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Abstract— We address signal design for optimal estimation of
correlated multi-input multi-output (MIMO) channels using pilot
signals, assuming knowledge of the second-order channel statistics
at the transmitter. Assuming a block fading channel model and
minimum mean square error (MMSE) estimation at the receiver,
we design the transmitted signal to optimize two criteria: MMSE
and the conditional mutual information between the MIMO chan-
nel and the received signal. Our analysis is based on the recently
proposed virtual channel representation, however, it is generalized
to other known channel models like the one in [1]. We show that
optimal signaling is in a block form, where the block length de-
pends on the signal to noise ratio (SNR) as well as the channel
correlation matrix. The block signal corresponds to transmitting
beams in successive time intervals along fixed virtual transmit an-
gles, whose powers are determined by (non-identical) water filling
arguments based on the optimization criteria. Our analysis ef-
fectively provides characterization of the dominant subspaces of
the channel as a function of the SNR and the scattering environ-
ment, which is critical to achieving capacity and space-time code
design. In particular, at low SNR the block length reduces to one
and all the power is transmitted on the beam corresponding to the
strongest transmit angle, while at high SNR the block length has
a maximum length equal to the number of active virtual transmit
angles and the power is assigned equally to all active transmit an-
gles. Consequently, from a channel estimation viewpoint, a faster
fading rate can be tolerated at low SNRs relative to higher SNRs.

I. INTRODUCTION

Multi-antennae communication systems are gaining promi-
nence due to the higher capacity and reliability they can afford
[2],[3]. Perfect knowledge of channel state is often assumed in
the analysis of such systems. However, in practice the channel
has to be estimated, typically using pilot symbols. In a rich scat-
tering environment, the assumption of i.i.d. channels is valid
and multi-input multi-output (MIMO) channel estimation can
be straightforwardly done using, for example, least squares or
minimum mean square error (MMSE) techniques [4]. However,
this idealized assumption does not necessarily hold and hence
a study of correlated channels is of interest. In this work, we
investigate transmit signal design for optimal estimation of cor-
related MIMO Rayleigh fading channels, assuming that the re-
ceiver and the transmitter1 have knowledge of the second order
statistics of the MIMO channel2. It is assumed that the receiver
uses an MMSE channel estimator. The covariance feedback in-
formation is exploited by the transmitter to design the transmit
signal to minimize the channel estimation error at the receiver.

This research is supported in part by NSF Grant Nos. CCR-9875805 and
CCR-0113385 and ONR Grant No. N00014-01-1-0825.

1This is often called covariance feedback.
2The assumption is reasonable, since the second order statistics are much less

dynamic than the channel itself. Thus, they can be estimated more reliably and
need to be updated less frequently.

We assume a block flat fading model, where the channel is con-
stant over a block of transmitted symbols, but changes indepen-
dently from block to block. We design the transmit signal to
optimize one of two criteria: minimization of the MMSE at the
receiver or maximization of the conditional mutual information
between the channel and the received signal.

A MIMO channel with P transmit and Q receive antennae
has a maximum of PQ unknowns to be estimated. However,
correlated MIMO channels possess fewer degrees of freedom
and hence fewer than PQ parameters, corresponding to the de-
grees of freedom, need to be estimated. Our analysis is based
on the recently proposed virtual MIMO channel representa-
tion [5] for uniform linear arrays (ULA) at both the transmit-
ter and receiver. The virtual model characterizes the channel
in the spatial domain by beamforming in the direction of fixed
virtual angles determined by the spatial resolution of the an-
tenna arrays, which is analogous to representing the channel in
beamspace or wavenumber domain. The non-vanishing and ap-
proximately uncorrelated elements of the virtual channel matrix
represent the degrees of freedom in the channel. These degrees
of freedom are governed by the scattering geometry, the anten-
nae spacings and the number of antennas. Channel estimation
can now be viewed as the identification of this scattering geom-
etry in the virtual domain and the gains it imposes on the input
and output antennae. The analysis can be generalized to other
channel models, an example is the channel where the correla-
tion in the transmit and receive arrays induce correlation in the
rows and columns of the channel matrix [1].

