
IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990 349

Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit,

Pip elined Computers

Abstmct-The performance of pipelined processors is lim-
ited by data dependencies and branch instructions. In order to
achieve high performance, mechanisms must exist to alleviate the
effects of data dependencies and branch instructions. Further-
more, in many cases, for example the support of virtual memory,
it is essential interrupts be precise. In multiple functional unit
pipelined processors where the instructions can complete and
update the state of the machine out of program order, hard-
ware support must be provided to implement precise interrupts.
In this paper, we combine the problems of data dependency
resolution and precise interrupt implementation. We present a
design for a hardware mechanism that resolves dependencies
dynamically and, at the same time, guarantees precise inter-
rupts. Simulation studies show that, by resolving dependencies,
the proposed mechanism is able to obtain a significant speedup
over a simple instruction issue mechanism as well as implement
precise interrupts.

Index Terms- Dependency resolution, multiple functional
units, out-of-order execution, pipelined computers, precise in-
terrupts, register update unit, Tomasulo’s algorithm.

I. INTRODUCTION

HE CPU’s of most supercomputers consist of several T pipelined functional units connected together in some
fashion. Such multiple functional unit, pipelined machines are
able to achieve a considerable overlap in the execution of in-
structions. Unfortunately, pipelined CPU’s have two major
impediments to their performance: 1) data dependencies and
2) branch instructions. An instruction cannot begin execution
until its operands are available. If an instruction is dependent
upon a previous instruction, the instruction must wait until
the previous instruction has completed execution. This wait-
ing can degrade performance. The performance degradation
due to branch instructions can be even more severe. Not only
must a conditional branch instruction wait for the branch con-
dition to be known, an additional penalty may be incurred
when fetching an instruction from the taken branch path to
the stage where the instruction is decoded and issued.

Pipelined CPU’s suffer from another major problem- an

Manuscript received August 8, 1987; revised July 25, 1989. This work
was supported in part by the University of Wisconsin Graduate Research
Committee and in part by NSF Grant CCR-8706722. A preliminary version
of this paper appeared in the 14th International Symposium on Computer
Architecture, Pittsburgh, PA, June 1987.

The author is with the Computer Sciences Department, University of Wis-
consin, Madison, WI 53706.

IEEE Log Number 8932910.

interrupt can be imprecise [3], [121, [24]. This problem is es-
pecially severe in multiple functional unit computers in which
instructions can complete execution out of program order even
though they are issued in program order [l], [3], [21]. For a
high-performance, pipelined CPU, an adequate solution must
be found for the imprecise interrupt problem and means must
be provided for overcoming the performance degradation due
to data dependencies and branch instructions.

The detrimental effects of branch instructions can be allevi-
ated by using delayed branch instructions. However, the utility
of delayed branch instructions is limited for long pipelines. In
such cases, other means must exist to alleviate the detrimen-
tal effects. A common approach is to use branch prediction
1131, [22]. Using prediction techniques, the probable execu-
tion path of a branch instruction is determined. Instructions
from the predicted path can then be fetched into instruction
buffers or even executed in a conditional mode [3], [4], [7],
[141, [191. While the conditional mode of execution will gen-
erally result in a higher pipeline throughput, a mechanism to
allow the machine to recover from an incorrect sequence of
conditionally executed instructions must be provided.

Both hardware and software solutions exist to the data de-
pendency problem. Software solutions use code scheduling
techniques (combined with a large set of registers) to increase
the distance between dependent instructions and to provide in-
terlocks [6]. Most hardware solutions employ some form of
waiting stations where an instruction can wait for its operands
and allow subsequent instructions to proceed, thereby allow-
ing instructions to issue out of program order. Examples of
waiting stations include the reservation stations of the IBM
360/91 floating point unit [26] and the node tables of the HPS
microarchitecture [171. The waiting stations form the core of a
dependency-resolution mechanism that must exist in order to
preserve program dependencies. In this paper, a dependency-
resolution mechanism is synonymous with an out-of-order in-
struction issue mechanism. Note the difference between out-
of-order instruction issue (also called out-of-order instruction
execution) and out-of-order instruction completion. Instruc-
tions can complete out of program order even though they
were issued in program order.

In a pipelined machine, imprecise interrupts can be caused
by instruction-generated traps such as arithmetic exceptions
and page faults. An imprecise interrupt can leave the machine
in an irrecoverable state. While the occurrence of arithmetic
exceptions is rare, the occurrence of page faults in a ma-

OO18-9340/90/03OO-0349$01 .OO 0 1990 IEEE

350 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

chine that supports virtual memory is not. Therefore, if vir-
tual memory is to be used with a pipelined CPU, it is crucial
that interrupts be precise. Several hardware solutions to the
problem are described in [24] and in [8]. We are unaware
of any software solutions to the imprecise interrupt problem
for multiple functional unit computers. A software solution
will be extremely difficult, if not impossible. Not only must
the software allow for the worst case execution time for any
instruction, it must also keep track of instructions that have
completed out of program order and generate an appropriate
code sequence to undo the effects of those instructions. In
any case, some hardware support must be provided to main-
tain run-time information.

The problems of out-of-order instruction issue and impre-
cise interrupts have been considered independent of one an-
other by many researchers [2], [8], [24], [26], [27]. The solu-
tions provided thus far attack each problem individually. For
example, a recent microarchitecture, HPS, uses register alias
tables and node alias tables to permit out-of-order instruction
issue [8], [171, [181. To provide precise interrupts, HPS uses a
checkpoint repair mechanism [9], [lo]. In this paper, we treat
the problems of out-of-order instruction issue and imprecise
interrupts simultaneously. If interrupts are to be precise, some
hardware support is needed. In its simplest form, a precise-
interrupt mechanism will aggravate dependencies [24]. Why
not combine a simple mechanism that implements precise in-
terrupts with an out-of-order instruction issue mechanism so
that the aggravated dependencies (as well as other dependen-
cies) can be tolerated?

