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Instruction Issue Logic for High-Performance, 
Interruptible, Multiple Functional Unit, 

Pip elined Computers 

Abstmct-The performance of pipelined processors is lim- 
ited by data dependencies and branch instructions. In order to 
achieve high performance, mechanisms must exist to alleviate the 
effects of data dependencies and branch instructions. Further- 
more, in many cases, for example the support of virtual memory, 
it is essential interrupts be precise. In multiple functional unit 
pipelined processors where the instructions can complete and 
update the state of the machine out of program order, hard- 
ware support must be provided to implement precise interrupts. 
In this paper, we combine the problems of data dependency 
resolution and precise interrupt implementation. We present a 
design for a hardware mechanism that resolves dependencies 
dynamically and, at the same time, guarantees precise inter- 
rupts. Simulation studies show that, by resolving dependencies, 
the proposed mechanism is able to obtain a significant speedup 
over a simple instruction issue mechanism as well as implement 
precise interrupts. 

Index Terms- Dependency resolution, multiple functional 
units, out-of-order execution, pipelined computers, precise in- 
terrupts, register update unit, Tomasulo’s algorithm. 

I. INTRODUCTION 

HE CPU’s of most supercomputers consist of several T pipelined functional units connected together in some 
fashion. Such multiple functional unit, pipelined machines are 
able to achieve a considerable overlap in the execution of in- 
structions. Unfortunately, pipelined CPU’s have two major 
impediments to their performance: 1) data dependencies and 
2) branch instructions. An instruction cannot begin execution 
until its operands are available. If an instruction is dependent 
upon a previous instruction, the instruction must wait until 
the previous instruction has completed execution. This wait- 
ing can degrade performance. The performance degradation 
due to branch instructions can be even more severe. Not only 
must a conditional branch instruction wait for the branch con- 
dition to be known, an additional penalty may be incurred 
when fetching an instruction from the taken branch path to 
the stage where the instruction is decoded and issued. 

Pipelined CPU’s suffer from another major problem- an 
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interrupt can be imprecise [3], [ 121, [24]. This problem is es- 
pecially severe in multiple functional unit computers in which 
instructions can complete execution out of program order even 
though they are issued in program order [l], [3], [21]. For a 
high-performance, pipelined CPU, an adequate solution must 
be found for the imprecise interrupt problem and means must 
be provided for overcoming the performance degradation due 
to data dependencies and branch instructions. 

The detrimental effects of branch instructions can be allevi- 
ated by using delayed branch instructions. However, the utility 
of delayed branch instructions is limited for long pipelines. In 
such cases, other means must exist to alleviate the detrimen- 
tal effects. A common approach is to use branch prediction 
1131, [22]. Using prediction techniques, the probable execu- 
tion path of a branch instruction is determined. Instructions 
from the predicted path can then be fetched into instruction 
buffers or even executed in a conditional mode [3], [4], [7], 
[ 141, [ 191. While the conditional mode of execution will gen- 
erally result in a higher pipeline throughput, a mechanism to 
allow the machine to recover from an incorrect sequence of 
conditionally executed instructions must be provided. 

Both hardware and software solutions exist to the data de- 
pendency problem. Software solutions use code scheduling 
techniques (combined with a large set of registers) to increase 
the distance between dependent instructions and to provide in- 
terlocks [6]. Most hardware solutions employ some form of 
waiting stations where an instruction can wait for its operands 
and allow subsequent instructions to proceed, thereby allow- 
ing instructions to issue out of program order. Examples of 
waiting stations include the reservation stations of the IBM 
360/91 floating point unit [26] and the node tables of the HPS 
microarchitecture [ 171. The waiting stations form the core of a 
dependency-resolution mechanism that must exist in order to 
preserve program dependencies. In this paper, a dependency- 
resolution mechanism is synonymous with an out-of-order in- 
struction issue mechanism. Note the difference between out- 
of-order instruction issue (also called out-of-order instruction 
execution) and out-of-order instruction completion. Instruc- 
tions can complete out of program order even though they 
were issued in program order. 

In a pipelined machine, imprecise interrupts can be caused 
by instruction-generated traps such as arithmetic exceptions 
and page faults. An imprecise interrupt can leave the machine 
in an irrecoverable state. While the occurrence of arithmetic 
exceptions is rare, the occurrence of page faults in a ma- 
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chine that supports virtual memory is not. Therefore, if vir- 
tual memory is to be used with a pipelined CPU, it is crucial 
that interrupts be precise. Several hardware solutions to the 
problem are described in [24] and in [8]. We are unaware 
of any software solutions to the imprecise interrupt problem 
for multiple functional unit computers. A software solution 
will be extremely difficult, if not impossible. Not only must 
the software allow for the worst case execution time for any 
instruction, it must also keep track of instructions that have 
completed out of program order and generate an appropriate 
code sequence to undo the effects of those instructions. In 
any case, some hardware support must be provided to main- 
tain run-time information. 

