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Abstract—The capacity of MIMO systems under ideal (i.i.d.)
channel conditions has been shown to increase linearly with the
number of antennas. Capacity scaling is observed in a corre-
lated channel environment as well but the constant of scaling is
shown in [7] to be less than that of the i.i.d. scaling factor. Us-
ing a channel representation motivated by physical scattering con-
siderations, the virtual channel representation, we show this ef-
fect does occur provided the number of effective scattering paths
keeps asymptotically increasing with the increase in the number of
antennas. Otherwise we show that saturation of capacity occurs.
Using random banded matrix theory results, we also show that
the effect of correlation is to reduce the effective received SNR ac-
cording to the degree of correlation. This also yields a closed form
expression for the asymptotic capacity of correlated MIMO chan-
nels.

I. INTRODUCTION

The capacity of MIMO systems has been shown to increase
linearly with the number of antennas in an ideal i.i.d. channel
[1], [2]. However an i.i.d. channel assumption is far from be-
ing true in realistic situations. Realistic channel realizations are
usually modeled by a channel matrix whose entries are corre-
lated Gaussian random variables. Chuah et al. [7] have shown
that capacity scaling is still observed in correlated channels, but
the scaling parameter is less than that observed in i.i.d. chan-
nels. However the correlation coefficient in [7] is on the order
of 0.2 at an antenna separation of 0.5λ (due to the product cor-
relation they assume) which is still not very significant.

Raleigh and Cioffi [3] have shown that in a high SNR situa-
tion the slope of the capacity vs. SNR curve is limited by the
number of multipaths as well as the antennas. In this light,
expecting a scaling in capacity inherently assumes a corre-
sponding increase in the richness of the scattering environment.
Moustakas et al. [4] point out that the capacity scaling factor in-
creases with a decrease in correlation. But to date we have not
seen a work on the connection between capacity per antenna
and the number of multipaths for a correlated channel.

Adopting a channel representation that is based on a
“beamspace interpretation”- the virtual channel representation
[6] - we model a correlated environment as a virtual channel
matrix with non-vanishing sub-matrices, each of which is mod-
eled as a banded matrix with i.i.d. entries. The virtual channel
matrix is obtained via a 2D-Fourier transformation of the actual
correlated channel matrix. Such structure for the virtual channel
matrix is motivated by physical scattering considerations [6].
Using this model, we show that capacity scaling1 is observed
provided the bandwidth2 of the channel scales with the number

This work was supported in part by ONR grant no. N00014-01-1-0825.
1We actually consider the average mutual information under an equal power

distribution strategy at the transmitter and use the term capacity and average
mutual information interchangeably.

2Bandwidth of a matrix is defined as the number of significant non-zero di-
agonals, e.g. a diagonal matrix has bandwidth 1 and a full N × N matrix has
bandwidth N .

of antennas3. We observe two different regimes where capac-
ity behavior differs drastically - one in which capacity scales
(if bandwidth increases with the number of antennas) and the
other where it saturates (if bandwidth remains the same even as
the number of antennas is increased). Via the virtual channel
representation, this behavior can in turn be related to the scat-
tering geometry, configuration and distribution as a function of
the number of antennas.

The physical interpretation of the above result is as follows.
Capacity scales with the number of antennas if and only if in-
creasing the number of antennas simultaneously brings in new
scattering paths between the transmitter and receiver. If an in-
crease in the number of antennas is not accompanied by a cor-
responding increase in the number of scattering paths, the ca-
pacity reaches an asymptotic limit as one can expect. Increase
in effective number of scattering paths with increasing number
of antennas is possible in diffuse scattering environments – the
increased spatial resolution due to larger array aperture allows
us to zoom finer and finer into the continuum of scatterer space
[6]. On the other hand, for a finite number of scattering paths,
this would not hold and we would expect saturation in capacity.