The remainder of this paper is as follows. In Section 11,
we describe the model architecture that we use throughout
this paper. In Section 111, we discuss Tomasulo’s out-of-order
instruction issue algorithm and extend it, giving several vari-
ations, so that the cost of implementing it using discrete com-
ponents is not very high even for a large number of registers.
In Section IV, we discuss the problem of imprecise interrupts
and review known solutions. Section V describes a unit, the
register update unit (RUU), that resolves dependencies as well
as implements precise interrupts. The precise interrupt and
out-of-order instruction issue mechanisms mutually aid and
simplify each other. An evaluation of the RUU is carried out
in Section VI. Finally, we discuss how our mechanism can be
used to alleviate the degradation due to branch instructions.

11. MODEL ARCHITECTURE

The model architecture that we use for our studies is pre-
sented in Fig. 1. It has the same capabilities and executes the
same instruction set as the scalar unit of the CRAY- 1 [5], [2 13.
The CRAY-1 was chosen because it represents a state-of-the-
art scalar unit and its execution can be modeled precisely.
The author also had easy access to tools that could be used to
generate instruction traces for the CRAY-1 scalar unit [16].
There are a few differences between the CRAY-1 scalar unit
and our model architecture. First, in our model architecture,
all instructions, whether they are composed of 1 parcel (16
bits) or 2 parcels (32 bits) can issue in a single cycle if issue
conditions are favorable. Next, only one function can output
data onto the result bus in any clock cycle. In contrast, the

CRAY-1 scalar unit has separate result buses for the address
and scalar functional units. Instructions are fetched by the in-
struction fetch unit and decoded and issued by the decode
and issue unit. Once dependencies have been resolved in the
decode and issue unit, instructions are forwarded to the func-
tional units for execution. The results of the functional units
are written directly into the register file. The register file con-
sists of 8 A , 8 S, 64 B , and 64 T registers. In this paper, we
shall focus on an issue unit that is capable of issuing only one
instruction per clock cycle. Extensions to this work to allow
the issue of multiple instructions per clock cycle can be found
in [20].

A . Benchmark Programs
The benchmark programs used throughout this paper were

the first 14 Lawrence Livermore loops [15]. The first 14 loops
were chosen because they were readily available and also al-
low us to compare our results to previous studies that tackle
similar problems [24], [27]. Henceforth, we shall refer to
them as LLLl , LLL2, . . . , LLL14. The simulations were car-
ried out as follows. The benchmark programs, as compiled by
the CFT compiler for the scalar unit, were fed into a CRAY-1
simulator [161. The CRAY- 1 simulator generates an instruc-
tion trace for each program. Vector instructions are not used.
Each instruction trace was then fed into the appropriate sim-
ulator.

B . Simulation of the Model Architecture
We simulated the execution of the benchmark programs on

the model architecture of Fig. 1. The number of instructions
executed, the number of clock cycles taken for the execution
of each benchmark program, and the number of instructions
executed per cycle is given in Table I. In generating the re-
sults of Table I, we assumed that: 1) no memory bank con-
flicts occur, 2) all instruction references are serviced by the
instruction buffers, and 3) the instructions are already present
in the instruction buffers when the program is started. These
assumptions do not affect the execution time considerably for
the benchmark programs. These assumptions and a difference
in the bus structure account for the difference between the
data presented in Table I and in [27]. The instruction issue
rate is the average number of instructions that are executed in
a cycle, i.e., the total number of instructions executed in the
benchmark divided by the total number of cycles to execute
the benchmark. The instruction issue rate for the total of all
14 loops is calculated as the harmonic mean of the individual
issue rates [23]. For reasons of brevity, we shall present all
subsequent simulation results as a harmonic mean of all 14
loops rather than report the results for each individual loop.

As we can see from Table I, the performance of the model
machine is far from the issue limit of 1 instruction per cycle.
From our simulations, we determined that the main reason for
this suboptimal performance is data dependencies. Therefore,
we must find some way of alleviating the affects of data depen-
dencies. We have two choices: 1) eliminating the dependencies
or 2) tolerating the dependencies. Data dependencies can be
eliminated by software code scheduling techniques. Hardware
dependency resolution techniques allow the machine to tol-

SOHI: INSTRUCTION ISSUE LOGIC FOR PIPELINED COMPUTERS 351

Functional
Units

TABLE 1

From Memory

Register
File Instruction Fetch Unit

Decode and Issue Uiit

c

Fig. 1

STATISTICS FOR THE BENCHMARK PROGRAMS

Benchmark

LLL5
LLL6

LU9
LLL IO
LLLl l
LLLl2
LLLl3
LLL 14

Harmonic
Mean

7217 17234
8448 17102

14015 36023
9783 20643
8347 20696
9 3 s 22034
4573 10231
4031 8026
4918 10134
4412 9420

12002 28002

17814
9915 I 27w1 23573

Instruction
Issue Rate

0.419
0.494
0.389
0.474
0.403
0.424
0.447
0.502
0.485
0.468
0.429
0.429
0.497
0.421

0.446

-

Result Bus

The model architecture.

erate dependencies. Since we are mainly concerned with a
hardware mechanism that allows the architecture to tolerate
dependencies as well as implement precise interrupts, we can
restrict our attention to hardware mechanisms for tolerating
dependencies.

III. HARDWARE DEPENDENCY RESOLUTION
When an instruction reaches the decode and issue stage in

the pipeline, checks must be made to determine if the operands
for the instruction are available, i.e., if all dependencies for
this instruction have been resolved. If an operand is not avail-
able, the instruction must wait in the decode and issue stage.
Because the decode and issue stage of the pipeline i s busy,
subsequent instructions cannot proceed even though they may
be ready to execute. Subsequent instructions can proceed if the
waiting instruction “steps aside, ” thereby freeing the decode
and issue stage and allowing other instructions to bypass the
waiting instruction. In order to do so, some form of waiting
stations or reservation stations must be provided [26]. Other
mechanisms also exist in the literature [2]. Since our work is

I
Memory

I

based on the concept of reservation stations, we shall focus
our attention on mechanisms that employ reservation stations
in some form.