The problems of out-of-order instruction issue and impre- 
cise interrupts have been considered independent of one an- 
other by many researchers [2], [8], [24], [26], [27]. The solu- 
tions provided thus far attack each problem individually. For 
example, a recent microarchitecture, HPS, uses register alias 
tables and node alias tables to permit out-of-order instruction 
issue [8], [ 171, [ 181. To provide precise interrupts, HPS uses a 
checkpoint repair mechanism [9], [lo]. In this paper, we treat 
the problems of out-of-order instruction issue and imprecise 
interrupts simultaneously. If interrupts are to be precise, some 
hardware support is needed. In its simplest form, a precise- 
interrupt mechanism will aggravate dependencies [24]. Why 
not combine a simple mechanism that implements precise in- 
terrupts with an out-of-order instruction issue mechanism so 
that the aggravated dependencies (as well as other dependen- 
cies) can be tolerated? 

The remainder of this paper is as follows. In Section 11, 
we describe the model architecture that we use throughout 
this paper. In Section 111, we discuss Tomasulo’s out-of-order 
instruction issue algorithm and extend it, giving several vari- 
ations, so that the cost of implementing it using discrete com- 
ponents is not very high even for a large number of registers. 
In Section IV, we discuss the problem of imprecise interrupts 
and review known solutions. Section V describes a unit, the 
register update unit (RUU), that resolves dependencies as well 
as implements precise interrupts. The precise interrupt and 
out-of-order instruction issue mechanisms mutually aid and 
simplify each other. An evaluation of the RUU is carried out 
in Section VI. Finally, we discuss how our mechanism can be 
used to alleviate the degradation due to branch instructions. 

11. MODEL ARCHITECTURE 

The model architecture that we use for our studies is pre- 
sented in Fig. 1. It has the same capabilities and executes the 
same instruction set as the scalar unit of the CRAY- 1 [5], [2 13. 
The CRAY-1 was chosen because it represents a state-of-the- 
art scalar unit and its execution can be modeled precisely. 
The author also had easy access to tools that could be used to 
generate instruction traces for the CRAY-1 scalar unit [16]. 
There are a few differences between the CRAY-1 scalar unit 
and our model architecture. First, in our model architecture, 
all instructions, whether they are composed of 1 parcel (16 
bits) or 2 parcels (32 bits) can issue in a single cycle if issue 
conditions are favorable. Next, only one function can output 
data onto the result bus in any clock cycle. In contrast, the 

CRAY-1 scalar unit has separate result buses for the address 
and scalar functional units. Instructions are fetched by the in- 
struction fetch unit and decoded and issued by the decode 
and issue unit. Once dependencies have been resolved in the 
decode and issue unit, instructions are forwarded to the func- 
tional units for execution. The results of the functional units 
are written directly into the register file. The register file con- 
sists of 8 A ,  8 S, 64 B ,  and 64 T registers. In this paper, we 
shall focus on an issue unit that is capable of issuing only one 
instruction per clock cycle. Extensions to this work to allow 
the issue of multiple instructions per clock cycle can be found 
in [20]. 

A .  Benchmark Programs 
The benchmark programs used throughout this paper were 

the first 14 Lawrence Livermore loops [15]. The first 14 loops 
were chosen because they were readily available and also al- 
low us to compare our results to previous studies that tackle 
similar problems [24], [27]. Henceforth, we shall refer to 
them as LLLl , LLL2, . . . , LLL14. The simulations were car- 
ried out as follows. The benchmark programs, as compiled by 
the CFT compiler for the scalar unit, were fed into a CRAY-1 
simulator [ 161. The CRAY- 1 simulator generates an instruc- 
tion trace for each program. Vector instructions are not used. 
Each instruction trace was then fed into the appropriate sim- 
ulator. 

B .  Simulation of the Model Architecture 
We simulated the execution of the benchmark programs on 

the model architecture of Fig. 1. The number of instructions 
executed, the number of clock cycles taken for the execution 
of each benchmark program, and the number of instructions 
executed per cycle is given in Table I. In generating the re- 
sults of Table I, we assumed that: 1) no memory bank con- 
flicts occur, 2) all instruction references are serviced by the 
instruction buffers, and 3) the instructions are already present 
in the instruction buffers when the program is started. These 
assumptions do not affect the execution time considerably for 
the benchmark programs. These assumptions and a difference 
in the bus structure account for the difference between the 
data presented in Table I and in [27]. The instruction issue 
rate is the average number of instructions that are executed in 
a cycle, i.e., the total number of instructions executed in the 
benchmark divided by the total number of cycles to execute 
the benchmark. The instruction issue rate for the total of all 
14 loops is calculated as the harmonic mean of the individual 
issue rates [23]. For reasons of brevity, we shall present all 
subsequent simulation results as a harmonic mean of all 14 
loops rather than report the results for each individual loop. 

As we can see from Table I, the performance of the model 
machine is far from the issue limit of 1 instruction per cycle. 
From our simulations, we determined that the main reason for 
this suboptimal performance is data dependencies. Therefore, 
we must find some way of alleviating the affects of data depen- 
dencies. We have two choices: 1) eliminating the dependencies 
or 2) tolerating the dependencies. Data dependencies can be 
eliminated by software code scheduling techniques. Hardware 
dependency resolution techniques allow the machine to tol- 
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erate dependencies. Since we are mainly concerned with a 
hardware mechanism that allows the architecture to tolerate 
dependencies as well as implement precise interrupts, we can 
restrict our attention to hardware mechanisms for tolerating 
dependencies. 