Using results from random banded matrix theory, we show
that the capacity scaling parameter depends on the ratio of the
bandwidth of the channel matrix to the number of antennas:
k/N . Furthermore, we also show that the effect of a banded
channel is to decrease the received SNR in proportion to the ra-
tio k/N relative to an i.i.d. channel. This could be interpreted as
a correlated scattering environment behaving just like an i.i.d.
channel asymptotically, but with the received SNR scaled by
the correlation parameter k/N .

The next section discusses the MIMO channel model used
in this paper. Section III discusses some relevant results from
Random Matrix Theory and Random Banded Matrix Theory.
In Section IV, we analyze the capacity of a correlated chan-
nel using the virtual channel representation under two different
observable regimes – capacity saturation and capacity scaling.
Monte-Carlo simulations of a MIMO system are done in Sec-
tion V to illustrate our results and conclusions are drawn in Sec-
tion VI.

II. CHANNEL MODEL

Consider a multi-antenna system with N transmit andM re-
ceive antennas. The M -dimensional received signal y and the
N -dimensional transmitted signal x are related by

y = Hx + n (1)

where n is the noise and H is the channel matrix coupling the
transmit and the receive antennas. The statistics of H depend

3In this paper, we assume that the number of transmitters is equal to the
number of receivers, but extension to a non-equal configuration of transmitters
and receivers is straightforward.
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Fig. 1. A schematic illustrating the virtual representation of a scattering en-
vironment that corresponds to beamforming in the direction of fixed, virtual
angles at the transmitter and the receiver.

on the antenna geometry, physical scattering environment, fre-
quency of operation etc. Ideal channel modeling assumes that
the entries of H are i.i.d. Gaussian random variables [1], [2].
This makes the mathematical treatment tractable but realistic
situations rarely have a rich scattering environment. Paramet-
ric physical models, on the other hand explicitly model signal
copies from different directions [5].
We focus on one-dimensional uniform linear arrays (ULAs)

of antennas at the transmitter and receiver and consider far-field
scattering characteristics. The physical model [5] depends on
the spatial angles as seen by the transmitters and the receivers
in a non-linear fashion and thus makes mathematical analysis
of information-theoretic issues like capacity difficult.
The recently introduced virtual channel representation [6] is

a novel approach that connects the ideal statistical modeling and
parametric physical modeling schemes. It imposes structure on
the channel matrix H by capturing essential characteristics of
the physical scattering environment in a linear fashion.
The virtual representation exploits the finite dimensionality

of the signal space4 to develop a linear channel representation
that uses spatial beams in fixed, virtual directions. The virtual
channel representation, illustrated in Fig. 1, can be expressed as

H = ARHV AH
T (2)

where fixed virtual angles result in AR and AT (matrices
formed of array steering and response vectors)[6]. TheM ×N
matrix HV is the virtual channel matrix. Uniform sampling of
the principal period θ ∈ [−0.5, 0.5) is a natural choice for vir-
tual spatial angles making AR and AT unitary. The resultant
HV is then unitarily equivalent to H and captures all channel
information. In fact, HV is the two-dimensional DFT of H.
Realistic scattering environments can be modeled as a super-

position of clusters with limited angular spreads. The virtual
matrix HV offers an intuitive interpretation as different clus-
ters correspond to different non-vanishing sub-matrices of HV .
Furthermore the non-zero entries of the virtual matrix are ap-
proximately uncorrelated [6]. The uncorrelatedness gets better
as we increase the number of antennas.

4Due to finite number of antenna elements and finite array aperture.

The number of non-vanishing uncorrelated elements of the
virtual matrix control the channel correlation [6]. On one ex-
treme is a “diagonal” virtual channel with non-vanishing ele-
ments only on the diagonal. Physically, this corresponds to a
line of scatterers between the transmitter and receiver. The di-
agonal channel exhibits significant correlation. On the other
extreme is a fully populated virtual matrix corresponding to a
rich scattering environment – this yields an i.i.d. channel. Vary-
ing levels of correlation between the two extremes can be cap-
tured by a banded virtual matrix with varying numbers of non-
vanishing diagonals.
Since the entries of the virtual matrix HV are uncorrelated

we model it as a banded matrix with i.i.d. Gaussian entries
whose real and imaginary components are N(0, 1/2)5. We
could also control channel correlation by varying the number
and size of sub-clusters and the number of diagonals in each
sub-cluster. This is discussed further later.

