a

E[Cy,n] = TFr(0)a

varCh, ] =

4 4
T X (e84
’7LQ7 varC] = R
M+ o5 2

Ble] = (M + o2a)
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it with its ML estimate, which can be shown to be on the effective SNR is proposed for practical design. While the
optimal estimator requires knowledge of channel statistics, our
~ . , . results demonstrate that a uniform averaging estimator of appro-
by = 2] ) (Qp+ Q)™ Y [2(0) + b()za(0)]. (48) priate length can deliver near-optimal performance—the length
=1 can be chosen based on the “idealized” design curves.

We show that there are two competing effects controlling
overall receiver performance: degradation in channel estimation
versus improvement in inherent receiver performance (due to
Doppler diversity) under faster fading. Our results demonstrate
(z: b, T) that Doppler diversi_ty can be _fr_uitfl_JIIy exploited via at_ime—fre-

. guency RAKE receiver for mitigating BEP floors exhibited by
= log(p(z[b, h = hML’ 1) the conventional RAKE under fast fading. We note that Doppler
I diversity gains are not directly attainable under practical fading
()(Qp + Qu) " za()) conditions sinceél’ By is typically not large enough. However,
i=—1 j=—1 time-selective signaling schemes that use longer (possibly over-
lapping) symbols (see, e.g., [21]) may be used to achieve desired
values of7’B, (~0.2) in practice.

I

The bit detection problem becomés = arg maxpe{_1, 1}~

p(zlb, h = by, I I) using the compressed likelihood. Up ta
some additive constants the compressed log-likelihood is

I I

real Z Zb Dz ()(Qp + Qu) " 2,(j)

1=—1j=—1

(49) APPENDIX

We derive (24) for the MMSE estimator in the case of a
wherec represents a component that does not deperid ®he nonorthogonal basis. The optimal estimator (19) can be written
above expression is analogous to the log-likehood of an interfas
ence channel, where the second term represents the interference
between symbols. However, if the powers corresponding to dffop: = Q™ /*(Q'/?E[Mh/]Q'/? 4 o2T)~' Q"> E[hh " (0)].
ferent symbols are comparable (which is the case here), then (51)
the interference term may be neglected (and lumped into back-
ground noise), as is done in the use of the matched-filter receitider (23), we hav&[hh ] = R@I' andE[hh’/ (0)] = r@T,
in conventional CDMA systems. Ignoring the interference termhereR = Rg o, r = ro ¢, and@ denotes the Kronecker
in (49), we arrive at the following (decoupled) bit decisions thadroduct [27]. Thus, (51) can be equivalently expressed as
maximize the compressed log-likelihood

Gopr =Q7(QV*(RIQV’ +0,1)7'QV(r o)

ZAJ(L) :sign{rea| [Zg(t)(Qp + Qd)—lﬁ] } _ Q_1/2(R ® (P1/2FP1/2) + JQI)_lQl/Q(I‘ ® F)
p

i=—1,...,1
(52)
T
_ 1 . 50
P =571 > 2()- (50) where the second equality follows from the fact that
g==1 QY/? =diagP*/?, ..., P%/?). Using the eigendecomposition
— H

The above detector is an MRC of the form (35), which usdd”/’TP'/? = UAU", we have
h = (Q, 4+ Qu)~'7, as the channel estimate. This estimate _12 = 21 1/
essentially corresponds to the uniform averager since we are aFort =Q (R (UAUT) +o, )7 Q7 (rol)
suming that the channel remains constant over the frame. How- —Q VR oA+ VIQ2rel)  (53)
ever, the constant-channel assumption was made only to give a b
simple argument to justify our decoupled approach to chanfgherev = diag U, ..., U) inthe second equality, and we use

estimation and bit detection. The optimal estimator does betfgg fact thatV is unltary sincdJ is unitary. Using the eigende-
than the uniform averaging in (50) since it accounts for channedmposition, we also have

variations within the frame.
VEQY2(roT) =r @ (UXPYT) =r @ (AUZP~Y/2)

VII. CONCLUSION
=(ro A)VQ~Y2 (54)

We have addressed pilot-based linear MMSE estimation of
time-varying multipath channels and its impact on coherent rBy substituting (54) in (53), we arrive at the following expres-
ceiver performance. A critical channel characteristic controllingon for G
system performance is the coherence time, which is inversely
proportional to the Doppler spreds);. We have shown thatthe G, = Q"?*V(R® A + 0—21)—1(1« ® AYVHQ~/? (55)
MMSE estimator admits a simple characterization in terms of
a bank of filters. The estimator performance is governed by arich can be interpreted as follows. Consider the trans-
effective SNR, which is the product of the pilot SNR and théormed vectorz = VZQ~1/2z, which results inz(i) =
normalized coherence time. An “idealized” MMSE curve baséd "P~1/2z(i) = h( ) + w(4), where E[w(i)w(i')"] =

opt:
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0216;_;s, andE[h(i)h ()] = r(i — j)A. The linear MMSE
estimator oth(0) from z is given by

[19]
[20]
Gop = (E [22]) 7 E |22 (0)]

- [21]
= ROA+) (roA) (56)

and thus, (55) can be expressed @s,, Qv [

G, VI Q~1/2 which is precisely the form in (24).

[23]
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