III. HARDWARE DEPENDENCY RESOLUTION 
When an instruction reaches the decode and issue stage in 

the pipeline, checks must be made to determine if the operands 
for the instruction are available, i.e., if all dependencies for 
this instruction have been resolved. If an operand is not avail- 
able, the instruction must wait in the decode and issue stage. 
Because the decode and issue stage of the pipeline i s  busy, 
subsequent instructions cannot proceed even though they may 
be ready to execute. Subsequent instructions can proceed if the 
waiting instruction “steps aside, ” thereby freeing the decode 
and issue stage and allowing other instructions to bypass the 
waiting instruction. In order to do so, some form of waiting 
stations or reservation stations must be provided [26]. Other 
mechanisms also exist in the literature [2]. Since our work is 

I 
Memory 

I 

based on the concept of reservation stations, we shall focus 
our attention on mechanisms that employ reservation stations 
in some form. 

A .  Tomasulo’s Algorithm 
Tomasulo’s hardware dependency-resolution (or out-of- 

order instruction issue) algorithm was first presented for the 
floating point unit of the IBM 360/91 [26]. Extensions of this 
algorithm for the CRAY-1 scalar unit are presented in [27] and 
for the HPS microarchitecture in [8]. The algorithm operates 
as follows. An instruction whose operands are not available 
when it enters the decode and issue stage is forwarded to a 
reservation station (RS) associated with the functional unit 
that it will be using. It waits in the RS until its data dependen- 
cies have been resolved and its operands are available. Once 
at a reservation station, an instruction can resolve its depen- 
dencies by monitoring the common data bus (the result bus 
in our model architecture). When all the operands for an in- 
struction are available, it is dispatched to the functional unit 
for execution. The result bus can be reserved either when the 
instruction is dispatched to the functional unit [27] or before 
it is about the leave the functional unit [26]. 

Each source register is assigned a busy bit. A register is 
busy if it is the destination of an instruction that is still in ex- 
ecution. Each destination register (also called a sink register) 
is assigned a tag which identifies the result that will be written 
into the register. Since any register in the register file can be 
a destination register, each register must be assigned a tag. 
The fields in each reservation station are shown in Fig. 2. 

If a source register is busy when the instruction reaches 
the issue stage, the tag for the source register is obtained and 
the instruction is forwarded to a reservation station. The ap- 
propriate ready bit in the reservation station is set to indicate 
that the source operand is unavailable. If the source regis- 
ter is not busy, the contents of the register are read into the 
reservation station and the ready bit is reset to indicate that 
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be forwarded to the appropriate slot in the TU. The fields in 
the modified reservation stations are shown in Fig. 4. 

As before, the instruction along with its associated 
tagdoperands is forwarded to a reservation station where it 
waits for its operands to become ready. The result from a 
functional unit (along with its tag) is broadcast to all reser- 
vation stations and is also forwarded to the TU. Reservation 
stations monitor the result bus and gate in the result if the 
tag of the data on the result bus matches the tag stored in the 
reservation station. The TU forwards the result to the regis- 
ter specified in the appropriate slot of the TU. All registers 
are, therefore, updated only by the TU when their data are 
available and no direct connection is needed between the func- 
tional units and the register file. When the register has been 
updated by the TU, the corresponding tag is released and is 
marked free in the TU. The modified architecture that incor- 
porates a tag unit and reservation stations associated with each 
functional unit is shown in Fig. 5. 

a) Example: The operation of the tag unit is best illus- 
trated by an example. Consider a TU that has six entries as 
shown in Fig. 6. Each entry in the TU has a bit indicating if 
the tag is free (tag free), i.e., available for use by the issue 
logic, a bit indicating if the tag is the latest tag for the regis- 
ter (latest copy), and a field for the number of the destination 
register (register number) as in Fig. 3. The TU is indexed by 
the tag number. 

Consider the execution of an instruction ZI that adds the 
contents of registers SO and S7 and puts the result in S4. 
Assume that the state of the TU is as shown in Fig. 6 and that 
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S7 is free (indeed a register must be free if it does not have 
an entry in the TU). When the issue logic decodes Z I  , it at- 
tempts to get a new tag for the destination register S4 from 
the TU and obtains tag 3. Since the TU already has a tag for 
S4, the old tag (4) is updated to indicate that it no longer rep- 
resents the latest copy of the register. Since S7’s contents are 
valid, they can be read from the register file and forwarded 
to the reservation stations directly. However, since the con- 
tents of SO are not valid, the latest tag for SO (tag 2) must 
be obtained from the TU. The issue unit forwards a packet 
to the reservation station associated with the add functional 
unit. The packet contains the contents of 5’7, a tag (2) for SO 
and a tag (3) for the destination register S4. Zl waits in the 
reservation station until that tag 2 appears on the result bus. 
At this point, the reservation station reads the value for SO 
and Z I  is ready to execute. When Z I  completes execution and 
leaves the add functional unit, the result is forwarded to all 
reservation stations that have a matching tag (3) and also to 
the TU. The TU forwards the result to the register file to be 
written into S4. Since tag 3 is the latest tag for S4, S4’s busy 
bit can be reset when the data have been written into S4. Tag 
3 is then marked free and is available for reuse by the issue 
logic. 