III. RESULTS FROM RANDOM MATRIX THEORY

In this section, we present some relevant results from Ran-
dom Matrix Theory (RMT) and Random Banded Matrix The-
ory (RBMT). Random matrices play an important role in mod-
eling Hamiltonians in quantum mechanics over a wide-range of
classically chaotic and integrable (regular) systems [12]. The
analogy between quantum systems and MIMO channels is too
striking to ignore. Idealized chaotic systems are like fully i.i.d.
channels and regular systems are like a channel with sparse
scattering whereas realistic systems interpolate between the two
extremes just as in MIMO channels.
The most important class of random matrices is the Gaussian

Unitary Ensemble (GUE) [9]. The GUE of order N is defined
as the set of random Hermitian matrices with i.i.d. complex en-
tries from a Gaussian distribution. The real diagonal entries
are from a N(0, 1) distribution whereas the real and imaginary
parts of entries along the non-diagonals are fromN(0, 1/2) [9].
In our analysis of MIMO channels, the GUE corresponds to the
fully i.i.d. channel.
A Random Banded Matrix ensemble (RBM) is defined as the

set of random Hermitian matrices with entries that are non-
zero only up to a certain bandwidth k ≤ N . The entries
along the main diagonal are from a real N(0, 1) distribution
whereas the non-zero non-diagonal entries have real and imag-
inary parts chosen from a N(0, 1/2) distribution. In MIMO
parlance, banded matrices correspond to banded virtual chan-
nel matrices. RBMs are however much more complicated than
a full bandwidth matrix because of the lack of rotational sym-
metry which simplifies much of RMT.
The asymptotic analysis of the GUE (and hence an i.i.d.

channel) is simplified because each unordered eigenvalue
shows an identical statistical behavior. RMT predicts that the
unordered eigenvalues of the GUE are highly correlated and
thus we could assume the same behavior for the unordered
eigenvalues of the GUE in an asymptotic analysis. A similar
behavior is seen with a RBM provided the bandwidth of the
RBM scales with N [11]. A simple illustration of the above
fact is that a diagonal matrix (which does not scale) is clearly
seen to have uncorrelated eigenvalues (the entries themselves)

5In actuality the entries are uncorrelated but not necessarily identically dis-
tributed.
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whereas a fully i.i.d. matrix (bandwidth scales with size) has
correlated eigenvalues which have a Wishart distribution.

The Wigner’s semi-circle Law states that the scaled eigen-
values of the GUE follow a semi-circle density function with
radius 2 [9]. Let A be a GUE of order N and let

ρN (x) =
1
N

N∑
i=1

δ(x− λi(A)√
N

), (3)

be defined as the Density of States (DOS) of the GUE where
λi(A) is the ith unordered eigenvalue of A. Then

lim
N→∞

ρN (x) =
√

4 − x2

2π
−2 ≤ x ≤ 2. (4)

RBMT results point out that the asymptotic behavior of the
DOS of a RBM is essentially the same as that of the GUE if
its bandwidth keeps increasing with its size according to some
power law [8]. The only difference is in the way the eigenvalues
of an RBM are normalized. If k = Nβ for some 0 < β ≤ 1
and

ρ′
N (x) =

1
N

N∑
i=1

δ(x− λi(A)
c
√
k

), (5)

is the Density of States (DOS) of the RBM ensemble A and
λi(A) is the ith eigenvalue of A, then

lim
N→∞

ρ′
N (x) =

√
4 − x2

2π
−2 ≤ x ≤ 2 (6)

where c is a scaling constant depending on the way the RBM
is modeled6 and is on the order of 4

√
2π. We note the scaling

with c
√
k = cNβ/2 in (5) as opposed to scaling by

√
N in (3).

