
484 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 4, APRIL 1989

Cache Memory Organization to Enhance the Yield
of High-Performance VLSI Processors

Abstract-High-performance VLSI processors make extensive
use of on-chip cache memories to sustain the memory bandwidth
demands of the CPU. As the amount of chip area devoted to on-
chip caches increases, we can expect a substantial portion of the
defects/faults to occur in the cache portion of a VLSI processor
chip. considerably.

This paper studies the tolerance of defects/faults in cache
memories. We argue that, even though the major components of
a cache are linear RAM’s, traditional techniques used for fault/
defect tolerance in RAM’s may neither be appropriate nor
necessary for cache memories. We suggest a scheme that allows a
cache to continue operation in the presence of defective/faulty
blocks. We then present the results of an extensive trace-driven
simulation analysis that evaluates the performance degradation
of a cache due to defective blocks. From the results we see that
the on-chip caches of VLSI processors can be organized such that
the performance degradation due to a few defective blocks is
negligible. We conclude that by tolerating such defects without a
noticeable performance degradation, the yield of VLSI proces-
sors can be enhanced considerably.

presented in [lo]) suggests that, if defectdfaults in the area
occupied by the on-chip cache can be tolerated without

the yield of single-chip vLsI processors can be enhanced

The crux of defect- and fault-tolerance techniques is the use
of redundancy. Generally some form of redundancy is
provided explicitly for defect/fault tolerance. Sometimes,
redundancy may be introduced in a processor not for defect’
fault tolerance but for performance enhancement. A cache
memory is an example of such a “redundant” resource. Cache
memory is “redundant” because the correctness of processor
operation is not dependent upon the presence of the cache. A
processor can still operate correctly, albeit with severely
degraded performance, in the absence of an architecturally-
invisible cache memory.

When “redundant” components are present in a processor,

performance degradation and/or increase in

two important and interesting questions arise: 1) what defect/
fault-tolerance technique should be used for ‘ ‘redundant” Index Terms-Cache performance, defect/fault conditions,

vLsI proces- onehip cache memories, trace-driven . - .

sors. portions of a processor such as the cache memory and 2) what

I. INTRODUCTION
DVANCES in semiconductor technology have led to the A development of high-performance single-chip VLSI

processors. For such processors, an increase in CPU speed
must be coupled with an increase in memory bandwidth. By
far the most popular technique for improving memory band-
width in general purpose processors is the use of cache
memories. For a single-chip processor, this translates into the
use of on-chip cache memories. Many recent single-chip
processors use some form of on-chip cache to provide
adequate memory bandwidth and reduced memory latency for
the CPU [3], 141, [6], [7], [9], [12], [14], [17]. For example,
the MIPS-X processor devotes more than half its chip area
to an on-chip instruction cache [9]. We expect that, in the
future, most single-chip VLSI processors will devote a
sizeable fraction of their chip resources to cache memories.

An increase in the circuit density of single-chip processors
is coupled with an increase in defects. Since a large fraction of
chip area will be devoted to cache memories in the near future,
we expect that a large fraction of defects in a VLSI processor
chip will be present in the cache memory portion of the chip.
Application of yield improvement models (such as the model

Manuscript received June 28, 1988; revised November 7, 1988. This work

are the performance implications of such a scheme? The focus
of this paper is to evaluate the effects of defectdfaults in a
cache memory and provide answers to the above questions in
the context of a cache memory.

The outline of this paper is as follows. We start off by
discussing the nature of defects in cache memories and see
how they affect cache operation. We discuss the use of
techniques that use additional redundancy to tolerate defects
and see why their use may not be a good choice for cache
memories, especially for the on-chip caches of VLSI proces-
sors. We present a technique that allows a cache to continue
operation even though some of its blocks may be defective.
Then we evaluate the performance of cache memories to
determine if defective blocks cause any appreciable loss in
performance. Next, we present a discussion of the related
issues of a sector cache organization and operational faults.
Finally, we present concluding remarks.

11. DEFECTS IN CACHE MEMORIES AND THEIR TOLERANCE
A cache memory consists of several blocks or lines of data.

Each cache block is occupied by data elements from a block of
the memory. A block consists of several contiguous bytes of
memory. As data are referenced by the processor, they are
brought from the memory into the cache. Data from a memory
block are present in the data memory or data array portion of

was suppo&d in part by NSF Grant CCR-8706722
The author is with the Computer Sciences Department, University of

Wisconsin, Madison, WI 53706.
IEEE Log Number 8826375.

the cache. Each block in the cache has an associated tag which
is kept in the tag memory or tag array portion of the cache.
The tag is used to distinguish between one of several memory

0018-9340/89/0400-0484$01 .oO 0 1989 IEEE

SOHI: CACHE MEMORY ORGANIZATION TO ENHANCE YIELD OF V U 1 PROCESSORS

~

485

blocks that map onto a cache block. A simplified description of
cache operation follows; a detailed description can be found in
a survey paper by Smith [19].