b) Interactions with Memory: Loadlstore operations 
that interact with memory pose a challenge to architectures 
that allow out-of-order instruction issue (the reader is referred 
to [ 181 for a discussion of and some solutions to the problem). 
In our model, we handle memory dependencies in a fashion 
similar to the way register dependencies are handled in the 
TU. A set of load registers contains the addresses of “cur- 
rently active” memory locations. Each load register has tags 
to allow for multiple instances of a memory address just as 
the TU allows multiple instances of registers. 

The reservation stations associated with the memory func- 
tional unit are managed in a pseudoqueue fashion to satisfy 
dependencies. A load operation needs a memory address be- 
fore it can be issued to the memory whereas a store operation 
needs both a memory address and a data value. If the address 
of a loadlstore operation is unavailable, subsequent loadlstore 
instructions are not allowed to proceed. This prevents a pos- 
sible violation of dependencies. 

When the memory address required by the operation is 
known, checks are made to see if the address matches an 
address in the load registers. A match indicates that there is a 
pending operation to the same memory address. If no match 
results, a free load register is obtained. Instruction issue is 
blocked if no free load register is available. 

If the current operation is a load operation and a match 
results, the load operation need not be submitted to memory. 

This is because the pending operation to the same address 
can also satisfy the load operation. In this case, the tag of the 
appropriate load register is returned to the reservation station. 
If there is no pending request to the same address, the tag is 
returned to the reservation station and the load operation is 
submitted to the memory. In either case, the load operation 
completes when a matching tag appears on the result bus. 

If the current operation is a store operation and a match 
results, the tag of the load register is updated and the tag 
returned to the reservation station. By doing so, a new instance 
of the memory location is provided. If no match results, a free 
load register is obtained and the tag returned to the reservation 
station. When the data for the store operation are available, 
they are forwarded (along with the tag) via the load registers 
to the memory and the store operation is complete. 

When the loadktore operation is complete, the reservation 
station is freed. The corresponding load register is also freed 
if the tags match, i.e., there is no pending operation to the 
same memory address. Note that the above scheme allows 
load operations to bypass store operations as long as the ad- 
dresses of all the operations are known. Also note that the 
load registers need to be searched associatively. However, for 
a small number of load registers, this associative search is not 
very wide. 

2) Merging the Reservation Stations: If each functional 
unit has a separate set of reservation stations, it is likely that 
some functional unit will run out of reservation stations while 
the reservation stations associated with another functional unit 
are idle. As suggested in [27], we can combine all he reser- 
vation stations into a common RS pool rather than hasl.:ig dis- 
joint pools of reservation stations associated with each func- 
tional unit. All instructions that were previously issued to 
distributed reservation stations associated with the functional 
units now go to the common RS pool. Instruction issue is 
blocked if the RS pool is full. As instructions become ready 
in the RS pool, they are issued to the functional units. All the 
other functions are as before. 

3) Merging the RS Pool and the Tag Unit: In the tag unit, 
there is one entry for every instruction that is present in either 
the RS pool or in the functional units. Therefore, at any time, 
there is a one-to-one correspondence between the entries in 
the TU and the instructions in the reservation stations or the 
functional units. This suggests that we can combine the RS 
pool and the tag unit into a single RS tag unit (RSTU). Of 
course, a reservation station is wasted if it is associated with 
an instruction that is in a functional unit. However, as we shall 
see in Section V, this organization can easily be extended to 
allow for the implementation of precise interrupts. 

In the RSTU, a reservation station is reserved at the same 
time that a tag is reserved. When an instruction issues, it ob- 
tains a tag from the RSTU and in doing so automatically re- 
serves a reservation station. All the other functions, including 
interactions with the memory, are as before. The architecture 
with an RSTU is shown in Fig. 7 and an entry in the RSTU is 
shown in Fig. 8. Since the reservations stations are merged, 
a functional unit field is needed to identify the functional unit 
to which the instruction occupying the RSTU entry will be 
issued. 
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a) Simulation Analysis of the RSTU: In order to eval- 
uate the effectiveness of the RSTU, we carried out a simulation 
analysis of the RSTU using the first 14 Lawrence Livermore 
loops as a benchmark. The results obtained for the execution 
of all 14 loops are presented in Table 11. The relative speedup 
is the speedup compared to the simple instruction issue mech- 
anism of Table I and the instruction issue rate is the harmonic 
mean of the individual issue rates. The number of load reg- 
isters in these simulations was six. This guarantees that, for 
our benchmark programs, instruction issue is never blocked 
because of an unavailable load register. 