This case of the RBM corresponds to a MIMO channel where
virtual scattering paths increase as we increase the number of
antennas, but not enough to result in an i.i.d. channel.

A RBM with a constant bandwidth corresponds to a MIMO
channel in which as we increase the number of antennas, the
virtual scattering paths do not increase proportionately. In this
case if the size of the matrix is taken to infinity, then its eigen-
value equation can be cast in a transfer-matrix form. Using
results from the theory of disordered systems, we find that the
eigenvalues of such a matrix are localized, i.e. the eigenvalues
of a finite RBM are with high probability much smaller than
the square-root of the size of the matrix7. Specifically, if A is a
finite RBM and

ρ′′
N (x) =

1
N

N∑
i=1

δ(x− λi(A)√
N

), (7)

then lim
N→∞

ρ′′
N (x) = g(x) (8)

where the density function g(x) is a delta-like function with
infinitesimal support.

IV. CAPACITY ANALYSIS OF CORRELATED MIMO
CHANNELS

The average mutual information of a narrowband N transmit-
ter, N receiver MIMO system under equal power transmission

6Various other modeling schemes for a RBMT do exist [8].
7Size of a N × N matrix is defined as N .

can be written as [1]:

C = E
[

log2 det
(
I +

ρHV HH
V

N

)]
bps/Hz (9)

where E [.] is the expectation over the statistics of HV . As we
have noted in Section III, for a finite banded RBM the DOS con-
verges to a delta function and for a scaling bandwidth RBM, to
an appropriately normalized semi-circle density function. The
asymptotic capacity analysis under equal power distribution re-
quires the way the eigenvalues of HV HH

V behave under differ-
ent banded constraints on HV

8.
For the special case when the matrix has bandwidth N , a

very general result from RMT [10] says that for a matrix of the
form HV HH

V where HV is a random complex matrix of i.i.d.
Gaussian entries and size N ,

lim
N→∞

fλ
HV HH

V
N

(x) = f̃HV
(x) =

1
2π

√
4 − x

x
(10)

0 ≤ x ≤ 4.
The striking coincidence between the Wigner’s semi-circle

law and the Silverstein’s density function (viz. the Silverstein’s
density function is obtained from the Wigner’s semi-circle law
by a quadratic transformation of random variable) forces one
to conjecture that a similar behavior should be observed in the
case of a RBM. It is indeed the case and the proof of this claim
is in the Appendix.

In the case when the bandwidth scales (increase in scatterer
population is proportionate to increase in antenna size), the den-

sity function of the random variable
λ

HV HH
V

N can be given based

on
λ

HV HH
V

ck (where c is an appropriately chosen constant), viz.

λHV HH
V

N
=

ck

N

(
λHV HH

V

ck

)
. (11)

Let a = ck
N be a constant independent ofN (This will happen if

k/N is a constant in (0, 1]. ). Then the density function is seen
to be

lim
N→∞

fλ
HV HH

V
N

(x) = f̃HV
(x) =

1
2πa

√
4a− x

x
(12)

0 ≤ x ≤ 4a. The above equation is a more generalized form of
the asymptotic eigenvalue distribution for an RBM with band-
width scaling analogous to (10). The similar form of the two
equations suggests that for a RBMwith bandwidth scaling, nor-
malized eigenvalue behavior is similar to that of an i.i.d. matrix.

