
Dynamic Dependency Analysis of Ordinary Programs]

Todd M. Austin and Gurindar S. Sohi

Computer Sciences Department

University of Wisconsin-Madison

1210 W. Dayton Street

Madison, WI 53706

{austin; sohi}Qcs.wise.edu

Abstract

A quantitative analysis of program execution is essential

to the computer architecture design process. With the cur-

rent trend in architecture of enhancing the performance of

uniprocessors by exploiting fine-grain parallelism, first-order

met rics of program execution, such as operation frequencies,

are not sufficient; characterizing the exact nature of depen-

dencies between operations is essential.

This paper presents a methodology for constructing the

dynamic execution graph that characterizes the execution of

an ordinary program (an application program written in an

imperative language such as C or FORTRAN) from a serial

execution trace of the program. It then uses the methodology

to study parallelism in the SPEC benchmarks. We see that

the parallelism can be bursty in nature (periods of lots of

parallelism followed by periods of little parallelism), but the

average parallelism is quite high, ranging from 13 to 23,302

operations per cycle. Exposing this parallelism requires re-

naming of both registers and memory, though renaming reg-

isters alone exposes much of this parallelism. We also see

that fairly large windows of dynamic instructions would be

required to expose this parallelism from a sequential instruc-

tion stream.

1 Introduction

Two things generally affect the advance of computer archi-

tectures: a better understanding of program execution, and

new or better implementation technologies. It is therefore

very import ant to understand the dynamics of program ex-

ecution when considering the design of future-generation ar-

chitectures.

To date, most processors have either executed instructions

sequentially, or have overlapped the execution of a few in-

structions from a sequential instruction stream (via pipelin-

ing). For such processors, the relevant characteristics of

dynamic program execution included operation frequencies,

Permission to copy without fee all or part of this material is granted

prowded that the copies are not made or distributed for direct commercial

advantage. the ACM copyright notice and the title of the publication and

Its date appear, and notice is given that copying M by pemrlssion of the

Assocmtion for Computmg Machinery. To copy otherwise. or to repubhsh,

requmes a fee and/or speclflc permission.

branch prediction accuracies, latencies of memory operations

in cache-based memory systems, amongst others. The con-

tinuing trend in processor architecture is to boost the perfor-

mance (of a single processor) by overlapping the execution of

more and more operations, using fine-grain parallel process-

ing models such as VLI W, superscalar, decoupled, systolic,

or dat aflow (in a complete or a restricted fashion). To aid

the design of such processors, simple first-order metrics of

the dynamic execution, such as operation frequencies and

operation latencies, are not sufficient by themselves. What

is needed is a thorough understanding of how the operations

of a program interact, i. e., what is the nature of dependen-

cies between operations in the dynamic execution graph, how

these are impacted by the processor model, and how they im-

pact performance.

The dynamic execution of a program can be best described

as a graph, where the nodes of the graph represent opera-

tions (or instructions), and the edges in the graph represent

dependencies between operations. This paper focuses on a
methodology for cmtstructing and analyzing the graph rep-
resenting the dynamic execution of a program, and considers
its application to parallelism studies. In Section 2 we intro-
duce and discuss the various dependencies that exist in pro-
gram execution, show how they form a graph representing
the order of computation in a program, and discuss some of
the interesting metrics that can be obtained from this graph.
In Section 3 we detail the extraction of these dynamic de-
pendency graphs from the execution trace of a sequential
program. Previous work is cited and the implementation of
Paragraph, our tool for extracting and analyzing the graph,
is discussed. Section 4 presents results of parallelism studies
on the SPEC benchmarks, and Section 5 presents a summary

and conclusions.

2 Program Dependencies and the

Dynamic Dependency Graph

Program executions contain many dependencies. These de-

pendencies force a specific order on the execution of the op-

erations. Some dependencies are inherent to the execution

of the program and cannot be removed, others can be re-

moved, but usually not without costs in storage and possibly

1 This work ~= ~uppo=ted by National science Foundation

Grant CCR-8919635.