A . Tomasulo’s Algorithm
Tomasulo’s hardware dependency-resolution (or out-of-

order instruction issue) algorithm was first presented for the
floating point unit of the IBM 360/91 [26]. Extensions of this
algorithm for the CRAY-1 scalar unit are presented in [27] and
for the HPS microarchitecture in [8]. The algorithm operates
as follows. An instruction whose operands are not available
when it enters the decode and issue stage is forwarded to a
reservation station (RS) associated with the functional unit
that it will be using. It waits in the RS until its data dependen-
cies have been resolved and its operands are available. Once
at a reservation station, an instruction can resolve its depen-
dencies by monitoring the common data bus (the result bus
in our model architecture). When all the operands for an in-
struction are available, it is dispatched to the functional unit
for execution. The result bus can be reserved either when the
instruction is dispatched to the functional unit [27] or before
it is about the leave the functional unit [26].

Each source register is assigned a busy bit. A register is
busy if it is the destination of an instruction that is still in ex-
ecution. Each destination register (also called a sink register)
is assigned a tag which identifies the result that will be written
into the register. Since any register in the register file can be
a destination register, each register must be assigned a tag.
The fields in each reservation station are shown in Fig. 2.

If a source register is busy when the instruction reaches
the issue stage, the tag for the source register is obtained and
the instruction is forwarded to a reservation station. The ap-
propriate ready bit in the reservation station is set to indicate
that the source operand is unavailable. If the source regis-
ter is not busy, the contents of the register are read into the
reservation station and the ready bit is reset to indicate that

352

Register Number

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3 , MARCH 1990

Tag Free Latest Copy

Ready Tag Contents Ready Tag Contents Tag

Ready

Instructions from Memory

Reeister

Tag Contents Ready Tag Contents SlotinTU

- Tag
Unit Decode and Issue Unit

I

Functional
Units

I
1-

FU ‘T Result Bus

Memory p
Fig. 5. The model architecture with a tag unit and distributed reservation

stations.

be forwarded to the appropriate slot in the TU. The fields in
the modified reservation stations are shown in Fig. 4.

As before, the instruction along with its associated
tagdoperands is forwarded to a reservation station where it
waits for its operands to become ready. The result from a
functional unit (along with its tag) is broadcast to all reser-
vation stations and is also forwarded to the TU. Reservation
stations monitor the result bus and gate in the result if the
tag of the data on the result bus matches the tag stored in the
reservation station. The TU forwards the result to the regis-
ter specified in the appropriate slot of the TU. All registers
are, therefore, updated only by the TU when their data are
available and no direct connection is needed between the func-
tional units and the register file. When the register has been
updated by the TU, the corresponding tag is released and is
marked free in the TU. The modified architecture that incor-
porates a tag unit and reservation stations associated with each
functional unit is shown in Fig. 5.

a) Example: The operation of the tag unit is best illus-
trated by an example. Consider a TU that has six entries as
shown in Fig. 6. Each entry in the TU has a bit indicating if
the tag is free (tag free), i.e., available for use by the issue
logic, a bit indicating if the tag is the latest tag for the regis-
ter (latest copy), and a field for the number of the destination
register (register number) as in Fig. 3. The TU is indexed by
the tag number.

Consider the execution of an instruction ZI that adds the
contents of registers SO and S7 and puts the result in S4.
Assume that the state of the TU is as shown in Fig. 6 and that

SOHI: INSTRUCTION ISSUE LOGIC FOR PIPELINED COMPUTERS 353

6 I S3

Tag Register Tag Latest
Number Number Free Copy

No Yes

I L

I L

S7 is free (indeed a register must be free if it does not have
an entry in the TU). When the issue logic decodes Z I , it at-
tempts to get a new tag for the destination register S4 from
the TU and obtains tag 3. Since the TU already has a tag for
S4, the old tag (4) is updated to indicate that it no longer rep-
resents the latest copy of the register. Since S7’s contents are
valid, they can be read from the register file and forwarded
to the reservation stations directly. However, since the con-
tents of SO are not valid, the latest tag for SO (tag 2) must
be obtained from the TU. The issue unit forwards a packet
to the reservation station associated with the add functional
unit. The packet contains the contents of 5’7, a tag (2) for SO
and a tag (3) for the destination register S4. Zl waits in the
reservation station until that tag 2 appears on the result bus.
At this point, the reservation station reads the value for SO
and Z I is ready to execute. When Z I completes execution and
leaves the add functional unit, the result is forwarded to all
reservation stations that have a matching tag (3) and also to
the TU. The TU forwards the result to the register file to be
written into S4. Since tag 3 is the latest tag for S4, S4’s busy
bit can be reset when the data have been written into S4. Tag
3 is then marked free and is available for reuse by the issue
logic.

b) Interactions with Memory: Loadlstore operations
that interact with memory pose a challenge to architectures
that allow out-of-order instruction issue (the reader is referred
to [181 for a discussion of and some solutions to the problem).
In our model, we handle memory dependencies in a fashion
similar to the way register dependencies are handled in the
TU. A set of load registers contains the addresses of “cur-
rently active” memory locations. Each load register has tags
to allow for multiple instances of a memory address just as
the TU allows multiple instances of registers.

The reservation stations associated with the memory func-
tional unit are managed in a pseudoqueue fashion to satisfy
dependencies. A load operation needs a memory address be-
fore it can be issued to the memory whereas a store operation
needs both a memory address and a data value. If the address
of a loadlstore operation is unavailable, subsequent loadlstore
instructions are not allowed to proceed. This prevents a pos-
sible violation of dependencies.

When the memory address required by the operation is
known, checks are made to see if the address matches an
address in the load registers. A match indicates that there is a
pending operation to the same memory address. If no match
results, a free load register is obtained. Instruction issue is
blocked if no free load register is available.