We show that the optimal transmit signal is a block signal
consisting of beams transmitted in succession along the active
virtual transmit angles, corresponding to directions in which
scatterers are present. We assume that, while the total trans-
mit power in a block is constant, the transmit power during each
transmission may be different. The power transmitted along the
beams is determined by water filling arguments resulting from
the two criteria. Power is possibly assigned to a beam only if
the second-order statistics indicate the presence of significant
scattering in that direction. However, the power assigned to
the transmit beams depends on the signal to noise ratio (SNR)
as well. Equivalently, the scattering environment is scanned
along the virtual transmit angles one by one to determine the
presence of scattering clusters, by measuring the signals along
the virtual receive angles for each transmitted beam. Hence,
the optimal signal design suggests that, for a given SNR, only
those columns of the virtual channel matrix are estimated that
are deemed dominant by the water filling criteria. This effec-
tively characterizes the dominant subspaces of the channel as a
function of the SNR and the scattering environment and is an
important outcome of the analysis which can be further used in
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other situations. For instance, space-time code design can now
be done as a function of SNR, where only the dominant ele-
ments of the channel matrix are considered in the design. No-
tably, capacity results in the case of imperfect channel state in-
formation indicate that identification of such dominant degrees
of freedom is critical to achieving capacity [6].

Section II introduces the MIMO channel and briefly de-
scribes the virtual representation. Section III discusses MMSE
estimation of the MIMO channel and motivates criteria for op-
timum signal design which are presented in Section IV. Section
V presents numerical simulation results. 3

II. MIMO CHANNEL MODEL

Consider a narrowband frequency non-selective MIMO
channel with P transmit and Q receive antennae. With k indi-
cating discrete time, if s(k) is the transmit vector of dimension
P , then the Q dimensional received signal x(k) can be written
as

x(k) = H(k)s(k) + n(k) (1)

where H(k) is the Q × P channel gain matrix. n(k) is the
Q dimensional zero mean, complex white Gaussian noise vec-
tor, with covariance matrix σ2IQ. The channel gain between
the n − th receive and m − th transmit antenna is denoted by
H[m,n].

In [5], the virtual channel representation is proposed where
the transmit and receive antennae are uniform linear arrays
(ULA). If dT and dR are the transmit and receive array
spacings, then H can be related to the physical propagation
environment via the array steering and response vectors
aT (θT ) = 1√

P
[1, exp (−j2πθT ), . . . , exp (−j2π(P − 1)θT )]T ,

aR(θR) = 1√
Q
[1, exp (−j2πθR), . . . , exp (−j2π(Q − 1)θR)]T ,

where the θ is the delay between the signals received at adjacent
elements in the array due to a point source at angle φ (relative
to a horizontal axis). If λ is the wavelength of propagation,
then θ = d

λ sinφ. We will interpret θ as a normalized angle.
The linear virtual channel representation in [5] exploits the
finite dimensionality of the spatial signal space arising from
finite number of array elements and finite array apertures.
Without loss of generality, assume P and Q to be odd and
define Q̃ = (Q−1)/2 and P̃ = (P −1)/2. The virtual channel
representation is given by

H =
Q̃∑

q=−Q̃

P̃∑

p=−P̃

HV [p, q]aR(θ̃R,q)aH
T (θ̃T,p) = ÃRHV Ã

H

T

where ÃR = [aR(θ̃R,−Q̃), . . . ,aR(θ̃R,+Q̃)] (Q×Q) and ÃT =
[aT (θ̃T,−Q̃), . . . ,aT (θ̃T,+Q̃)] (P × P ) are defined by the fixed

virtual angles θ̃R,q and θ̃T,p and are full rank. We assume that
the spatial virtual angles are uniformly spaced [5] and hence
ÃT and ÃR are discrete Fourier transform matrices (and hence

3Notation: For an integer Q, IQ is a Q×Q identity matrix. If X is a Q×K
matrix, vec(X) denotes the QK × 1 vector obtained by stacking columns of
X. ⊗ denotes the Kronecker product [7]. The inverse and pseudo-inverse of
X are denoted by X−1 and X†. tr(X) denotes the trace of the square matrix
X. diag([a1, . . . , aQ]) is a Q × Q diagonal matrix with diagonal elements
a1, . . . , aQ. E(·) denotes the expectation operator. (x)+ = max(0, x).

unitary). Note that the virtual model is linear in the gains and
spatial angles, since these angles are fixed a priori. Note that
we can write h = vec(H) = (Ã

∗
T ⊗ ÃR)hV . The resulting

channel correlation has a Kronecker structure given by

R = E(hhH) = (Ã
∗
T ⊗ ÃR)RV (Ã

∗
T ⊗ ÃR)H . (2)

An important consequence of the virtual modelling is that, the
elements of HV are approximately uncorrelated and hence RV

is approximately diagonal regardless of the correlation structure
of R [5]. The structure obtained by the virtual model allows
simplification in signal design and provides interesting inter-
pretations as shall be seen.