When the CPU generates a memory request, a portion of the
address is used as a tag and is compared to the tag(s) stored in
appropriate locations in the tag array. If a match results, we
have a cache hit and the data are accessed from the
corresponding location in the data array. If no match results,
we have a cache miss. On a cache miss, the entire memory
block is transferred from the memory to the cache and is then
accessed from the cache. In more sophisticated sector cache
organizations, a block could be subdivided into several
transfer blocks [ll], [19]. To simplify the discussion, we
shall initially assume a nonsector cache organization (indeed,
this is the more common case). Then, in Section IV-A, we
shall discuss the implications of a sector cache organization.

A. Types of Cache Defects
Components of a processor such as registers, buses, control

logic, and the ALU are critical to the functioning of the
processor. Defects in such components are critical defects
because the defect will lead to incorrect processor operation
unless some action is taken to tolerate and/or correct such
defects. Consider, for example, a defect in a register.
Instructions that utilize the defective register have no alternate
modes of operation without violating the architectural defini-
tion of the instruction and will fail unless means are provided
to tolerate the defect. Likewise, an ability to tolerate defects in
the main memory must also be provided. As mentioned
earlier, cache memory is not an “essential” component of the
processor as far as correct operation is concerned. Cache
memory is present in a processor mainly for performance
reasons. The processor will be able to operate in a correct, but
degraded, fashion if parts (or all) of the cache memory are
unavailable and if alternate means are provided to recover and
access correct data. If data cannot be accessed from a defective
cache block, it can always be recovered from the memory
without violating the architectural definition of the instruction.
We call defects in noncritical components, such as the cache,
noncritical defects.

A majority of fabrication defects can be classified as
random spot defects [20]. Our defect model assumes random
spot defects. We also assume that the defective area is small
enough so that a single defect affects only one block of the
cache (though more than one bit in each block may be
defective). If the defect occurs in the tag array of the cache, we
call it a cache tag defect and if it occurs in the cache data
array, we call it a cache data defect. A cache tag defect will
not pollute the data stored in the cache, i.e., it will not pollute
the contents of the cache data array, but it will affect the cache
hit operation. Examples of incorrect operation due to a cache
tag defect include: 1) a miss indication even though data for
the block are present in the cache, 2) a hit indication even
though the block is not present in the cache, and 3) a
“multiple” hit resulting from several tags matching. A cache
data defect does pollute the data in the cache data array but
does not affect the tag array. Such a defect does not affect the
cache hit operation but results in the access of incorrect data.

B. Use of Redundancy to Tolerate Defects in Cache
Memories

Since redundancy is a popular way of enhancing the yield
and reliability in several contexts, one might be tempted to use
redundancy in the cache portion of the VLSI processor to
enhance the yield. Both the major portions of the cache, i.e.,
the tag and the data arrays are linear RAM’s and redundancy
techniques that are useful for RAM’s could easily be applied to
a cache. These techniques fall into two broad categories: 1)
spare resources and a reconfiguration mechanism to substitute
the defective resource with a defect-free resource and 2) use of
error checking and correction (ECC) codes to mask out defects
within a resource. Below, we discuss both of these options in
some more detail.

I) Spare Cache Blocks and Reconfiguration: A cache
memory could be designed with spare cache blocks in the data
and tag arrays. If a block is defective, it can be switched out
and a spare block substituted in its place using electrical or
laser fuses [13]. The overhead for doing so includes the
additional chip area for the spare blocks and the additional
logic needed to implement the reconfiguration.

While this overhead is not very significant, we would like to
emphasize that there is no reason to have a “full” cache in
order to ensure correct operation of the processor. A “full”
cache is a cache with the same number of defect-free blocks
available for use in the caching operation as a completely
defect-free cache. If the cache can be designed to operate in
the presence of defective blocks with a negligible performance
degradation, the use of spare cache blocks is wasteful.

2) Error Checking and Correction (ECC): ECC tech-
niques have been used widely to tolerate faults in memory
systems [18]. A typical memory system uses a single error
correcting double error detecting (SECDED) Hamming code
to correct single errors and detect double errors in the memory
system. To carry out the detection and correction process,
redundancy in the form of check bits must be incorporated into
the memory data word. The fault-tolerance capability of an
ECC technique is determined by the number of check bits
used.

ECC techniques can also be used to enhance the yield of
memories by masking out defective bits [131. Since the tag and
data arrays of the cache are essentially linear RAM’s, one
might be tempted to use an ECC scheme to tolerate cache
defects. However, ECC techniques have two forms of
overhead: 1) the time penalty introduced by the ECC logic and
2) the additional RAM required to store the check bits. Let us
consider the implications of these overheads.