If the current operation is a load operation and a match
results, the load operation need not be submitted to memory.

This is because the pending operation to the same address
can also satisfy the load operation. In this case, the tag of the
appropriate load register is returned to the reservation station.
If there is no pending request to the same address, the tag is
returned to the reservation station and the load operation is
submitted to the memory. In either case, the load operation
completes when a matching tag appears on the result bus.

If the current operation is a store operation and a match
results, the tag of the load register is updated and the tag
returned to the reservation station. By doing so, a new instance
of the memory location is provided. If no match results, a free
load register is obtained and the tag returned to the reservation
station. When the data for the store operation are available,
they are forwarded (along with the tag) via the load registers
to the memory and the store operation is complete.

When the loadktore operation is complete, the reservation
station is freed. The corresponding load register is also freed
if the tags match, i.e., there is no pending operation to the
same memory address. Note that the above scheme allows
load operations to bypass store operations as long as the ad-
dresses of all the operations are known. Also note that the
load registers need to be searched associatively. However, for
a small number of load registers, this associative search is not
very wide.

2) Merging the Reservation Stations: If each functional
unit has a separate set of reservation stations, it is likely that
some functional unit will run out of reservation stations while
the reservation stations associated with another functional unit
are idle. As suggested in [27], we can combine all he reser-
vation stations into a common RS pool rather than hasl.:ig dis-
joint pools of reservation stations associated with each func-
tional unit. All instructions that were previously issued to
distributed reservation stations associated with the functional
units now go to the common RS pool. Instruction issue is
blocked if the RS pool is full. As instructions become ready
in the RS pool, they are issued to the functional units. All the
other functions are as before.

3) Merging the RS Pool and the Tag Unit: In the tag unit,
there is one entry for every instruction that is present in either
the RS pool or in the functional units. Therefore, at any time,
there is a one-to-one correspondence between the entries in
the TU and the instructions in the reservation stations or the
functional units. This suggests that we can combine the RS
pool and the tag unit into a single RS tag unit (RSTU). Of
course, a reservation station is wasted if it is associated with
an instruction that is in a functional unit. However, as we shall
see in Section V, this organization can easily be extended to
allow for the implementation of precise interrupts.

In the RSTU, a reservation station is reserved at the same
time that a tag is reserved. When an instruction issues, it ob-
tains a tag from the RSTU and in doing so automatically re-
serves a reservation station. All the other functions, including
interactions with the memory, are as before. The architecture
with an RSTU is shown in Fig. 7 and an entry in the RSTU is
shown in Fig. 8. Since the reservations stations are merged,
a functional unit field is needed to identify the functional unit
to which the instruction occupying the RSTU entry will be
issued.

354

Yes/No Yes/No Unit Number

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

1.483
1.547
1.593
1.634
1.721
1.748
1.773

A Data

0.661
0.6W
0.710
0.723
0.768
0.780
0.791

Source Operand 1 Source Operand 2 Destination

I Ready 1 Tag I Contents I Ready I l a g I Contents 11 Register 1
Fig. 8. An entry in the RSTU.

TABLE I1
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RSTU

7
8
9

10
15
20
25

a) Simulation Analysis of the RSTU: In order to eval-
uate the effectiveness of the RSTU, we carried out a simulation
analysis of the RSTU using the first 14 Lawrence Livermore
loops as a benchmark. The results obtained for the execution
of all 14 loops are presented in Table 11. The relative speedup
is the speedup compared to the simple instruction issue mech-
anism of Table I and the instruction issue rate is the harmonic
mean of the individual issue rates. The number of load reg-
isters in these simulations was six. This guarantees that, for
our benchmark programs, instruction issue is never blocked
because of an unavailable load register.

From Table 11, it is quite clear that the RSTU is able to
achieve a significant speedup over a simple instruction issue
mechanism with a reasonable amount of hardware. The RSTU
is also quite close to achieving the issue limit of 1 instruction
per clock cycle for our model architecture. Indeed, all non-
branch instructions are able to achieve the limit of 1 instruction
per cycle. The only cycles in which no useful instruction is

TABLE I11
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RSTU AND Two DATA PATHS

Number of
Entries in RSTU

3
4
5
6
7
8
9

10
15
20
25

executed are the dead cycles following each branch instruc-
tion. The degradation due to such cycles could be reduced
by using delayed branch instructions or by conditionally exe-
cuting instructions. The results presented in Table I1 compare
favorably to the results presented in [27]. Because the RSTU
can implement the dependency-resolution mechanism for the
B and T register files, it can achieve a better speedup than a
mechanism that is somewhat restricted as in [27].

At first glance, it may seem that an organization with
merged reservation stations (such as the RSTU of Fig. 8) is
at a disadvantage when compared to an organization with dis-
tributed reservation stations (such as Fig. 5) since only one
instruction can issue from the reservation stations to the func-
tional units in a clock cycle unless multiple paths are provided
between the RSTU and the functional units. On the other hand,
a better use of the reservations stations results since the reser-
vation stations can be shared among several functional units.
In order to evaluate the effectiveness of multiple data paths
between the RSTU and the functional units, we simulated an
architecture with two paths from the RSTU to the functional
units, but only a single issue unit, a single result bus, and
single path from the RSTU to the register file. The results are
presented in Table 111.

As is evident from Table 111, the presence of a duplicate path
from the RSTU to the functional units makes little difference.
This result is not counterintuitive. We use an argument based
on instruction flow to convince the reader. The RSTU is es-
sentially a reservoir of instructions that is filled by the decode
and issue logic and drained by the functional units. Since the
decode and issue logic can fill this reservoir at a maximum
rate of 1 instruction per cycle, having a drain that is capable
of draining more than 1 instruction per cycle will not be very
useful in a steady state. Of course, if the decode and issue unit
itself could submit more than 1 instruction per clock cycle to
the RSTU, additional paths from the RSTU to the functional
units would be needed [20].