The techniques developed in this paper can be straightfor-
wardly generalized to channels where the channel matrix can
be expressed as

H = URHV UH
T (3)

where UT and UR are the transmit and receive unitary matrices
and the elements of HV are uncorrelated but not necessarily
identically distributed. The resulting channel correlation has a
Kronecker structure similar to (2). Such channel models may
arise as a consequence of the array geometry as was seen above
in the case of ULAs. Another example is the channel model,
where it is assumed that the transmitter and receiver antennae
arrays have correlated elements [1]. The channel matrix can be
written as

H = Σ1/2
R HwΣ1/2

T = URHV UH
T (4)

where the elements of Hw are i.i.d. The matrices ΣT and
ΣT are the transmit and receive array correlation matrices with
eigen value decompositions (EVD) UTΛT UH

T and URΛRUH
R

respectively. The elements of HV are uncorrelated with diago-
nal covariance matrix given by RV = ΛT ⊗ ΛR [8].

Since H and HV are unitarily equivalent, estimation of the
MIMO channel can be equivalently performed by obtaining es-
timates of HV . From (1) and (3), we can write the received
signal as

x(k) = ÃRHV (k)Ã
H

T s(k) + n(k). (5)

In the eigen or virtual domain,

xV (k) = HV (k)sV (k) + nV (k) (6)

where xV = Ã
H

R x and sV = Ã
H

T s are the projections of
the received and transmitted signals onto the fixed receive and
transmit response vectors respectively. Equation (6) provides
an interesting interpretation of transmission in the virtual do-
main. Each element of xV (sV ) corresponds to a signal received
(transmitted) from (to) the fixed virtual angles θ̃T,p (θ̃R,q) and
the corresponding element in HV indicates the coupling gain
between these angles [5]. Note that since ÃR is unitary, nV =
ÃRn is zero mean, white Gaussian with covariance σ2Iq.

In the following development, we assume the MIMO channel
to be block fading, i.e. H(k) = H for k = 1, . . . ,K and the
channel is independent between different blocks of K symbols.
Assuming that training symbols s(k), k = 1, . . . ,K are sent
in a block mode and denoting S = [s(1), . . . , s(K)], the block
fading model is given by

XV = HV SV + NV ,
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where XV = [xV (1), . . . ,xV (K)], SV = [sV (1), . . . , sV (K)]
and NV = [nV (1), . . . , nV (K)]. Stacking the columns of XV ,
we obtain

x̃V = vec(XV ) = (ST
V ⊗IQ)vec(HV )+vec(NV ) = S̃V hV +ñV

(7)
where we denote S̃V = (ST

V ⊗ IQ). Using (7), we proceed
with the estimation of hV , which is a PQ vector. Clearly, since
the maximum number of unknowns in hV

4 is PQ, we need
to transmit a block of K ≤ P symbols [9]. Hence, we need
the quasi-static channel to be constant for only K ≤ P time
periods.

III. MMSE AND MAP ESTIMATION

The model (7) is linear in hV and Gaussian. Hence, it can be
shown that the linear MMSE estimate, the MMSE estimate and
the MAP estimate are identical. In this paper, we assume that
the covariance matrix RV = E(hV hH

V ) (or equivalently R =
E(hhH)) is known. The linear MMSE estimator minimizes the
error MSE = E[‖hV − ĥV ‖2]. The resulting linear estimate is

ĥV = Goptx̃V (8)

where Gopt is a PQ × PQ matrix given by

Gopt = argmin
G

E[‖hV −Gx̃V ‖2] = RV S̃
H

V (S̃V RV S̃
H

V +σ2I)−1.