Since the degradation in memory access time is a good
indicator of the degradation in performance of a VLSI
processor, let us consider the degradation in memory access
time due to the ECC logic. A typical processing system that
uses a high-performance VLSI processor would have at least
three levels in its memory hierarchy (excluding backing store).
These levels are: 1) the on-chip or level 1 cache that serves to
reduce the latency of CPU requests, 2) an off-chip or level 2
cache that serves both to reduce the latency of off-chip
memory requests and, in the case of a multiprocessor, to
reduce the traffic on the interconnect [8], and 3) the main

486 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 4, APRIL 1989

memory. For such a three-level memory hierarchy, the
effective memory access time as seen by the CPU is

T=hl ti + (1 - hl)h2f2 + (1 - hi) (l - h2)tm (1)

where hl is the hit ratio and tl is the access time of the level 1
cache, hz is the hit ratio‘and tz is the access time of the level 2
cache, and tm is the access time of the main memory.

Using (l), let us see how the use of ECC at various levels in
the memory hierarchy affects the overall effective memory
access time. Let us consider a processing system built using
high-performance VLSI processors in which the relative
access times of the level 1 cache, the level 2 cache, and the
main memory are 1, 3, and 10 time units, respectively. These
values are typical of processing systems built using single-chip
processors such as the NS32532 processor [3]. To determine
the time penalties due to ECC at various levels, we carried out
a VLSI layout of an on-chip cache and a paper design of a level
2 cache and a main memory. A timing analysis indicated that
SECDED ECC degraded the the access time of level 1 cache,
the level 2 cache, and the memory by 20, 15, and 10 percent,
respectively. Assuming these degradations in access times to
be representative of a large class of high-performance process-
ing systems, we computed the average memory access time as
seen by the CPU.

Table I presents the average access time as seen by the CPU
for three cases: 1) a small level 1 cache (h, = 0.6), 2) a
medium level 1 cache (hl = 0.8), and 3) a relatively large
level 1 cache (hl = 0.9). In all cases, the on-chip level 1 cache
is backed up by a typical medium-sized off-chip level 2 cache
(hz = 0.95). The results in Table I are presented for varying
degrees of ECC usage.

From Table I we can see that, in all cases, the use of ECC in
the main memory does not affect the overall memory access
time to any appreciable extent (a degradation of about 1
percent). If ECC is used in the level 2 cache, the overall
memory access time is degraded slightly (3.9-9.8 percent over
the no-ECC case) but the degradation is less severe if the level
1 cache is larger and has a higher hit ratio. Note that the level 2
cache and the main memory are built from several chips and
ECC would be necessary for fault tolerance. Indeed, the use of
ECC for the main memory is very desirable. The use of ECC
is also desirable for the level 2 cache especially if the level 2
cache is a copy-back cache and is built from DRAM’S.

However, the use of ECC in the level 1 cache degrades the
overall memory access time significantly (17- 18 percent over
the no-ECC case). Therefore, the use of ECC in the on-chip
cache for yield enhancement does not seem to be an attractive
option for high-performance VLSI processors. Furthermore,
in the absence of adequate cache-coherence algorithms for on-
chip caches, the on-chip caches are generally used to cache
read-only information (such as instructions) or are write-
through caches. For a read-only or a write-through cache,
correct information always exits elsewhere in the system (the
level 2 cache or the memory) at all times. Therefore, a simple
error-detection capability is all that is needed even for fault-

’ For a justification of the hit ratios of the level 1 caches, see Section IU-B
and for a justification of the hit ratios of the level 2 cache, see [19].

TABLE I
AVERAGE MEMORY ACCESS TIME FOR VARYING ECC USAGE

Ecconlyia

ECCU(111
1-1.

tolerant operation of the level 1 cache (see discussion in
Section IV-B) and a more complex ECC scheme for fault
tolerance is wasteful.

It is possible that the degradation in memory access time due
to ECC could be reduced for the on-chip cache [15]. For
example, data could be read from the on-chip cache assuming
that no error exists and supplied directly to the CPU. The ECC
computation could be carried out in parallel with the CPU’s
use of the data. If the ECC computation indicates an error, the
CPU would be informed and the computation aborted.
However, the additional RAM overhead still exists and let us
consider that.

Ideally, ECC must be provided on the smallest writeable
unit [15]. Since the smallest writeable unit in most processors
is a byte, this implies the use of 1 parity bit for single error
detection, 4 check bits for single error correction, and 5 check
bits for SECDED for each byte in the cache. This per bit
overhead can be reduced by maintaining ECC check bits at the
word (16-bit) or double word (32-bit) level. However, doing
so can complicate the access of data in the cache when only a
byte needs to be accessed since ECC information must be
computed for more than a byte [151.

Because of the time and space overheads associated with it,
ECC techniques to tolerate defects in an on-chip cache may be
of limited utility. Indeed, if a defect affects more than a single
bit in a cache block (as our defect model allows), the RAM
overhead for storing the check bits for a multiple-error-
correcting ECC code can be very large. Even if the overheads
are tolerable, we would like to know if they are worthwhile.
Therefore, we would like to see how a cache can operate in the
presence of defective blocks and how the performance of the
cache would be degraded in such a case.