IV . IMPLEMENTATION OF PRECISE INTERRUPTS

We now address the issue of precise interrupts. A complete
description of several schemes that implement precise inter-
rupts is given in [24]. An alternate scheme that uses checkpoint
repair is presented in [lo].

The mechanisms described in [24] include a simple reorder
buffer, a more complex reorder buffer with bypass logic, a
history buffer, and a future file. The simple reorder buffer
allows instructions to finish execution out of order but up-

SOHI: INSTRUCTION ISSUE LOGIC FOR PIPELINED COMPUTERS 355

dates the state of the machine, i.e., commits the instructions,
in the order that the instructions arrived at the decode and
issue stage. This ensures that a precise state of the machine
is recoverable at any time. However, by forcing an order-
ing of commitment among the instructions, the reorder buffer
aggravates data dependencies. This is because the value of a
register cannot be read until it has been updated by the reorder
buffer, even though the instruction that computed a value for
the register may have already completed and the new value
is in the reorder buffer. If bypass logic is associated with the
reorder buffer, an instruction does not have to wait for the
reorder buffer to update a source register; it can fetch the
value from the reorder buffer (if it is available) and can issue.
With a bypass mechanism, the issue rate of the machine is
not degraded considerably if the size of the buffer is reason-
ably large [24]. However, a bypass mechanism is expensive
to implement since it requires a search capability and addi-
tional data paths for each buffer entry. A history buffer has
the same performance as a reorder buffer with bypass logic. It
does not need bypass logic but the register file needs another
read port. A future file achieves the same performance as a
reorder buffer with bypass logic at the expense of duplicating
the entire register file. The checkpoint repair mechanism de-
scribed in [lo] maintains three copies of the register file. We
shall not discuss these mechanisms in more detail in this paper.
The interested reader is referred to the original papers.

V. MERGING DEPENDENCY RESOLUTION AND PRECISE INTERRUPTS

We note that the RSTU of Section 111-B3 can be modified to
behave like a reorder buffer if it is forced to update the state of
the machine in the order that the instructions are encountered
by the decode and issue unit. This is easily accomplished by
managing the RSTU as a queue. Therefore, all that we have
to do to implement precise interrupts in an architecture with
an RSTU is to manage the RSTU like a queue. We call the
modified logic the register update unit (RUU). The RUU is
essentially the RSTU constrained to commit instructions in the
order that the instructions were received by the decode and
issue logic (and consequently by the RUU). The functional
units remain unchanged. The modified architecture that uses
an RUU to execute instructions out of program order and to
ensure a precise state of the machine is given in Fig. 9. Let
us consider the operation of the RUU in some more detail.

A . The Register Update Unit (RUU)
The RUU performs four major functions in each clock cy-

cle. First, it accepts new instructions from the decode and
issue logic. Second, it monitors the result bus to resolve de-
pendencies. Third, it determines which instruction should be
issued to the functional units for execution, reserves the result
bus, and dispatches the instruction to the selected functional
unit for execution. Fourth, it determines if an instruction can
commit, i.e., update the registers, and commits the instruc-
tion if it can. Below, we see how the RUU accomplishes these
tasks.

First, the RUU must accept an instruction from the de-
code and issue logic. The RUU is managed like a queue
using RUU-Head and RUU-Tail pointers. If RUU-Head =

lnsmcuons from Memory

I Register
File

Insmction Fetch Unit

~ FI 'I
1

Decode and Issue UN1 I

L--- _ _ -

Register Update UN1

I

Functional
Unirs

Load
Registers

Result Bus

Fig. 9. The model architecture with an RUU.

RUU-Tail, the RUU is full. RUU-Tail points to the slot that
will be used by the decode and issue logic and RUU-Head
points to the next instruction that must commit to ensure a
precise state. When an instruction is decoded, the issue logic
requests an entry in the RUU. If the RUU is full, instruction
issue is blocked. If an entry is available, the issue logic obtains
the position of the entry (using the RUU-Tail pointer) and up-
dates the RUU-Tail pointer. Simultaneously, it forwards the
contents of the source registers (if they are availaule) or a
register tag to the selected reservation station in the RIJU.

Managing the RSTU like a queue has a very important side
effect- the logic for obtaining tags for source operands and
generating tags for destination operands, i.e., for dependency
resolution, is greatly simplified. Recall that in the RSTU, the
issue logic had to search the RSTU associatively to obtain the
correct tag for the source operand and to update the latest
copy field for the destination register. If multiple instances of
the same destination register are disallowed, i.e., instruction
issue is blocked if the destination register is busy, no associa-
tive logic is necessary since the register number itself serves
as the tag. An instance of a register is a new copy of the
register. By providing multiple instances of a destination reg-
ister, the architecture can process several instructions with the
same destination register simultaneously, i.e., resolve write-
after-write hazards [111. Disallowing multiple instances of a
destination register can degrade performance [27]. As noted
in [26], it is possible to eliminate the associative search and
use a counter to provide multiple instances and source operand
tags for each register if we can guarantee that results return
to the registers in order. This is precisely the situation in the
RUU. The implementation of precise interrupts, therefore,
simplifies the out-of-order instruction issue mechanism.

The scheme we use to provide multiple instances of a desti-
nation register and to provide source operand tags associates
two n-bit counters with each register in the register file (this
includes the B and T register files). There is no busy bit. The
counters, the number of instances (NO and the latest in-
stance (Lo, represent the number of instances of a register in

356

Source Operand 1 Source Operand 2 Desunation

Ready Tag Content Ready Tag Content RegisterS Content

YeslNo

the RUU and the number of the latest instance, respectively.
When an instruction with a destination register Ri is issued
to the RUU, both NI and LI associated with Ri are incre-
mented. LI is incremented modulo n. Up to 2" - 1 instances
of a register can be present in the RUU at any time; issue is
blocked if NI for a destination register is 2" - 1. When an
instruction leaves the RUU and updates the value of Ri, the
associated NI is decremented (since n is small, the increment-
ing/decrementing process is fast). A register is free if NI = 0,
i.e., there is no instruction in the RUU that is going to write
into the register.