(9)
Using the orthogonality principle, the error covariance matrix
and the minimum MSE are

Ce = RV − RV S̃
H

V (S̃V RV S̃
H

V + σ2I)−1S̃V RV

= (R†
V +

1
σ2 S̃

H

V S̃V )−1, (10)

MMSE = tr(Ce(S̃V )). (11)

respectively. Moreover, if hV is assumed to be zero mean Gaus-
sian with covariance RV , then the linear estimate in (8) is also
the maximum a posteriori estimate. The conditional mutual in-
formation (CMI) between the received signal and the channel
hV is given by

CMI(S̃V ) = log det(I+
1
σ2 S̃V RV S̃

H

V ). (12)

Note that, Ce is a function SV . In the next section, we con-
sider optimal signal design of the transmit block SV to satisfy
two optimization criteria.

IV. OPTIMUM SIGNAL DESIGN

We consider the design of the optimum transmit block sig-
nal S̃V (or equivalently SV ) with respect to two criteria: min-
imization of the MMSE (11) and maximization of the mutual
information (12) between the channel and received signal con-
ditioned on the transmitted block signal. We state the two opti-
mization problems as follows:

min
S̃V

tr(R†
V +

1
σ2 S̃

H

V S̃V )−1 s.t. tr(S̃
H

V S̃V ) ≤ Pβ, (13)

4The number of unknowns in hV would be smaller in correlated channels.
If the prior variance of a given element of hV is zero, then it implies that the
element is itself zero.

max
S̃V

log det(I+
1
σ2 S̃V RV S̃

H

V ) s.t. tr(S̃
H

V S̃V ) ≤ Pβ,

(14)

where β is the total transmitted power and P is the number

of transmit antennae. Note that the constraint tr(S̃
H

V S̃V ) ≤
Pβ is equivalent to the finite power constraint tr(SH

V SV ) =
tr(SHS) ≤ β. We develop the signal design using the SVD
of the transmitted block matrix. Denote the SVDs of ST

V =
USΛSVH

S and S̃V = US̃ΛS̃VH
S̃

, where US ,VS ,US̃ and
VS̃ are unitary matrices and ΛS and ΛS̃ are diagonal matri-
ces. Since S̃V = (ST

V ⊗ IQ), it follows that US̃ = US ⊗ IQ,
ΛS̃ = ΛS ⊗ IQ and VS̃ = VS ⊗ IQ. The following theorem
states our main result, for a proof see [8].

Theorem 1: Consider the constrained optimization problems
in (13) and (14) respectively. The globally optimal solution has
a structure given by

S̃V,opt = Λ̃optVS̃ (15)

where Λ̃opt ∈R
PQ×PQ. The optimal VS̃ is a matrix of the

eigenvectors of RV , i.e VS̃ = I and Λ̃opt is the solution to

Λ̃opt = Λ̃M =argmin
ΛS̃

tr(R†
V +

1
σ2Λ

H
S̃
ΛS̃)

−1 (16)

s.t. tr(ΛH
S̃
ΛS̃) ≤ Pβ

and Λ̃opt = Λ̃C =argmax
ΛS̃

log det(I+ ΛS̃RV ΛH
S̃
) (17)

s.t. tr(ΛH
S̃
ΛS̃) ≤ Pβ

respectively.
Since S̃V = (ST

V ⊗ IQ), from Theorem 1 the optimal transmit
signal is SV = Λopt where Λopt is the solution to

argmin
ΛS

P∑

i=1

Q∑

j=1

(
σ2RV [(i − 1)Q + j, (i − 1)Q + j]

σ2 +RV [(i − 1)Q + j, (i − 1)Q + j]βi

)

(18)

argmax
ΛS

P∑

i=1

Q∑

j=1

log
(
1 +

RV [(i − 1)Q + j, (i − 1)Q + j]βi

σ2

)

(19)

subject to the constraint
∑P

i=1 βi ≤ β, βi = |Λopt[i, i]|2, for
the MMSE and CMI criteria respectively. Thus, the optimal
transmit signal is a block diagonal signal (in the virtual do-
main). The optimal signal structure specifies that during the P
block transmission, at each time instant i ∈ 1, . . . , P , the signal
is transmitted along the i-th transmit eigen vector with the pow-
ers specified by βi. Due to the diagonal structure of SV , Gopt

(9) and Ce (10) become diagonal, which enables independent
processing at the receiver. The channel estimate is given by