C. Operation with Defective Blocks
To operate in the presence of defective blocks, the cache

control logic must be able to distinguish between defective and
defect-free blocks. To do so, we append to each block of the
cache an availability bit. This bit is similar to the fault-
tolerance bit proposed for the RISC-II instruction cache [161.
When the cache is tested, the availability bit for a block is set if
the block is free of defects and is reset if a defect exists in the
block. The defect can either be a cache data defect or a cache
tag defect (in Section IV-A, we shall see how these bits and
their setting change for a sector cache organization). The
cache control logic makes use of the availability bit when it
makes decisions during cache operation. The defective block
is excluded from cache operation, that is, it is never chosen as
the target block by the cache placement algorithm. If a

SOHI: CACHE MEMORY ORGANIZATION TO ENHANCE YIELD OF VLSI PROCESSORS

reference maps onto a defective block, the reference is treated
as a miss.

When data are fetched from the memory, they are normally
supplied to the CPU through the cache. If the cache is set
associative and there is at least one defect-free block in each
set of the cache, data transfer between the CPU and the
memory can be carried out through a defect-free block.
However, if all the blocks in a particular set are defective, data
references that map onto the defective set cannot be carried out
through the cache. This problem is particularly significant in a
direct mapped cache where there is only one block in each set.
To overcome this problem, selective bypass of the cache must
be possible. We believe that this selective bypass capability is
not a significant problem. Most processors have an option to
turn off the on-chip cache thereby bypassing the cache for all
memory references. Since the basic data paths already exist,
extending the capabilities to allow selective bypass is straight-
forward.

The approach of using an availability bit to allow cache
operation has little overhead-a single bit for each cache
block. The cache can continue operation in the presence of
cache tag and cache data defects. However, correct operation
cannot be guaranteed in the rare case in which the defect exists
in an availability bit. If the cache can be organized so that the
degradation in performance due to defective blocks is negligi-
ble, this approach can be used profitably to enhance the yield
of a VLSI processor with an on-chip cache.

III. CACHE PERFORMANCE UNDER DEFECT CONDITIONS

In this section, we evaluate the performance of various
cache organizations in the presence of defective blocks, where
cache performance is measured by the miss ratio. First, we see
how sensitive a cache organization is to a defective or missing
block and then we carry out a detailed performance evaluation
using trace-driven simulation.

A . The Sensitivity of a Cache Organization to Defective
Blocks

Let us suppose that the memory consists of M blocks, the
cache consists of C blocks, and the set associativity (number
of blocks per set) of the cache is S. For this organization, there
are (M x S) /C blocks in an equivalence or congruence
class. All blocks from the same equivalence class are mapped
onto the same set of the cache, i.e., the (M x S) /C blocks of
an equivalence class are mapped onto one of S blocks in the
cache.

In a direct mapped cache, the set associativity is one (S =
1) and if a cache block is defective, M / C memory blocks are
excluded from the cache. Consider, for example, the cache-
memory system of Fig. 1. The cache has four blocks (C = 4)
and the memory has 16 blocks (M = 16). If the cache were
direct mapped (S = l), under normal operation four memory

So far we have assumed the presence of two levels of cache in the memory
hierarchy. The reader should note that if the caches in the hierarchy have
inclusion properties [5] , that is, the contents of the level 1 cache are a subset of
the contents of the level 2 cache, the presence of the level 2 cache does not
affect the mapping of memory blocks in the level 1 cache. Therefore, to
simplify our examples in this section, we shall use a single level cache in the
memory hierarchy.

487

Memory Block (Mi)

Cache Blodr (Ci)

H 0

1

2

3 H

I I 15

Fig. 1 . An example cache-memory system.

blocks, namely {MO, M4, Ms, M I 2 } , map onto cache block
Co. If cache block CO is defective, four memory blocks {MO,
M4, Ms , MI^} will be excluded from the cache.

Since memory blocks {MO, M4, Ms , Mlz} cannot be
present in the cache, references to these blocks must be
serviced by the CPU-memory interface directly without
passing the data through the cache. Therefore, any reference
to these blocks would be a miss. In general, if there are D
defective blocks in the direct mapped cache, (D x M) / C
memory blocks would be excluded from the cache. Therefore,
we can expect the m i s s ratio of a direct mapped cache to
degrade linearly with the number of defective blocks.

A set associative cache is less restrictive. A single defective
block does not automatically exclude any memory block from
the cache. In fact, as long as every set in the cache has at least
one defect-free block, no memory block is excluded from the
cache. Blocks from a congruence class are excluded only if all
the cache blocks of the corresponding set are defective.
However, the miss ratio will degrade because the probability
of interference among the blocks that map onto a set with
defective blocks increases. For example, suppose that the
cache of Fig. 1 were two-way set associative (S = 2) and
cache blocks {CO, C , } comprised set 0 of the cache. Under
normal operation, memory blocks {MO, Mz, M4, M6, Ms,
MIO, M12, M14} could be present in either cache blocks CO or
C1. A defect in cache block CO will not exclude any memory
block from the cache completely; however, the probability of
interference among the memory blocks that map onto set 0 of
the cache will increase. Since no memory block is excluded
from the cache unless all blocks in a set are defective, we can
expect the degradation in m i s s ratio for a set associative cache
to be less than the degradation in miss ratio for an equivalent
direct mapped cache.