The capacity of a channel modeled by a banded virtual matrix
can then be written for large N (see footnote 8) as

lim
N→∞

C

N
≈

∫ 4a

0
log2(1 + ρx)f̃HV

(x)dx (13)

=
1
2π

∫ 4

0
log2(1 + ρax)

√
4 − x

x
dx = lim

N→∞
Ciid(ρa)

N

8According to the Random Matrix Theory conjecture, as N → ∞ the dis-
tribution of a particular unordered eigenvalue over the realizations of HV con-
verges to the empirical distribution of the eigenvalues for a single realization of
HV . The same result has been conjectured for a RBM with bandwidth scaling.
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where ρ is the received SNR and Ciid(ρ) is the capacity of an
i.i.d. channel at that SNR and

lim
N→∞

Ciid(ρ)
N

= log2

[
1 + 2ρ+

√
1 + 4ρ

2

]

+ (log2 e)
2ρ+ 1

2ρ

[√
4ρ+ 1

2ρ+ 1
− 1

]
.

The expression for Ciid(ρ)
N is computed using Silverstein’s em-

pirical distribution function as is given in (10) ([10], [13]).
Thus, we see that the asymptotic capacity supported by a k-

banded channel is the same as that of an i.i.d. channel except for
a scaling of SNR. One way of looking at this result is that the
k-banded correlated channel presents a received SNR that is the
SNR of an i.i.d. channel scaled by the parameter of correlation
(k/N ). Thus, using the virtual representation we are able to
characterize the growth of capacity with number of antennas in
correlated channels.

The case of a finite banded matrix follows exactly as we pro-
ceeded above except that the eigenvalues of a finite RBM are
uncorrelated. Since the empirical distribution of the eigenval-
ues of a finite RBM tend to a delta-like function asN → ∞, the
ratio C/N → 0. This is expected as the number of scattering
paths remains the same as the number of antennas increases.

We extend the above results for a single scattering cluster
to multiple clusters. To model a highly correlated environ-
ment, consider a virtual matrix which is a superposition of
sub-matrices each of which by itself is modeled as a k-banded
matrix. If HV is modeled as a block matrix with square sub-
matrices having distinct support in the transmitter and the re-
ceiver virtual angles, then we could write a closed form ex-
pression for capacity in terms of the statistics of these sub-
matrices9. If HV is modeled as a L block diagonal matrix with
each block a square Ni (

∑L
i=1 Ni = N ) and modeled as a ki

banded matrix

HV = diag [ HV1 . . . HVL
] (14)

then the capacity can be written for large N as

C =
L∑

i=1

EHVi

[
log2 det

(
INi

+
ρHVi

HH
Vi

N

)]
. (15)

This can then be written as

C =
L∑

i=1

Ni∑
j=1

Eλj

[
log2

(
1 +

ρ

N
λj,HVi

HH
Vi

)]
. (16)

The marginal unordered eigenvalue distributions of HVi
HH

Vi

are the same as long as its bandwidth scales with Ni. Only
those clusters whose bandwidths scale with number of anten-
nas contribute to the asymptotic limit on capacity. The remain-
ing clusters reach a saturation and thus contribute nothing to
capacity scaling. Physically, if more scattering paths are re-
solved with increasing number of antennas (zooming) [6], ca-
pacity will scale. Otherwise it will saturate. Thus if we denote

9If however the assumption of distinct supports in the transmitter and receiver
is not valid, we could still use these results to obtain bounds for the capacity
scaling parameter using the results on eigenvalue inequalities of sums of Her-
mitian matrices. Here one should note that cross terms would vanish due to the
law of large numbers arising from the asymptotic analysis.
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Fig. 2. A 57 × 57 channel matrix is modeled as a block matrix with three
blocks of size 19, each of which has bandwidth k1, k2 and k3 with k3 = 10
and k1 and k2 varied as in the figure.

by S the index of the set of sub-matrices of HV whose band-
width scales with N , (16) becomes

C

N
≈

∑
i∈S

Ni

N

[
1
2π

∫ 4

0
log2(1 + ρaix)

√
4 − x

x
dx

]

lim
N→∞

C

N
=

∑
i∈S

Ni

N
Ciid(ρ

ciki

N
) (17)

where ki is the bandwidth of ith cluster in S10.