ĥV [(i − 1)Q + j] =(
RV [(i−1)Q+j,(i−1)Q+j] Λopt[i,i]

σ2+RV [(i−1)Q+j,(i−1)Q+j] |Λopt[i,i]|2

)
· xV [(i − 1)Q + j],

for j = 1, . . . , Q; i = 1, . . . , P . From this equation, note that
the i-th transmission allows us to estimate the Q elements in
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Fig. 1. Physical interpretation of channel estimation - ‘Scanning’ the scattering
environment in the virtual domain. The i-th beam is used to estimate the i-th
column of HV .

the i − th column of HV , i.e ( hV [(i − 1)Q+1], . . . ,hV [(i −
1)Q + Q] ). During the block transmission, the scattering
environment is scanned sequentially to estimate each column
of HV . This scanning of the virtual domain is illustrated in
Figure 1.

The constrained nonlinear optimizations in (18) and (19) are
the so called ‘water-filling’ problems and can be solved using
Langrange multipliers and using the Kuhn-Tucker conditions
to verify that the solutions are non-negative. However, for the
general case of P transmit and Q receive antennae, we have not
been able to find a closed form solution and hence it has to be
obtained numerically. In the following, we obtain approximate
closed form solutions in the low SNR and high SNR regions to
obtain some insight. Closed form solutions exist for the special
cases of a MISO channel and the transmit and receive correlated
channel (4) where eitherΣT orΣR is equal to σ2I, (both criteria
give identical power assignment in these cases) for details see
[8].

In the following discussion, the channel coefficient HV [j, i]
is defined as active if E(|HV [j, i]|2) > ε for some prescribed
ε > 0. Thus the set of active elements can be determined a
priori by examining RV . Also, a column of the channel matrix
HV is defined as an active column if it contains at least one ac-
tive element. Let A ⊂ {1, . . . , P} be the set of active columns.
Then for any i ∈ A, Qi is the number of active elements in
the i-th column. We define the transmitted signal to noise ra-
tio (TSNR) as the ratio of the transmitted signal power to the
noise power β

σ2 and the per virtual angle pair received signal
to noise ratio (RSNR) as the ratio of the received signal power
to the noise power RSNR(i, j) = RV [(i−1)Q+j,(i−1)Q+j]βi

σ2 be-
tween the i − th transmit and j − th receive angle pair for
i = 1, . . . , P ; j = 1, . . . , Q.

1) High SNR Case: Consider the high RSNR case, where
RSNR(i, j) � 1. Let Qi be the number of active elements in
the i-th column (or equivalently the number of active receive el-
ements the i-th transmit beam couples with). Using Langrange
multipliers, it can be shown that for high RSNR case, MMSE
and CMI criteria assign power according to

MMSE : βi =
√

Qiβ∑P
i=1

√
Qi

i = 1, . . . , P, (20)

and CMI : βi =
Qiβ∑P
i=1 Qi

i = 1, . . . , P, (21)

respectively. Thus, the CMI (MMSE) criterion assigns power
to the transmit beams in proportion to the sum (square root of
the sum) of the active elements they couple with at the receiver.

Remark: In the extreme case, when all the elements of HV are
active, then equal power is distributed at all transmit branches
for both the criteria.

2) Low SNR Case: Consider the low RSNR case, where
RSNR(i, j) � 1, ∀i, j. Using Langrange multipliers, it can be
shown that the MMSE and CMI criteria assign all the power β
to the k−th transmit beam such that

MMSE : k = argmax
i

Q∑

j=1

R2
V ((i − 1)Q+ j, (i − 1)Q+ j),

(22)
and
CMI : k = argmax

i

Q∑

j=1

RV ((i − 1)Q + j, (i − 1)Q + j),

(23)
respectively. Thus at low RSNR, the CMI (MMSE) criterion
assigns all the power to that transmit angle for which, the sum
(sum of squares) of the variances of the corresponding virtual
receive elements is maximum.
From the extreme cases, we conclude that the number of trans-
mit beams to be sent and hence the block length K depends
on the SNR. For high SNR, K is determined by the number
of active columns (which can be determined a priori from RV )
and have a maximum value of K = P . Whereas for low SNR,
K = 1 and all the power is transmitted in the strongest trans-
mit direction. For medium SNR, 1 ≤ K ≤ P and the powers
will be determined by the water filling criteria. Also note that
for i.i.d. channels, equal power will be assigned to all transmit
beams irrespective of the SNR.