@ 1992 ACM 0.89791 .509.7/92/0005/0342 $1.50 342

Execution Trace Dynamio Dependency Gr.Dhexecution speed.

2.1 Types of Dependencies

True Data Dependencies

Two operations share a true data dependency if one oper-

ation creates a value that is used by the other (also called

a Read-After-Write or RAW dependency). The dependency

forces an order upon operations such that source values are

created before they are used in subsequent operations.

Storage Dependencies

Dependencies can also exist because of a limited amount of

storage. Such storage dependencies require that a computa-

tion be delayed until the storage location for the result is no

longer required by previous computation. Storage dependen-

cies are often further classified and referred to as Write-After-

Read (WAR) and Write-After-Write (WAW) dependencies.

Since many different data values can reside in a single stor-

age location over the lifetime of a program, synchronization

is required to ensure a computation is accessing the correct

value for that storage location. Violation of a storage depen-

dency would result in the access of an uninitialized storage

location, or another data value stored in the same storage

location.

Control Dependencies

A control dependency is introduced when it is not known

which instruction will be executed next until some (previous)

instruction has completed. Such dependencies arise because

of conditional branch instructions that choose between sev-

eral paths of execution based upon the outcome of certain

tests.

Resource Dependencies

Resource dependencies (sometimes called structural hazards)

occur when operations must delay because some required

physical resource has become exhausted. Examples of limit-

ing resources in a processor include functional units, window

slots, and physical registers (when renaming is supported.)

2.2 The Dynamic Dependency Graph

The dynamic dependency graph (DDG) is a partially ordered,

directed, acyclic graph, where the nodes of the graph rep-

resent the computation that occurred during the execution

of an instruction, and the edges represent the dependencies

between the instructions in a dynamic execution of the pro-

gram.

Figure 1 illustrates a simple program execution trace and

the DDG extracted from the trace. The execution trace

shows the instructions executed to evaluate the statement

s : = A + B + C + D. In the DDG, the operation at the tail

of an edge depends on the execution of the operation at

the head of the edge. The only dependencies that exists

in this program trace are true data dependencies. This de-

pendency requires that an operation not execute until its

source values have been created. For example, the instruc-

tion r4 <- rO + rl cannot execute until the value of A is

loaded into rO by the instruction load rO, A aud the value B

is loaded into r-l by the instruction load rl, B.

True data dependencies can only be removed by chang-

load rO, A

load rl, B

r4 <- rO + rl

load r2, C

load r3, D

r5 <– r2 + r3

r6 c- r4 + r5 fr6<-r4+r5~

store r6, S

btore ,6, S

Figure 1: Dynamic Dependency Graph Example

ing the algorithms used in the program and/or with com-

piler transformations that rewrite the code. Examples of

algorithmic changes include the use of parallel (most likely

logarithmic) algorithms instead of sequential algorithms (the

algorithm used in Figure 1 is actually a parallel summation

algorithm). Examples of compiler transformations include

loop unrolling, invariant loop code motion, 100P interchange,
and strength reduction, amongst others.

Short of rewriting the program, the true data dependency
is the only dependency in a program execution that cannot be

removed. If all other dependencies are removed, the resulting

graph is simply the dynamic dataflow graph.

Figure 2 shows the same computation as Figure 1 but aug-

mented with storage dependencies. The storage dependen-

cies are introduced by the reuse of register locations for dif-

ferent values. The storage dependency edges are annotated

with a small, gray bubble. As shown in the figure, the order

of execution is further constrained because the subexpression

c + K) cannot begin execution until the subexpression A + B

has completed using the registers rO and rl.

Storage dependencies can always be removed by assign-

ing a new storage location to each value created. This is

commonly called renaming. When using unlimited renaming

(assumed for the analysis in this paper), each datum cre-

ated is a token, and each token is bound to a unique storage

location. This results in the program execution having the

property of single-assignnaen~ that is, a location is assigned

to at most once. Figure 1 uses a different storage location for

each value created, thus no storage dependencies are created.