From Table 11, it is quite clear that the RSTU is able to 
achieve a significant speedup over a simple instruction issue 
mechanism with a reasonable amount of hardware. The RSTU 
is also quite close to achieving the issue limit of 1 instruction 
per clock cycle for our model architecture. Indeed, all non- 
branch instructions are able to achieve the limit of 1 instruction 
per cycle. The only cycles in which no useful instruction is 

TABLE I11 
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RSTU AND Two DATA PATHS 

Number of 
Entries in RSTU 

3 
4 
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7 
8 
9 

10 
15 
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executed are the dead cycles following each branch instruc- 
tion. The degradation due to such cycles could be reduced 
by using delayed branch instructions or by conditionally exe- 
cuting instructions. The results presented in Table I1 compare 
favorably to the results presented in [27]. Because the RSTU 
can implement the dependency-resolution mechanism for the 
B and T register files, it can achieve a better speedup than a 
mechanism that is somewhat restricted as in [27]. 

At first glance, it may seem that an organization with 
merged reservation stations (such as the RSTU of Fig. 8) is 
at a disadvantage when compared to an organization with dis- 
tributed reservation stations (such as Fig. 5) since only one 
instruction can issue from the reservation stations to the func- 
tional units in a clock cycle unless multiple paths are provided 
between the RSTU and the functional units. On the other hand, 
a better use of the reservations stations results since the reser- 
vation stations can be shared among several functional units. 
In order to evaluate the effectiveness of multiple data paths 
between the RSTU and the functional units, we simulated an 
architecture with two paths from the RSTU to the functional 
units, but only a single issue unit, a single result bus, and 
single path from the RSTU to the register file. The results are 
presented in Table 111. 

As is evident from Table 111, the presence of a duplicate path 
from the RSTU to the functional units makes little difference. 
This result is not counterintuitive. We use an argument based 
on instruction flow to convince the reader. The RSTU is es- 
sentially a reservoir of instructions that is filled by the decode 
and issue logic and drained by the functional units. Since the 
decode and issue logic can fill this reservoir at a maximum 
rate of 1 instruction per cycle, having a drain that is capable 
of draining more than 1 instruction per cycle will not be very 
useful in a steady state. Of course, if the decode and issue unit 
itself could submit more than 1 instruction per clock cycle to 
the RSTU, additional paths from the RSTU to the functional 
units would be needed [20]. 

IV . IMPLEMENTATION OF PRECISE INTERRUPTS 

We now address the issue of precise interrupts. A complete 
description of several schemes that implement precise inter- 
rupts is given in [24]. An alternate scheme that uses checkpoint 
repair is presented in [lo]. 

The mechanisms described in [24] include a simple reorder 
buffer, a more complex reorder buffer with bypass logic, a 
history buffer, and a future file. The simple reorder buffer 
allows instructions to finish execution out of order but up- 
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dates the state of the machine, i.e., commits the instructions, 
in the order that the instructions arrived at the decode and 
issue stage. This ensures that a precise state of the machine 
is recoverable at any time. However, by forcing an order- 
ing of commitment among the instructions, the reorder buffer 
aggravates data dependencies. This is because the value of a 
register cannot be read until it has been updated by the reorder 
buffer, even though the instruction that computed a value for 
the register may have already completed and the new value 
is in the reorder buffer. If bypass logic is associated with the 
reorder buffer, an instruction does not have to wait for the 
reorder buffer to update a source register; it can fetch the 
value from the reorder buffer (if it is available) and can issue. 
With a bypass mechanism, the issue rate of the machine is 
not degraded considerably if the size of the buffer is reason- 
ably large [24]. However, a bypass mechanism is expensive 
to implement since it requires a search capability and addi- 
tional data paths for each buffer entry. A history buffer has 
the same performance as a reorder buffer with bypass logic. It 
does not need bypass logic but the register file needs another 
read port. A future file achieves the same performance as a 
reorder buffer with bypass logic at the expense of duplicating 
the entire register file. The checkpoint repair mechanism de- 
scribed in [lo] maintains three copies of the register file. We 
shall not discuss these mechanisms in more detail in this paper. 
The interested reader is referred to the original papers. 

V. MERGING DEPENDENCY RESOLUTION AND PRECISE INTERRUPTS 

We note that the RSTU of Section 111-B3 can be modified to 
behave like a reorder buffer if it is forced to update the state of 
the machine in the order that the instructions are encountered 
by the decode and issue unit. This is easily accomplished by 
managing the RSTU as a queue. Therefore, all that we have 
to do to implement precise interrupts in an architecture with 
an RSTU is to manage the RSTU like a queue. We call the 
modified logic the register update unit (RUU). The RUU is 
essentially the RSTU constrained to commit instructions in the 
order that the instructions were received by the decode and 
issue logic (and consequently by the RUU). The functional 
units remain unchanged. The modified architecture that uses 
an RUU to execute instructions out of program order and to 
ensure a precise state of the machine is given in Fig. 9. Let 
us consider the operation of the RUU in some more detail. 