A fully associative cache (S = C) always allows every
memory block to be cached (unless the entire cache is
defective). Furthermore, all memory blocks are treated
uniformly and no set of memory blocks experiences a greater

488 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 4, APRIL 1989

100

90
M
i
s 8 0
S

R 70
a

i
‘ 6 0

0

50
X

1 4 0
0

O 3 0

20

10

0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
Pacentage of Defective Blocks

Fig. 2. Miss ratios; cache size = 256 bytes.

interference than another set. The degradation in the miss
ratio, therefore, will be due solely to the increased probability
of interference. The probability of interference is small,
especially for larger cache sizes. Therefore, we expect a fully
associative cache to have little degradation in miss ratio
because of defective blocks, especially if the number of
available defect-free blocks is large.

In summary, based on our understanding of cache operation
in the presence of defective blocks, we expect that a direct
mapped cache will be more sensitive to defects than a set
associative cache with the same cache and block size.
Furthermore, we also expect a cache with a larger number of
blocks to be less sensitive to defective blocks than a cache with
fewer number of blocks.

B. Simulation Methodology
To get an accurate estimate of degradation in cache

performance (as measured by the miss ratio) due to defective
blocks, we carried out an extensive trace-driven simulation
analysis. Trace-driven simulation is the most popular way of
evaluating cache memory performance. We simulated three
different cache sizes: 1) a 256 byte cache which is a typical on-
chip cache size for VLSI processors of the early- to mid-
1980’s (such as the Motorola 68020), 2) a 1K byte cache
which is a typical on-chip cache size for VLSI processors of

the mid- to late-l980’s, and 3) an 8K byte cache which we
expect be a typical on-chip cache size for high-performance
VLSI processors of the near future. A direct mapped, a two-
way set associative, and a fully associative organization were
simulated for each cache size. A least recently used (LRU)
replacement strategy was used for the set and fully associative
organizations. The block size was also varied for each cache.

The benchmark programs used to simulate the caches were
taken from the widely-used traces generated for a VAX-111
780 using the ATUM trace technique [l]. Each cache
organization was simulated for approximately 1 million
references. The caches were unified instruction and data
caches. The simulations were carried out using a software
cache simulator. We assume that the defects in the cache occur
randomly, i.e., there is no clustering of defects. The simulator
injects defects at random. A defect has the effect of preventing
any data from being cached in the defective block. Since
various blocks of the cache are not accessed precisely in the
same fashion, two different caches with the same number of
defective blocks (but different defective blocks) may differ
slightly in performance. In order to overcome this problem,
we simulated each cache organization several times for the
same number of defective blocks but with a different set of
defective blocks for each run and averaged the miss ratios.

The results of our simulation are presented in Figs. 2-4.

SOW: CACHE MEMORY ORGANIZATION TO ENHANCE YIELD OF VLSI PROCESSORS

3
100

90
M
i
s w
S

R 'O
a

I 6 0
1

0

50
X

1 4 0
0

30

20

10

a
0

I 1 I 1 1 1 I I I 1

10 U) 3 0 4 0 5 0 6 0 7 0
Pawnrage of Defective Blocks

80 90 100

489

Fig. 3. Miss ratios; cache size = 1K bytes.

The figures plot the cache miss ratio (averaged over all traces)
versus the percentage of blocks that are defective for direct-
mapped (DM), two-way set associative (TW), and fully
associative (FA) caches with various block sizes (in bytes).
For the 256 byte and 1K byte caches, we have plotted the
complete range of defective blocks. For the 8K byte cache, we
have truncated the curves at 50 percent defective blocks to
allow for a better look at the miss ratio degradation, especially
for a fully associative cache.

C. Discussion of the Simulation Results
Consider the results for a 256 byte cache (see Fig. 2). If the

cache is organized as a direct mapped cache, the m i s s ratio
would degrade almost linearly with the number of defective
blocks. This is indeed what we had expected. Thus, if the
block size was 16 bytes (BS = 16), four defective blocks
would imply that 25 percent of the blocks were defective and
the miss ratio would degrade from about 0.325 to about 0.493.
If, on the other hand, the cache were organized as a fully
associative cache, the miss ratio would degrade only from
about 0.259 to about 0.304. The degradation in miss ratio for
other set associative organizations would be in between the
two limits. For a two-way set associative organization, the

miss ratio would degrade from about 0.307 to about 0.397. If
the block size is small (4 bytes) and there is only a single
defective block (1.56 percent of all blocks are defective), the
miss ratio would degrade by only 0.002 (from 0.357 to 0.359)
for a fully associative cache and by 0.01 (from 0.42 to 0.43)
for a direct-mapped cache.