.—
Execution Trace DynamLc Dep.ademcy Graph

load rO, A

load rl, B

r4 <- rO + rl

load rO, C

load rl, D

r5 <- rO + rl

r6 <- r4 + r5

store r6, S

Figure 2: DDG with Storage Dependencies

343

Removing storage dependencies, via renaming, however, is

not without cost. It is likely that during the life of a pro-

gram, more values are created than could be stored in unique

locations in a conventional, high-speed memory. Single-

assignment storage allocation would not only be slow and

expensive, it would also be wasteful, since a storage location

could certainly be reused after the value contained within

it was no longer required by another computation. Much

research has been done attempting to efficiently implement

single-assignment semantics on top of a conventional memory

system. Most has been performed in the datailow literature

where the machines directly support single-assignment se-

mantics [1, 6, 11]. The primary techniques used have been

self-cleaning graphs, garbage collection, and explicit aUo-

cation/deallocation. Self-cleaning graphs can release token

storage when the extent is limited to a single entry/single

exit body of code; the technique is similar to stack allocation

of local variables in imperative languages. Garbage collec-

tion is more appropriate when the extent of a variable is not

known. The technique tends to be very expensive, and is gen-

erally avoided if possible. Often it is avoided by forcing the

programmer or compiler to explicitly allocate and deallocate

dynamic storage.

To understand how a control dependency could affect the

placement of a computation in the DDG, consider Figure

3. The control dependency, shown as a dashed line, is in-

troduced because it is not known which instructions will be

executed after the compare and branch instructions until the

execution of the read ri instruction. The read r-l instruc-

tion reads a value from an input device into the register rl.

Removing this dependency would require a priori knowledge

of the input. If a reliable branch prediction method is not

available, the ble instruction will cause the fetching of in-

structions to cease until the input has been read. This is il-

lustrated in Figure 3 by the delay of the computation C + D

until after the read rl instruction has completed. Since the

compare and branch instructions only provide a mechanism

to change the flow of control, and do not create any values,

they are not included in the DDG. Operations that are not

executed (e.g., r2 <- rO + ri) are also omitted from the

DDG.

Figure 4 shows an example of resource dependencies. The

processor executing the code fragment contains only two

generic functional units (one is required for any instruction

execution), thus at most two operations can coexist in any

single level of the DDG.

load rO, A
read rl
cmp rl, O

ble subtract

r2 <- rO + rl

br continue
subtract: r2 <- rO - rl
continue: store r2, S

load r3, C
load r4, D
KS <- r3 + r4

Dynamic t!+endency Graph

Q@

H&
.,..,,,..,,!, .

,2<-,0 -,1 ~oa,j ,~,~ ~oad ~ ~

ore .2, s 15<-,3 +1(

Figure 3: DDG with Control Dependencies

Execution Trace

load rO, A
load rl, B
r4 <– rO + rl
load r2, C
load r3, D
r5 c- r2 + r3
r6 <- r4 + r5
store r6, S

Dynamic Dependency Graph

Figure 4: DDG with Resource Dependencies

2.3 DDG Analysis

Given the dependence relations between operations, we can

construct the DDG, as illustrated in the previous section.

Now let us consider what information can be obtained from

the DDG.

The first, and perhaps most valuable, piece of information

that we can obtain relates to the true nature of parallelism

in program execution. If the DDG is topologically sorted,

its height shows the minimum number of steps required to

execute the program. This is a function of the dependen-

cies in the graph and is termed the criticai path length of

the particular execution. For example, the DDG in Figure

1 has a critical path length of four, and the DDG of Figure

2 has a critical path length of six. Plotting the number of

operations by level in the topologically sorted DDG yields

the parallelism profile of the DDG. The average number of

operations per level for the parallelism profile is the auad-

able parallelism in the application, and can be viewed w the

speedup that could be attained by an abstract machine capa-

ble of extracting and executing the DDG from the program’s

execution trace. For example, the parallelism profile for Fig-

ure 1 has four operations in level one, two operations in level

two, and one operation in levels three and four; the paral-

lelism profile fir Figure 2 has two, one, two, one, on; and

one operations in levels one, two, three, four, five and six,

respectively.