V. NUMERICAL RESULTS

A correlated channel was simulated using HV with a block
matrix structure depicting scattering clusters. A 57×57 channel
matrix with three sub-matrices of size 19 each and with varying
bandwidths was assumed. The correlation between different
antennas (ant. sep. = 1 in the figure means correlations between
antennas T1 and T2 say) is plotted in Fig. 2 as a function of the
bandwidth of the matrix. The bandwidth of the third block k3
is held constant at 10 and k1 and k2 are varied. It is noticeable
that under the block model we can model a correlated channel
with varying correlation by varying the bandwidth. Particularly
significant is the higher correlation that can be modeled rela-
tive to the widely used product model for correlation of MIMO
channels.
The average mutual information of a fading channel (using

the virtual model) under equal power allocation at the transmit-
ter was evaluated in Section IV. We also saw that capacity scal-
ing and saturation are two different regimes of the same model.
Fig. 3a is an illustration of the semi-circle law in a GUE. We
consider a 200× 200 random matrix and plot the empirical dis-
tribution of eigenvalues scaled by the (square-root of the) size
of the matrix in Fig. 3a.

The empirical distribution of eigenvalues of an RBM (N =
200, k = 15) scaled by the bandwidth and the size, respec-
tively, are plotted in Fig. 4a and b, respectively. If this ratio of
k/N is maintained as N is increased to infinity the semi-circle
density will be observed. Otherwise the density will shrink
down to a delta function.

10Assuming the ratio ciki/N is a constant independent of N for each sub-
matrix of HV .
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Fig. 4. RBM ensembles of size N = 200 and k = 15 were generated to plot
the empirical distribution of the eigenvalues with bandwidth normalization in a
and size normalization in b. This figure illustrates the semi-circle law in (a) and
delta-like distribution in (b).

We simulated the channel under the virtual model and Fig. 3b
is a plot of how the two different capacity regimes are easily
observable with a single cluster virtual channel matrix as band-
width of the matrix is changed from a constant to a parameter
proportional to the size of the matrix. The parameter k/N is
changed from 0.15 (low scatterer concentration) to 0.9 (high
scatterer concentration). The plots were generated by averag-
ing over 10,000 independent channel realizations.

VI. CONCLUSIONS

We have used results from Random Banded Matrix Theory
for assessing capacity of a correlated MIMO channel in the
limit of large number of antennas. The virtual channel represen-
tation allows us to use RBMT for capacity analysis of MIMO
channels and we see that scaling and saturation are two sides of
the same coin. The capacity scales provided that as we increase
the number of antennas a proportionate number of scattering
paths are resolvable. If fixed scattering paths are resolvable
then the capacity reaches an asymptotic limit. The ability to
resolve new scattering paths is modeled by the ratio k/N of

the banded virtual matrix and the capacity scaling parameter is
seen to be proportional to this ratio. This result is in agreement
with what is reported in [7] except that [7] does not identify a
region where capacity does not scale. In an asymptotic sense,
a correlated channel is like an i.i.d. channel except for the re-
ceived SNR reduced by the factor k/N . This is formalized by
a closed form expression for the asymptotic capacity of corre-
lated MIMO channels that we obtain.
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APPENDIX

A. Proof of Claim in Section IV

The workhorse of our proof is the theorem by Grenander and
Silverstein [14] which was extended to the complex case in the
Appendix of [15]. This theorem states that as long as each row
and column of HV have D i.i.d. N(0, 1) complex entries and

D scales withN ,
λ

HV HH
V

D converges to the Silverstein’s density
function. The proof then proceeds using the fact that the norm
of the differences in empirical distribution functions of two ma-
trices AAH and BBH is bounded by the ratio of the rank of
A−B and their size [14]. Using one of these matrices as a D-
connected channel matrix [15] and the other as a banded HV

with D = ck, we are done for k = aNβ , β ∈ (0, 1) where a
and c are constants. We are done for β = 1 by the left continu-
ity of the norm operator for a fixed N and a.

REFERENCES
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