The register tag sent to the RUU consists of the register
number Ri appended with the LI counter. This guarantees
that future instructions access the latest instance, i.e., obtain
the latest copy of the register contents and that instructions
already present in the RUU get the correct version of the data.
In our experiments, each of these counters was 3 bits wide.
This allowed up to seven instances of a destination register.
A 3-bit counter ensured that, for our benchmark programs,
an instruction never blocked in the decode and issue stage
because an instance of a register was unavailable. Since we
had a totA of 144 registers, the tag field was 11 (8 + 3) bits
wide.

To accomplish its second task of resolving dependencies,
the RUU must monitor the result bus. To do so, each source
operand field in the RUU has a ready bit, a tag subfield,
and a content subfield. If the operand is not ready, the tag
subfield monitors the result bus for a matching tag. If a match
is detected, the data on the bus are gated into the content field.
This task of the RUU corresponds to the task carried out by
the reservation stations in Tomasulo's algorithm. Note that
there is no need for a latest copy field in the RUU and no
associative search logic is needed in the RUU to generate and
maintain the tags. However, associative comparison logic is
still needed for all the reservation stations in the RUU so that
they can gate in the value of source operands when available.

An entry in the RUU is shown in Fig. 10. The dispatched
field indicates if the instruction has been dispatched for ex-
ecution to the functional unit specified in the functional unit
field. The executed field indicates if the instruction has fin-
ished execution and is ready to update the register file. The
program counter field is needed for the implementation of
precise interrupts [24]. We have omitted the details of extra
information that must be carried around with each instruction
since the details of such information are straightforward.

The RUU accomplishes its third task by monitoring the
ready bits of the source operands. When the operands of an
instruction in the RUU are ready, the instruction can issue
to the functional units. The RUU issues the highest priority
instruction and sets the dispatched bit to indicate that the in-
struction has been dispatched for execution and should not

Unit Number YesINo Content

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

be selected again by the dispatching algorithm. Priority is
first given to loadhtore instructions and then to an instruc-
tion which entered the RUU earlier. The RUU reserves the
result bus when it issues an instruction to the functional units.

The final RUU task of committing an instruction is accom-
plished by monitoring the executed bit of the RUU entry at the
head of the RUU. If the executed bit of the instruction at the
head of the RUU is set, the results of its destination register
are forwarded to the register file. The associated NI counter
in the register file is decremented and RUU-Head updated.

As is obvious from the above discussion, each of the tasks
of the RUU can be carried out in parallel in each clock cycle
and each task is simple enough that it is not likely to penalize
the clock cycle. Instructions that interact with the memory are
handled as in Section 111-Blb. The reservation stations for the
memory are provided by the RUU. Note that the load registers
still need to be searched associatively for memory addresses.
However, the hardware needed for this comparison is not very
great for a small number of load registers. In our simulations,
we used six load registers, although four were sufficient for
most cases.

VI. EVALUATION OF THE RUU

In order to evaluate the effectiveness of the RUU, we simu-
lated three RUU organizations, 1) an RUU with bypass logic
for source operand values, 2) an RUU without bypass logic,
and 3) an RUU with a limited bypass logic. The results pre-
sented in this section differ from results presented previously
[25]. The main reason for the difference is a different pipeline
structure and a different issue mechanism for load and store
instructions.

A . The RUU with Bypass Logic
Recall that the RUU forces the results to return to the reg-

isters in program order. In doing so, it aggravates data de-
pendencies. Such a degradation could be eliminated if bypass
logic for source operands was provided in some form. The
simplest form could be associative comparison hardware with
the destination field of each RUU entry. If a source operand
for instruction I , is provided by Ii and the destination operand
of Ii is ready in the RUU, the operand can be read from
the RUU and I j is allowed to proceed with execution. Note
that the history buffer and the future file [24] are alternate
forms for bypass logic. The relative speedups (compared to
the simple instruction issue mechanism of Table I) and the
corresponding instruction issue rate for different sizes of an
RUU with bypass logic are presented in Table IV.

The results of Table IV are quite promising. An RUU with
a reasonable number of entries (10-12) not only speeds up
execution but also provides precise interrupts. Moreover, for
somewhat larger RUU sizes, the RUU is able to achieve a
speedup that is quite similar to the RSTU. Note that the RSTU
was not constrained to implement precise interrupts and it also
requires additional associative logic.

B . The RUU without Bypass Logic
Since bypass logic is expensive to implement, we decided to

evaluate an RUU without any bypass logic. Before we present

SOHI: INSTRUCTION ISSUE LOGIC FOR PIPELINED COMPUTERS 357

Number of
Entries in RUU

TABLE IV
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RUU WITH BYPASS LOGIC

Relative Insuuction
Specdup Issue Rate

RELATIVE SPEEDUP
TABLE V

AND ISSUE RATE WITH AN RUU WITHOUT BYPASS LOGIC

3
4
6
8

10 12

15
20
25
30
40
50

0.853 I 0.940
1.079
1.248
1.383
1.508
1.584
1.619
1.682
1.700
1.735
1.737

0.380
0.419
0.481
0.557
0.61 7
0.673
0.706
0.735
0.750
0.758
0.774
0.775

the results, let us see the situations where bypass logic is
helpful.

Consider an instruction Ij that uses the result of a previous
instruction I;. Recall that the reservation stations associated
with the RUU already have the capability to monitor the result
bus. Therefore, if I; completes execution after I, is issued to
the RUU, Ij can gate in the result from I; when it appears
on the result bus. In this case, bypass logic is not needed.

Bypass logic is helpful only in the cases where Ii has com-
pleted execution when I, is issued. Rather that providing by-
pass logic for this case, we wait for the result of I; to come
out on the bus between the RUU and the register file in order
to resolve Ij's dependency on I;. If Ij is issued to the RUU
before I; completes, Ij's dependency on I; can be resolved
when I;'s result appears on the result bus if we extend the ca-
pabilities of the reservation stations to monitor both the result
bus and the RUU to register file bus.