V. INTERPRETATION AND SIMULATIONS

The optimal signal is a block of length K ≤ P and has a
diagonal structure given by SV = ΛS . The block SV repre-
sents beams transmitted in succession along the fixed virtual
transmit angles, with the powers given by the water filling ar-
guments (18) and (19) for the MMSE and CMI criteria, respec-
tively. Basically, the scattering environment is scanned along
the virtual transmit angles, one by one, and the presence of scat-
terers is determined, by measuring the signal along the receive
virtual angles for each transmitted beam. In other words, the
i-th transmitted beam is used to estimate the i-th column of
HV . Depending on (the diagonal entries of) RV and the SNR,
power is assigned to the beams by water filling, which identifies
the set of virtual transmit angles that couple strongly enough
with receive angles or effectively the dominant subspaces of
the channel. Hence the block length K, which is exactly equal
to the size of this set, depends on the SNR and RV . In par-
ticular, for low SNR, K = 1, while for high SNR K has a
maximum value equal to the number of active columns deter-
mined from RV (which has a maximum of P ) and for medium
SNR, 1 ≤ K ≤ P . This in turn implies that at low SNR,
a faster fading rate can be tolerated than at high SNR, since
fewer essential parameters need to be estimated. For high SNR,
the CMI (MMSE) criterion assigns the power to the transmit
angles in proportion to the sum (

√
sum) of the active elements

they couple with at the receiver. As the SNR decreases further,
the weakest transmit beam (as determined by the water filling
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criteria) is dropped. As the SNR decreases, this process con-
tinues until finally the CMI (MMSE) criterion assigns all the
power to the strongest transmit beam, that is one for which the
sum (sum of squares) of the variances of the corresponding vir-
tual receive elements is maximum.

These interpretations of our analytical results are confirmed
by the numerical results presented in Figures 2 - 5. In all the fig-
ures, the total transmit power (in dB) along the x-axis is given
by 10 log10(β/σ2), while the y-axis shows the branch powers
in dB given by 10 log10(βi/σ2). Powers are plotted for for both
MMSE and CMI criteria and the equal power assignment is also
plotted for comparison. Figure 2 shows the power assignments
for the MISO case with P = 2 where the covariance matrix is
given by RV = diag([1 0.05]) or equivalently for a MIMO
case with P = Q = 2 and R(1)

V = diag([1 0 0 0.05])
where the first two components are the variances of the ele-
ments in the first column of HV and the next two are those of
the second column. The number of active elements in both the
columns is one, i.e Q1 = Q2 = 1. Both criteria give iden-
tical power assignment in this case [8]. Observe that the sec-
ond transmit beam gets non-zero power only after the SNR in-
creases to about 13 dB (this behavior is similar in the next three
figures too). For high SNR, however, both transmit beams get
equal power. The following three figures are also for the MIMO
case with P = Q = 2. In Figure 3, we make the variance of
the first element of the second column of HV nonzero to get
R(2)

V = diag([1 0 0.01 0.05]), so that the number of active
elements in the two columns of HV are Q1 = 1 and Q2 = 2.
Observe that for high SNR, the second transmit beam gets 66%
(58%) power according to CMI (MMSE) criterion. The powers
are reversed in Figure 4 where R(3)

V = diag([1 0.1 0 0.05]),
so that now we have Q1 = 2 and Q2 = 1. Finally in Figure 5
we have R(4)

V = diag([1 0.1 0.01 0.05]) and Q1 = Q2 = 2.
Note that at high SNR both branches get equal power as in Fig-
ure 2. However, the power assignment in the medium SNR
range is different in the two figures. In all cases, as the SNR
decreases the weaker beam is dropped and the stronger beam
gets all the power.
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Fig. 2. Optimal power distribution for P = 2 and Q = 1.
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Fig. 3. Optimal power distribution for P = 2 and Q = 2 and RV = R(2)
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Fig. 4. Optimal power distribution for P = 2 and Q = 2 and RV = R(3)
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Fig. 5. Optimal power distribution for P = 2 and Q = 2 and RV = R(4)
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