The results for cache sizes of 1K and 8K bytes (Figs. 3 and
4) follow a similar pattern. However, because of a large
number of total blocks, more defect-free blocks are available
for caching operation and the absolute degradation in miss
ratio is much smaller. For example, in a direct mapped 8K
byte cache with a block size of 8 bytes, four defective blocks
(1.56 percent of all blocks) would degrade the miss ratio by
only 0.0037 (from 0.0689 to 0.0726). If the 8K byte cache is
two-way set associative with 8 byte blocks, the degradation in
miss ratio due to four defective blocks would have only been
0.001. For a fully associative organization, the degradation is
negligibly small.

An interesting point to note from Fig. 4 is that for a fully
associative 8K byte cache, a loss of 50 percent of its blocks
would only degrade the miss ratio from 0.054 to 0.064 if the
block size is 8 bytes. Since a fully associative 8K byte cache
with 50 percent of its blocks defective is essentially the same

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 4, APRIL 1989

Bhelr
size

(byer)

M
i
S

S

R
a
t
I

0

X

1
0
0

Numbad DireaMgpcd ZwaySaAssoddve FWyAspoeiative
Dafsclivc crcbCSize(byCa) crcheSize@yted) a?l leSize(bytes)

B h r k ~ 2%] 1K [8K 2% I 1K I 8 K 2.56 1 1K I 8 K
0 1.812 I 1.443 I 1.185 1 . m I 1356 I 1.142 1.669 I 1.281 I 1.126

60

55

50

45

40

35

30

25

20

15

10

5

0

l6

0 5 10 15 U) 25 U) 35 40 45 50
Pacentage of Defective Blocks

1 1.866 1.427 1.158 1.717 1336 1.106 1.637 1.267 1.090
2 1963 1.441 1.162 1.769 1.340 f.106 1.686 1.268 1.090
4 2158 1.469 1.171 1.m 1.346 1.106 1.713 1.271 1.090

Fig. 4. Miss ratios; cache size = 8K bytes.

TABLE II
RELATIVE MEMORY ACCESS TIME IN THE PRESENCE OF DEFECTS

1 1.864 1.458 1188 1743 1360 1.142 1676 1282 1.126
2 I I I 1901 I 1.475 I 1:190 I 1:79 I 1.363 I 1.142 I 11686 1 1:284 I 1.126 I

as a fault-free, fully associative 4K byte cache, the reader
might be tempted to conclude that a 4K byte fully associative
cache is adequate; additional chip resources utilized in going
to an 8K byte cache might be better utilized elsewhere.
However, we would like to point out that the results for the
fully associative cache have been presented as an upper bound.
In many cases, fully associative caches are prohibitively
expensive to implement and most practical caches employ a set
associative organization.

Since the results presented in Figs. 2-4 do not indicate the
degradation in the memory access time as seen by the
processor, we converted the degradation in the miss ratio of

the level 1 cache to a degradation in the relative memory
access time as seen by the processor. We assumed the same
system parameters as in Section 11-B-2, i.e., the level 2 cache
has a hit ratio of 0.95 and a relative access time of three cycles
and the main memory has a relative access time of ten cycles.
The results for block sizes of 8 and 16 bytes and various cache
organizations are presented in Table II.

From the results presented in Figs. 2-4 and Table 11, we can
make two observations about cache behavior in the presence of
defective blocks. First, for an arbitrary cache organization, the
performance degradation due to defect is larger if the fraction
of cache resources that it affects is larger. For example, the

SOHI: CACHE MEMORY ORGANIZATION TO ENHANCE YIELD OF VLSI PROCESSORS 49 1

degradation due to a single defective block in a cache with a
block size of 8 bytes is smaller in a 1K byte cache (0.78
percent defective blocks) than in a 256 byte cache (3.125
percent defective blocks). The fraction of cache blocks that are
unavailable due to defects can be reduced by increasing the
cache size and/or decreasing the block size. However, smaller
block sizes mean more tags and consequently more chip area.
As we shall see in Section IV-A, a sector cache organization
provides a good middle ground.

Second, for an arbitrary cache size, the performance
degradation is smaller if the cache has a higher degree of set
associativity. Increasing set associativity not only improves
defect-free cache performance, it also enhances the ability of
the cache to tolerate defects independent of or in conjunction
with the cache size and the block size.

IV. RELATED ISSUES
A . Sector Caches

The cache organizations that we have discussed so far have
a single block size and fetch the entire block into the cache on a
miss. In general, large block sizes are preferable because they
reduce the number of tags required (and consequently the size
of the tag array RAM). However, large block sizes have two
problems that limit their use: 1) additional traffic is generated
on the cache-memory interconnection and 2) the time penalty
incurred on a miss to fetch the block into the cache is larger.
The first problem is significant for a multiprocessor with
private cache memories [8] and the second is significant for a
VLSI processor with an on-chip cache memory [2]. To
alleviate these problems, a sector cache organization can be
used.