Table V presents the relative speedups and instruction is-
sue rates for a RUU without bypass logic. From Table V we
see that a RUU without any bypass logic at all is still able to
achieve a substantial increase in speed over a simple instruc-
tion issue mechanism and implement precise interrupts at the
same time. The speedup, however, is not as impressive as the
speedup obtained if bypass logic were used. The difference
arises mainly because of the ordering of code in the loops.
Let us illustrate the problem with an example.

Consider the following section of code:

I; A 2 + A l + A 3

Ij A O c A 2 f l

Ik JAM loopstart.

Conventional compilation techniques try and increase the dis-
tance between instructions Ii and Ij and instructions Ij and Ik
so that when instructions Ij and I k reach the issue stage, their
respective operands are ready. Such an increase in dependency
distance is in fact harmful to an RUU without bypass logic. If
I, was issued sufficiently before Ik and completed execution
before Ik reached the decode and issue stage, I k would be
forced to wait until I, left the RUU. If, on the other hand, I,
was issued soon before Ik, Ik could resolve its dependency
on Ij when the result of Ij was available on the functional

Number of 1 Entries in RUU

3
4
6
8
IO
12
15
20 I !!

unit result bus. In our simulations, no attempt was made to
improve the performance of the RUU without bypass logic by
reordering the code for such cases.

C . The RUU with Limited Bypass Logic
Because of the problem illustrated above, we found that

branch instructions were blocked for a long period of time in
the decode and issue stage since the contents of the A0 register
could not be read from the RUU (or were unavailable because
of a dependency chain aggravated as above). The branch in-
struction has to wait in the decode and issue unit until the value
of A0 appears on a bus. In order to eliminate this problem,
we duplicated the A register file, effectively creating a limited
bypass path for the A registers. The duplicate A register file
acts as a future file for the A registers. The entire A register
file (eight registers) was duplicated to prevent the unnecessary
increase in the length of the dependency chain that affects the
conditional branch instruction. All other functions are as be-
fore. Specifically, there is only l copy of the B, S, and T
register files and there is no bypass logic in the RUU. As
functions that affect the A registers are completed and appear
on the result bus, the result is forwarded to the RUU and also
to the A future file. The architectural register file contains
a valid copy of registers at all time for recovering a precise
state. Instructions that use A registers as source operands,
fetch the data from the A future file, if it is available, and
proceed. The results for an RUU with limited bypass logic
is presented in Table VI. An RUU with limited bypass logic
is able to overcome a significant portion of the performance
penalty paid for eliminating bypass logic especially for small
RUU sizes. For larger RUU sizes, however, the performance
is not as good. This is because instructions that transfer data
from a B register to an A register are still held up in the RUU
(no bypass logic for the B register file). Since the destination
A register of such transfer instructions eventually affects the
branch condition (most branch instructions in the benchmark
programs tested the value of the A0 register), instruction issue
is blocked for longer periods of time. We are confident that
the performance of an RUU without bypass logic and an RUU
with limited bypass logic could be improved considerably and
would come close to the speedups with bypass logic if the
code was modified accordingly.

VII. BRANCH PENALTY AND CONDITIONAL INSTRUCTIONS

As mentioned earlier, the performance degradation due to
branches can be reduced by conditionally executing instruc-

358 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

TABLE VI
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RUU WITH LIMITED BYPASS LOGIC

Number of
Enmes in RUU

3
4
6
8

10
12
15
20
25
30
40
50

tions from a predicted branch path. Several architectures em-
ploy this approach [3], [4], [8], [19]. To allow conditional
execution of instructions, a hardware mechanism is needed
that would allow the machine to recover from an incorrect
branch prediction.

The RUU provides a very powerful mechanism for nul-
lifying instructions, be the instructions valid instructions or
instructions that executed in a conditional mode. Valid instruc-
tions may be nullified because of a trap caused by a previous
instruction; conditionally executed instructions may be nulli-
fied if they are from an incorrect execution path. Therefore,
the conditional execution of instructions with an RUU is very
easy. If the decode and issue unit predicts the outcome of
branches and actually executes instructions from a predicted
path in a conditional mode, recovery from incorrect branch
predictions can be achieved very easily without duplicating
the register file. We can identify such instructions through the
use of an additional field in the RUU and prevent them from
being committed until they are proven to be from a correct
path. Furthermore, there is no hard limit to the number of
branches that can be predicted; the RUU can provide multi-
ple instances of a register for the different paths. Extending
the RUU to accommodate branch prediction and conditional
execution is an ongoing research topic.

VIII. SUMMARY

In this paper, we have combined the issues of hardware
dependency-resolution and implementation of precise inter-
rupts. We devised a scheme that can resolve dependencies
and thereby allows out-of-order instruction execution without
associating tag-matching hardware with each register. Such a
scheme can, therefore, be used even in the presence of a large
number of registers without a substantial hardware cost. Then
we extended the scheme to incorporate precise interrupts. The
precise interrupt and the dependency-resolution mechanisms
mutually aid and simplify each other. We evaluated the perfor-
mance of the resulting hardware using 14 Livermore loops as
the benchmark. The results are quite encouraging. The com-
bined mechanism, called the RUU, is able to implement pre-
cise interrupts and is able to achieve a significant performance
improvement over a simple instruction issue mechanism with-
out a substantial cost in hardware.

ACKNOWLEDGMENT

The author would like to thank J. Goodman, A. Pleszkun,
and J. Smith for their useful discussions during this research.

Relative
Speedup

0.845
0.930
1.061
1.119
1.283
1.310
1.393
1.457
1.463
1.484
1.491
1.525

Instruction
Issue Rate

0.377
0.415
0.477

0.572

0.621

0.665
0.680

The author would also like to thank S. Vajapeyam for his help
with the simulations.