We can also obtain the distribution of value lifetimes from

the DDG. The value lifetimes are useful in determining the

amount of temporary storage required to exploit the par-

allelism in the D D G. Likewise, we can also determine the

resource requirements of an abstract machine that executes

the DDG.

Next, we can obtain the distribution of the degree of shar-

ing of each computed value (or token). Such a distribution

is important not only for a possible dataflow realization of

our abstract execution engine (by indicating how many op-

erations can be “fired” when a token is created in an explicit

token store machine, for example), but also for more conven-

tional multiprocessor execution of the program. In a multi-

processor, different processors are responsible for execution

of different parts of a (suitably constrained) DDG of a pro-

344

gram. By measuring how much data flows from the nodes in

one subgraph to another (albeit in a very constrained form

of the DDG that matches the processor execution model),

we can measure the degree of data sharing amongst the pro-

cessors, for example.

By placing suitable constraints on the execution order, or

the resources available, we can throttle the DDG to match a

particular machine model. Thus, for example, we can obtain

parallelism profiles for machines that cannot do storage re-

naming, or rename only registers, or for machines that have

a limited number of ALUs, or for machines that have the

ability to look at a fixed-size, contiguous window of instruc-

tions.

In Section 4 we shall see how the DDG analysis of the

SPEC benchmarks can be carried out along these lines.

There we shall consider parallelism studies, and how par-

allelism is impacted by various constraints placed on the ex-

ecution of instructions, and consequently on the construction

of the DDG.

3 DDG Extraction

Having introduced the concept of the dynamic dependency

graph and illustrated the importance of DDG analysis, we

now consider how we could construct the DDG of ordinary

programs (i, e., programs written in imperative languages),

subject to various constraints, and how we could carry out

its analysis. Before we describe our methodology, we briefly

discuss the previous work in the area.

3.1 Previous Work

There has been a plethora of work in measuring the aver-

age parallelism in a (sequential) instruction stream [5, 9, 12,
13, 15]. These studies typically find the length of the criti-

cal path through the computation, and compute the average

parallelism as the total number of instructions divided by

the length of the critical path. (Some also measure the max-

imum width to determine the maximum number of resources

required.) Becanse they are interested in only a single mea-

sure, namely the average or available parallelism, and not

in other aspects of the DDG, they do not need to construct

the entire DDG, or even parts of it. These studies typically

evaluate how the average parallelism changes under various

constraints such as register renaming, various branch predic-

tion strategies, memory disambiguation strategies, changes

in operation latencies, instruction window sizes, resource con-

straints, etc. Changes in a parameter result in changes to the

critical path length (and the width of the DDG), and conse-

quently to the average (and maximum) parallelism.

To the best of our knowledge, Kumar presented the first

work that actually gathered the distribution of parallelism,

i.e., the parallelism profile, and the memory requirement pro-

file of serial programs [8]. Kumar extracts parallelism pro-

files by rewriting FORTRAN programs such that the profile

is generated during the execution of the program. Although

the method would lend itself to any imperative language, it

was only applied to FORTRAN. The operations in the DDG

are FORTRAN statements that are assumed to execute in

one unit of time. A notable, earlier work is that of Kuck et

al. [7] in which program dependencies of FORTRAN pro-

grams were analyzed statically, and the resulting available

parallelism was estimated from the analyzed ccjde fragments.

A number of papers from the dataflow literature have in-

cluded examples of DDG analysis [2, 3, 4, 10]. For exam-

ple, Culler and Arvind [2] provide detailed parallelism pro-

files and waiting token (or storage usage) profiles for some

dataflow programs. Their dataflow processor and language

environment lends itself well to dataflow analysis. Instru-

menting the dataflow processor’s execution is sufficient to

generate the parallelism profiles and critical path. Yet their

environment lacks storage and most control dependencies, so

their results will not include the effects they ‘have on avail-

able parallelism. Therefore, it is not clear how their results

would extend to programs written in imperative languages

such as C or FORTRAN, and also how they could be ap-

plied to processors that have more restricted computation

models.