In a sector cache, an address block is divided into several
transfer blocks [l l] , [19]. Tags for an entire address block
are maintained in the tag array. An additional bit called a
presence bit is maintained for each transfer block in the data
array. A reference is a miss either if the address block is not
present in the cache or if the desired transfer block within the
desired address block is not present in the cache. On a miss,
only the desired transfer block is brought into the cache. By
having large address blocks and small transfer blocks, we can
reduce the cache-memory traffic as well as minimize the
penalty incurred on a miss.

A sector cache can be made defect-tolerant in the same way
as a regular cache-by the use of a single availability bit for
each address block. The availability bit is reset if a defect
exists in the tag portion (address block) or in either of the data
portions (transfer blocks) of a particular block. However, if a
cache data defect is confined to a small number of transfer
blocks from a particular address block, the performance
degradation can be reduced even further by associating an
availability bit with each transfer block in the data array. In
this case, there is a total of T + 1 availability bits where Tis
the number of transfer blocks in an address block. Now, in
case of a single cache tag defect, an entire address block (T
transfer blocks) is unavailable for use and the performance
degradation that we can expect would be’ similar to the
performance degradation for a nonsector cache. However, in

case of a single cache data defect, only a single transfer block
is unavailable for use (the other T - 1 transfer blocks of the
address block can still be used for caching). Since the “scope”
of the defect is much smaller, the degradation in performance
will also be smaller.

B. Operational Faults
So far we have focused our attention on defects that can be

detected by a testing procedure that is applied before the VLSI
chip is put into operation. During operation, faults can occur
and, if tolerating such faults is important, a fault-tolerance
mechanism must be provided. The mechanism must be able to
detect that a fault has occurred and take corrective action.

For our purposes, we assume that an operational fault
manifests as a single bit error. Under this assumption,
detecting a fault is quite straightforward and a simple parity
scheme can be used to do so. If the cache is a copy-back cache,
a correct copy of data is not guaranteed to exist elsewhere in
the system at all times and, therefore, a correction capability is
necessary if fault-tolerant operation is to be guaranteed.
However, in the case of a cache for read-only data or a write-
through cache, correct information can always be recovered
from elsewhere and, therefore, a correction capability in the
cache is not absolutely necessary in order to guarantee fault-
tolerant operation.

The availability bit scheme coupled with an error detection
mechanism can be used to guarantee fault-tolerant operation in
write-through and read-only caches. When data are accessed
from the cache, the error detection mechanism is triggered. If
the mechanism indicates an error, the access is treated as a
miss. The data are read from the memory (or level 2 cache)
into the cache and the access operation is resumed. If an error
condition is flagged again, a permanent (or intermittent) error
must exist in the cache block. Since a permanent error is
functionally equivalent to a defect, the availability bit of the
block is reset and all future references to the block are treated
as misses. If the error is transient, it is automatically scrubbed
by the cache miss operation. In this manner, the cache can be
used for fault-tolerant operation and its performance degrada-
tion due to faults is no worse than the performance degradation
due to an equivalent number of defects.

For copy-back caches, correct operation cannot be guaran-
teed unless an ECC scheme is used. However, we can reduce
the probability of an irrecoverable situation as follows.
Organize the cache as a sector cache with a parity bit, a dirty
bit, and an availability bit for each transfer block. A dirty bit is
a bit which indicates if the contents of the block have been
updated and if the contents of the block present in the cache
differ from the contents that are present elsewhere in the
processing system. As before, the availability bit is used to
indicate a permanent error. Of the four possible combinations
of the parity and dirty bits, only in one case can correct data
not be recovered. This is the case when the dirty bit is set and
the parity bit indicates an error. If the parity bit indicates no
error, correct data exist in the cache block. If the parity bit
indicates an error and the dirty bit is not set (indicating that the
block has not been modified since it was last brought into the
cache and a correct copy of the block exists elsewhere in the

492

system), correct data can be recovered from elsewhere. By
having smaller transfer blocks, the probability of having an
error in a dirty cache transfer block can be minimized and
consequently the probability of an irrecoverable error can be
minimized.

V. CONCLUSIONS
To achieve high performance in VLSI processors, the use of

an on-chip cache memory is highly desirable. Since the on-
chip cache is expected to consume a large portion of the chip
area, techniques that allow a cache to continue operation in
spite of defective blocks can profitably be used to enhance the
yield of VLSI processors. In this paper, we investigated
techniques to enhance the yield of on-chip cache memories.
We saw that traditional techniques that use additional redun-
dancy may neither be appropriate nor necessary since a cache
can continue operation in the presence of defects. Then we
suggested a scheme that allows a cache to continue operation
in the presence of defective blocks.

We evaluated the degradation in cache performance due to
defects using an extensive trace-driven simulation analysis.
Our evaluation indicates that the performance degradation due
to defective blocks is small in cases where: 1) the cache is
large, 2) the block size is small, and 3) the set associativity is
high. In many cases, the performance degradation is insignifi-
cant.