A .  The Register Update Unit (RUU) 
The RUU performs four major functions in each clock cy- 

cle. First, it accepts new instructions from the decode and 
issue logic. Second, it monitors the result bus to resolve de- 
pendencies. Third, it determines which instruction should be 
issued to the functional units for execution, reserves the result 
bus, and dispatches the instruction to the selected functional 
unit for execution. Fourth, it determines if an instruction can 
commit, i.e., update the registers, and commits the instruc- 
tion if it can. Below, we see how the RUU accomplishes these 
tasks. 

First, the RUU must accept an instruction from the de- 
code and issue logic. The RUU is managed like a queue 
using RUU-Head and RUU-Tail pointers. If RUU-Head = 
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Fig. 9. The model architecture with an RUU. 

RUU-Tail, the RUU is full. RUU-Tail points to the slot that 
will be used by the decode and issue logic and RUU-Head 
points to the next instruction that must commit to ensure a 
precise state. When an instruction is decoded, the issue logic 
requests an entry in the RUU. If the RUU is full, instruction 
issue is blocked. If an entry is available, the issue logic obtains 
the position of the entry (using the RUU-Tail pointer) and up- 
dates the RUU-Tail pointer. Simultaneously, it forwards the 
contents of the source registers (if they are availaule) or a 
register tag to the selected reservation station in the RIJU. 

Managing the RSTU like a queue has a very important side 
effect- the logic for obtaining tags for source operands and 
generating tags for destination operands, i.e., for dependency 
resolution, is greatly simplified. Recall that in the RSTU, the 
issue logic had to search the RSTU associatively to obtain the 
correct tag for the source operand and to update the latest 
copy field for the destination register. If multiple instances of 
the same destination register are disallowed, i.e., instruction 
issue is blocked if the destination register is busy, no associa- 
tive logic is necessary since the register number itself serves 
as the tag. An instance of a register is a new copy of the 
register. By providing multiple instances of a destination reg- 
ister, the architecture can process several instructions with the 
same destination register simultaneously, i.e., resolve write- 
after-write hazards [ 111. Disallowing multiple instances of a 
destination register can degrade performance [27]. As noted 
in [26], it is possible to eliminate the associative search and 
use a counter to provide multiple instances and source operand 
tags for each register if we can guarantee that results return 
to the registers in order. This is precisely the situation in the 
RUU. The implementation of precise interrupts, therefore, 
simplifies the out-of-order instruction issue mechanism. 

The scheme we use to provide multiple instances of a desti- 
nation register and to provide source operand tags associates 
two n-bit counters with each register in the register file (this 
includes the B and T register files). There is no busy bit. The 
counters, the number of instances (NO and the latest in- 
stance (Lo,  represent the number of instances of a register in 
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the RUU and the number of the latest instance, respectively. 
When an instruction with a destination register Ri is issued 
to the RUU, both NI and LI associated with Ri are incre- 
mented. LI is incremented modulo n. Up to 2" - 1 instances 
of a register can be present in the RUU at any time; issue is 
blocked if NI for a destination register is 2" - 1. When an 
instruction leaves the RUU and updates the value of Ri, the 
associated NI is decremented (since n is small, the increment- 
ing/decrementing process is fast). A register is free if NI = 0, 
i.e., there is no instruction in the RUU that is going to write 
into the register. 

The register tag sent to the RUU consists of the register 
number Ri appended with the LI counter. This guarantees 
that future instructions access the latest instance, i.e., obtain 
the latest copy of the register contents and that instructions 
already present in the RUU get the correct version of the data. 
In our experiments, each of these counters was 3 bits wide. 
This allowed up to seven instances of a destination register. 
A 3-bit counter ensured that, for our benchmark programs, 
an instruction never blocked in the decode and issue stage 
because an instance of a register was unavailable. Since we 
had a totA of 144 registers, the tag field was 11 (8 + 3) bits 
wide. 

To accomplish its second task of resolving dependencies, 
the RUU must monitor the result bus. To do so, each source 
operand field in the RUU has a ready bit, a tag subfield, 
and a content subfield. If the operand is not ready, the tag 
subfield monitors the result bus for a matching tag. If a match 
is detected, the data on the bus are gated into the content field. 
This task of the RUU corresponds to the task carried out by 
the reservation stations in Tomasulo's algorithm. Note that 
there is no need for a latest copy field in the RUU and no 
associative search logic is needed in the RUU to generate and 
maintain the tags. However, associative comparison logic is 
still needed for all the reservation stations in the RUU so that 
they can gate in the value of source operands when available. 

An entry in the RUU is shown in Fig. 10. The dispatched 
field indicates if the instruction has been dispatched for ex- 
ecution to the functional unit specified in the functional unit 
field. The executed field indicates if the instruction has fin- 
ished execution and is ready to update the register file. The 
program counter field is needed for the implementation of 
precise interrupts [24]. We have omitted the details of extra 
information that must be carried around with each instruction 
since the details of such information are straightforward. 