REFERENCES
CDC Cyber 200 Model 205 Compu fer System Hardware Reference
Manual, Control Data Corp., Arden Hills, MN, 1981.
R. D. Acosta, J . Kjelstrup, and H. C. Torng, “An instruction issuing
approach to enhancing performance in multiple functional unit proces-
sors,” IEEE Trans. Comput., vol. C-35, pp. 815-828, Sept. 1986.
D. W. Anderson, F. J . Sparacio, and R. M. Tomasulo, “The IBM
System/360 Model 9 1 : Machine philosophy and instruction-handling,”
IBM .I. Res. Develop., pp. 8-24, Jan. 1967.
P. Chow and M. Horowitz, “Architectural tradeoffs in the design of
MIPS-X,” in Proc. 14th Annu. Symp. Comput. Architecture, Pitts-
burgh, PA, June 1987, pp. 300-308.
CRAY, CRAY-1 Computer Systems, Hardware Reference Manual.
Chippewa Falls, WI: Cray Research, Inc., 1982.
J . Hennessy, N. Jouppi, F. Baskett, T. Gross, and J . Gill, “Hard-
ware/software tradeoffs for increased performance,” in Proc. Int.
Symp. Architectural Support Programming Languages Oper. Syst.,
Mar. 1982, pp. 2-11.
P. Y. T. Hsu and E. S. Davidson, “Highly concurrent scalar process-
ing,’’ in Proc. 13th Annu. Symp. Comput. Architecture, June 1986,
pp. 386-395.
W. Hwu and Y. N. Patt, “HPSm, A high performance restricted data
flow architecture having minimal functionality,” in Proc. 13th Annu.
Symp. Comput. Architecture, June 1986, pp. 297-307.
- , “Design choices for the HPSm microprocessor chip,” in Proc.
20th Annu. Hawaii Int. Conf. Syst. Sci., Kona, HI, Jan. 1987.
- , “Checkpoint repair for high-performance out-of-order execution
machines,” IEEE Trans. Comput., vol. C-36, pp. 1496-1514, Dec.
1987.
R. M. Keller, “Look-ahead processors,” ACM Comput. Surveys,
vol. 7, pp. 66-72, Dec. 1975.
P. M. Kogge, The Architecture of Pipelined Computers. New
York: McGraw-Hill, 1981.
J. K. F. Lee and A. J. Smith, “Branch prediction strategies and branch
target buffer design,” IEEE Comput. Mag., vol. 17, pp. 6-22, Jan.
1984.
S. McFarling and J . Hennessy, “Reducing the cost of braxhes,” in
Proc. 13th Annu. Symp. Comput. Architecture, Tokyo, Japan, June

F. H. McMahon, FORTRAN CPU Performance Analysis, Lawrence
Livermore Labs., 1972.
N. Pang and J . E. Smith, “CRAY-1 simulation tools,” Tech. Rep.
ECE-83-11, Univ. of Wisconsin-Madison, Dec. 1983.
Y. N. Patt, W.-M. Hwu, and M. Shebanow, “HPS, A new microarchi-
tecture: Rationale and introduction,” in Proc. 18th Annu. Workshop
Microprogramming, Pacific Grove, CA, Dec. 1985, pp. 103-108.
Y. N. Patt, S. W. Melvin, W.-M. Hwu, and M. Shebanow, “Crit-
ical issues regarding HPS, A high performance microarchitecture,”
in Proc. 18th Annu. Workshop Microprogmmming, Pacific Grove,
CA, Dec. 1985, pp. 109-116.
A. Pleszkun, J. Goodman, W. C. Hsu, R. Joersz, G. Bier, P. Woest,
and P. Schecter, “WISQ: A restartable architecture using queues,’’
in P m . 14th Annu. Symp. Comput. Architecture, Pittsburgh, PA,
June 1987, pp. 290-299.
A. R. Peszkun and G. S . Sohi, “The performance potential of multiple
functional unit processors,” in Proc. 15th Annu. Symp. Comput.
Architecture, Honolulu, HI, June 1988, pp. 37-44.

1986, pp. 396-304.

SOHI: INSTRUCTION ISSUE LOGIC FOR PIPELINED COMPUTERS 359

1211 R. M. Russel, “The CRAY-1 computer system,” Cornmun. ACM,
vol. 21, pp. 63-72, Jan. 1978.

[221 J. E. Smith, “A study of branch prediction strategies,” in P m . 8th
Annu. Symp. Comput. Architecture, May 1981, pp. 135-148.

[23] - , “Characterizing computer performance with a single number,”
Cornmun. ACM, vol. 31, pp. 1202-1206, Oct. 1988.

I241 J. E. Smith and A. R. Pleszkun, “Implementing precise interrupts in
pipelined processors,” IEEE Trans. Cornput., vol. 37, pp. 562-573,
May 1988.

[25] G. S. Sohi and S. Vajapeyam, “Instruction issue logic for high-
performance, interruptible pipelined processors,” in P m . 14th Annu.
Symp. Cornput. Architecture, Pittsburgh, PA, June 1987, pp. 27-34.
R. M. Tomasulo, “An efficient algonthm for exploiting multiple arith-
metic units,” IBM J. Res. Develop., pp. 25-33, Jan 1967.
S. Weiss and J . E. Smith, “Instruction issue logic in pipelined super-

computers,” IEEE Trans. Cornput., vol. C-33, pp. 1013-1022, Nov.
1984.

Gurindar S. Sohi (S’85-M’85) received the B.E.
(Hons.) degree in electrical engineering from the
Birla Institute of Science and Technology, PJani,
India, in 1981 and the M S. and Ph.D degrees in
electrical engineering from the University of 1111-
nois, Urbana-Champaign, in 1983 and 1985, re-
spectively.

Since September 1985, he has been with the
Computer Sciences Department at the University of
Wisconsin-Madison where is currently an Assistant
Professor. His interests are in computer architec-

[26]

[27] ture, parallel and distributed processing, and fault-tolerant computing.