Two major conclusions can be drawn from the work
presented in this paper: 1) by choosing an appropriate cache
organization, the need for additional redundancy in a cache to
allow defectlfault-tolerant operation can be avoided and 2)
defects in the on-chip cache portion of a VLSI processor can
be tolerated with a minimum performance loss and very small
area overhead and consequently, the yield of high-perform-
ance VLSI processors can be enhanced considerably.

REFERENCES
[l] A. Agarwal, R. L. Sites, and M. Horowitz, “ATUM: A new technique

for capturing address traces using microcode,” in Proc. 13th Annu.
Symp. Comput. Architecture, Tokyo, Japan, June 1986, pp. 119-
127.

[2] A. Agarwal, P. Chow, M. Horowitz, J. Acken, A. S a l z , and J.
Hennessy , “On-chip instruction caches for high performance proces-
sors,” in Proc. Con$ Advanc. Res. VLSI, Stanford, Mar. 1987.

[3] D. Alpert, J. Levy, and B. Maytal, “Architecture of the NS32532
microprocessor,” in Proc. IEEE Int. Conf. Comput. Design, Oct.
1987.

141

151

161

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 4, APRIL 1989

D. W. Archer et al., “A CMOS VAX microprocessor with on-chip
cache and memory management,” IEEE J. Solid-state Circuits, vol.

J.-L Bear and W.-H. Wang, “On the inclusion properties for multi-
level cache hierarchies,” in Proc. 15th Annu. Symp. Comput.
Architecture. Honolulu, HI, June 1988, pp. 73-80.
A. D. Berenbaum et al.. “CRISP: A pipelined 32-bit microprocessor
with 13-kbit of cache memory,” IEEE J. Solid-state Circuits, vol.

P. W. Bosshart et al., “A 553K-transistor LISP processor chip,”
IEEE J. Solid-state Circuits, vol. SC-22, pp. 808-819, Oct. 1987.
J. R. Goodman, “Using cache memory to reduce processor-memory
traffic,” in Proc. 10th Annu. Symp. Comput. Architecture, June

M. Horowitz el al., “MIPS-X: A 20-MIPS peak, 32-bit microproces-
sor with on-chip cache,” IEEE J. Solid-state Circuits, vol. SC-22,
pp. 790-799, Oct. 1987.
I. Koren and D. K. Pradhan, “Modeling the effect of redundancy on
yield and performance of VLSI systems,” IEEE Trans. Comput.. vol.
C-36, pp. 344-355, Mar. 1987.
J. S. Liptay, “Structural aspects of the System/360 Model 85 Part 11:
The cache,” IBM Syst. J., vol. 7, pp. 15-21, 1968.
D. MacGregor, D. Mothersole, and B. Moyer, “The Motorola
MC68020,” IEEE Micro, pp. 101-118, Aug. 1984.
W. R. Moore, “A review of fault-tolerant techniques for the
enhancement of integated circuit yield,” Proc. IEEE, vol. 74, pp.
684-697, May 1986.
A. Patel, “An inside look at the 280,000 CPU: Zilog’s new 32-bit
microprocessor,” in Proc. AFIPS Nut. Comput. Conf.. July 1984,

D. A. Patterson and C. H. Sequin, “Design considerations for single-
chip computers of the future,’’ IEEE Trans. Comput., vol. C-29, pp.
108-116, Feb. 1980.
D. A. Patterson, P. Garrison, M. Hill, D. Lioupis, C. Nyberg, T.
Sippel, and K. Van Dyke, “Architecture of a VLSI instruction cache
for a RISC,” in Proc. 10th Annu. Symp. Comput. Architecture,
June 1983, pp. 108-115.
D. Phillips, “The Z8oooO Microprocessor,” IEEE Micro, pp. 23-26,

D. K. Pradhan, Fault Tolerant Computing: Theory and Tech-
niques.
A. J. Smith, “Cache memories,” ACM Comput. Surveys, vol. 14,
pp. 473-530, Sept. 1982.
C. H. Stapper, F. M. Armstrong, and K. Saji, “Integrated circuit yield
Statistics,” Proc. IEEE, vol. 71, pp. 453-470, Apr. 1983.

SC-22, pp. 849-852, Oct. 1987.

SC-22, pp. 776-782, Oct. 1987.

1983, pp. 124-131.

pp. 83-91.

Dec. 1985.

Englewood Cliffs, NJ: Prentice-Hall, 1986.

Gurindnr S. Sohi (S’85-M’85) received the B.E.
(Hons.) degree in electrical engineering from the
Birla Institute of Science and Technology, Pilani,
India in 1981, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Illi-
nois, Urbana-Champaign, in 1983 and 1985, re-
spectively.

Since September 1985, he has been with the
Computer Sciences Department at the University of
Wisconsin-Madison where he is an Assistant Pro-
fessor. His interests are in computer architecture,

parallel and distributed processing, and fault-tolerant computing.