The RUU accomplishes its third task by monitoring the 
ready bits of the source operands. When the operands of an 
instruction in the RUU are ready, the instruction can issue 
to the functional units. The RUU issues the highest priority 
instruction and sets the dispatched bit to indicate that the in- 
struction has been dispatched for execution and should not 

Unit Number YesINo Content 
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be selected again by the dispatching algorithm. Priority is 
first given to loadhtore instructions and then to an instruc- 
tion which entered the RUU earlier. The RUU reserves the 
result bus when it issues an instruction to the functional units. 

The final RUU task of committing an instruction is accom- 
plished by monitoring the executed bit of the RUU entry at the 
head of the RUU. If the executed bit of the instruction at the 
head of the RUU is set, the results of its destination register 
are forwarded to the register file. The associated NI counter 
in the register file is decremented and RUU-Head updated. 

As is obvious from the above discussion, each of the tasks 
of the RUU can be carried out in parallel in each clock cycle 
and each task is simple enough that it is not likely to penalize 
the clock cycle. Instructions that interact with the memory are 
handled as in Section 111-Blb. The reservation stations for the 
memory are provided by the RUU. Note that the load registers 
still need to be searched associatively for memory addresses. 
However, the hardware needed for this comparison is not very 
great for a small number of load registers. In our simulations, 
we used six load registers, although four were sufficient for 
most cases. 

VI. EVALUATION OF THE RUU 

In order to evaluate the effectiveness of the RUU, we simu- 
lated three RUU organizations, 1) an RUU with bypass logic 
for source operand values, 2) an RUU without bypass logic, 
and 3) an RUU with a limited bypass logic. The results pre- 
sented in this section differ from results presented previously 
[25]. The main reason for the difference is a different pipeline 
structure and a different issue mechanism for load and store 
instructions. 

A .  The RUU with Bypass Logic 
Recall that the RUU forces the results to return to the reg- 

isters in program order. In doing so, it aggravates data de- 
pendencies. Such a degradation could be eliminated if bypass 
logic for source operands was provided in some form. The 
simplest form could be associative comparison hardware with 
the destination field of each RUU entry. If a source operand 
for instruction I ,  is provided by Ii and the destination operand 
of Ii is ready in the RUU, the operand can be read from 
the RUU and I j  is allowed to proceed with execution. Note 
that the history buffer and the future file [24] are alternate 
forms for bypass logic. The relative speedups (compared to 
the simple instruction issue mechanism of Table I) and the 
corresponding instruction issue rate for different sizes of an 
RUU with bypass logic are presented in Table IV. 

The results of Table IV are quite promising. An RUU with 
a reasonable number of entries (10-12) not only speeds up 
execution but also provides precise interrupts. Moreover, for 
somewhat larger RUU sizes, the RUU is able to achieve a 
speedup that is quite similar to the RSTU. Note that the RSTU 
was not constrained to implement precise interrupts and it also 
requires additional associative logic. 

B .  The RUU without Bypass Logic 
Since bypass logic is expensive to implement, we decided to 

evaluate an RUU without any bypass logic. Before we present 
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TABLE IV 
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RUU WITH BYPASS LOGIC 

Relative Insuuction 
Specdup Issue Rate 

RELATIVE SPEEDUP 
TABLE V 

AND ISSUE RATE WITH AN RUU WITHOUT BYPASS LOGIC 

3 
4 
6 
8 

10 12 

15 
20 
25 
30 
40 
50 

0.853 I 0.940 
1.079 
1.248 
1.383 
1.508 
1.584 
1.619 
1.682 
1.700 
1.735 
1.737 

0.380 
0.419 
0.481 
0.557 
0.61 7 
0.673 
0.706 
0.735 
0.750 
0.758 
0.774 
0.775 

the results, let us see the situations where bypass logic is 
helpful. 

Consider an instruction Ij that uses the result of a previous 
instruction I;. Recall that the reservation stations associated 
with the RUU already have the capability to monitor the result 
bus. Therefore, if I; completes execution after I, is issued to 
the RUU, Ij can gate in the result from I; when it appears 
on the result bus. In this case, bypass logic is not needed. 

Bypass logic is helpful only in the cases where Ii has com- 
pleted execution when I, is issued. Rather that providing by- 
pass logic for this case, we wait for the result of I; to come 
out on the bus between the RUU and the register file in order 
to resolve Ij's dependency on I;. If Ij is issued to the RUU 
before I; completes, Ij's dependency on I; can be resolved 
when I;'s result appears on the result bus if we extend the ca- 
pabilities of the reservation stations to monitor both the result 
bus and the RUU to register file bus. 

Table V presents the relative speedups and instruction is- 
sue rates for a RUU without bypass logic. From Table V we 
see that a RUU without any bypass logic at all is still able to 
achieve a substantial increase in speed over a simple instruc- 
tion issue mechanism and implement precise interrupts at the 
same time. The speedup, however, is not as impressive as the 
speedup obtained if bypass logic were used. The difference 
arises mainly because of the ordering of code in the loops. 
Let us illustrate the problem with an example. 

Consider the following section of code: 

I; A 2 + A l + A 3  

Ij A O c A 2 f l  

Ik JAM loopstart. 

Conventional compilation techniques try and increase the dis- 
tance between instructions Ii and Ij and instructions Ij and Ik 
so that when instructions Ij and I k  reach the issue stage, their 
respective operands are ready. Such an increase in dependency 
distance is in fact harmful to an RUU without bypass logic. If 
I, was issued sufficiently before Ik and completed execution 
before Ik reached the decode and issue stage, I k  would be 
forced to wait until I, left the RUU. If, on the other hand, I, 
was issued soon before Ik, Ik could resolve its dependency 
on Ij when the result of Ij was available on the functional 

Number of 1 Entries in RUU 

3 
4 
6 
8 
IO 
12 
15 
20 I !! 

unit result bus. In our simulations, no attempt was made to 
improve the performance of the RUU without bypass logic by 
reordering the code for such cases. 

C .  The RUU with Limited Bypass Logic 
Because of the problem illustrated above, we found that 

branch instructions were blocked for a long period of time in 
the decode and issue stage since the contents of the A0 register 
could not be read from the RUU (or were unavailable because 
of a dependency chain aggravated as above). The branch in- 
struction has to wait in the decode and issue unit until the value 
of A0 appears on a bus. In order to eliminate this problem, 
we duplicated the A register file, effectively creating a limited 
bypass path for the A registers. The duplicate A register file 
acts as a future file for the A registers. The entire A register 
file (eight registers) was duplicated to prevent the unnecessary 
increase in the length of the dependency chain that affects the 
conditional branch instruction. All other functions are as be- 
fore. Specifically, there is only l copy of the B,  S, and T 
register files and there is no bypass logic in the RUU. As 
functions that affect the A registers are completed and appear 
on the result bus, the result is forwarded to the RUU and also 
to the A future file. The architectural register file contains 
a valid copy of registers at all time for recovering a precise 
state. Instructions that use A registers as source operands, 
fetch the data from the A future file, if it is available, and 
proceed. The results for an RUU with limited bypass logic 
is presented in Table VI. An RUU with limited bypass logic 
is able to overcome a significant portion of the performance 
penalty paid for eliminating bypass logic especially for small 
RUU sizes. For larger RUU sizes, however, the performance 
is not as good. This is because instructions that transfer data 
from a B register to an A register are still held up in the RUU 
(no bypass logic for the B register file). Since the destination 
A register of such transfer instructions eventually affects the 
branch condition (most branch instructions in the benchmark 
programs tested the value of the A0 register), instruction issue 
is blocked for longer periods of time. We are confident that 
the performance of an RUU without bypass logic and an RUU 
with limited bypass logic could be improved considerably and 
would come close to the speedups with bypass logic if the 
code was modified accordingly. 

VII. BRANCH PENALTY AND CONDITIONAL INSTRUCTIONS 

As mentioned earlier, the performance degradation due to 
branches can be reduced by conditionally executing instruc- 
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TABLE VI 
RELATIVE SPEEDUP AND ISSUE RATE WITH AN RUU WITH LIMITED BYPASS LOGIC 

Number of 
Enmes in RUU 

3 
4 
6 
8 

10 
12 
15 
20 
25 
30 
40 
50 

tions from a predicted branch path. Several architectures em- 
ploy this approach [3], [4], [8], [19]. To allow conditional 
execution of instructions, a hardware mechanism is needed 
that would allow the machine to recover from an incorrect 
branch prediction. 

The RUU provides a very powerful mechanism for nul- 
lifying instructions, be the instructions valid instructions or 
instructions that executed in a conditional mode. Valid instruc- 
tions may be nullified because of a trap caused by a previous 
instruction; conditionally executed instructions may be nulli- 
fied if they are from an incorrect execution path. Therefore, 
the conditional execution of instructions with an RUU is very 
easy. If the decode and issue unit predicts the outcome of 
branches and actually executes instructions from a predicted 
path in a conditional mode, recovery from incorrect branch 
predictions can be achieved very easily without duplicating 
the register file. We can identify such instructions through the 
use of an additional field in the RUU and prevent them from 
being committed until they are proven to be from a correct 
path. Furthermore, there is no hard limit to the number of 
branches that can be predicted; the RUU can provide multi- 
ple instances of a register for the different paths. Extending 
the RUU to accommodate branch prediction and conditional 
execution is an ongoing research topic. 

VIII. SUMMARY 

In this paper, we have combined the issues of hardware 
dependency-resolution and implementation of precise inter- 
rupts. We devised a scheme that can resolve dependencies 
and thereby allows out-of-order instruction execution without 
associating tag-matching hardware with each register. Such a 
scheme can, therefore, be used even in the presence of a large 
number of registers without a substantial hardware cost. Then 
we extended the scheme to incorporate precise interrupts. The 
precise interrupt and the dependency-resolution mechanisms 
mutually aid and simplify each other. We evaluated the perfor- 
mance of the resulting hardware using 14 Livermore loops as 
the benchmark. The results are quite encouraging. The com- 
bined mechanism, called the RUU, is able to implement pre- 
cise interrupts and is able to achieve a significant performance 
improvement over a simple instruction issue mechanism with- 
out a substantial cost in hardware. 
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