Our method of extracting DDGs from serial traces is very

similar in spirit to Kumar’s method, though the actual im-

plement ation is completely different. While Kurnar placed

FORTRAN statements into the DDG, we instead place ma-

chine instructions into the D D G. This allows more precise

control over the relative time taken for operations in the

DDG, and finer-grain parallelism (such as that found within

FORTRAN statements) will show up in our results. More-

over, since our technique builds the DDG from a serial ex-

ecution trace, without modifications to the source program

(like Kumar’s method), it can be applied widely.

As we shall see in Section 4, our results agree with the

conclusions of [3] and [8] that ordinary programs, not in-

tended to execute in parallel environments, do indeed have a

significant amount of fine-grain parallelism.

3.2 Paragraph: A Tool for DD G Analysis

All DDGs anrdyzed in this paper were extracted from se-

rial program execution traces using Paragraph. This form

of extraction was selected because it is the simplest to per-

form, and the results are very applicable to the development

of processors that must extract parallelism from sequential

instruction streams. Yet, extraction from serial traces has

caveats that must be made apparent before interpreting the

results in Section 4 or comparing them to similar studies that

may be done. First, because the trace was generated by a

serial program, it is impossible to crest e tot ally independent

loop iterations (unless loop control instructions are specif-

ically marked and the DDG analyzer can be instructed to

treat them differently). Separate iterations of a loop will be

connected by at least one recurrence from the loop counter.

This results in reducing loop parallelism as the successive

independent iterations unroll around the loop counter recur-

rence. The second caveat involves program transformations

performed by compilers. The compiler can actually create a

second order effect on the parallelism in the lprogram. For

instance, the MIPS compiler commonly performs loop un-

rolling which tends to decrease the recurrences created by

loop counters, thus increasing the parallelism in the program.

Paragraph was developed to extract and analyze DDGs

from serial traces produced on DECstation 3100/5000 work-

stations. The traces were captured with Pixie, a basic block

execution profiler. Paragraph is fully parameterizable. The

following parameters can be combined in any combination to

345

see their effects on the parallelism profiles and critical paths.

System Calls Stall: If this switch is set, an encountered

system call is assumed to modify all live values in the

program. This canses the placement of all computation

after the system call to be in a lower level in the topo-

logically sorted DDG than the system call. If the switch

is not set, the system call instructions are assumed to

modify nothing, and are ignored.

Rename Registers: If this is switch is turned on, the

storage dependencies on registers are not incorporated

into the DDG.

Rename Data: If this switch is turned on, the storage

dependencies for the non-stack segments are not incor-

porated into the DDG.

Rename Stack: If this switch is turned on, the storage

dependencies for the stack segment are not incorporated

into the DDG.

Window Size: This indicates the nnmber of contiguous

instructions in the serial trace that can be considered at

any one time when placing values into the DDG. The

DDG is created by sliding the window across the entire

trace. Once an instruction leaves the instruction win-

dow, due to displacement by instructions farther into

the trace, it can no longer affect the placement of fu-

ture instructions into the DDG.

Every trace analysis produces two metrics: the parallelism

profile, and the critical path length. The parallelism profile

is generated by recording in a hash table the DDG level of

each live value. This hash table is called the live well. When

an instruction is processed, its source values are located, by

address or register number, in the hash table (because they

are being referenced, they are alive and will be in the hash

table). The value created by the newly encountered instruc-

tion will be available in the DDG level L&.~ where:

~dest = MAX(L,..I , J5s.c2) + top

L.,. I and L,,CZ are the DDG levels in which the source val-

ues are first available for use by another computation, and

toP is the time in abstract machine steps (or DDG levels) to

complete the operation. If the instruction has no dependen-

cies, e.g., a load immediate, it is placed in the topologically

highest level in the DDG. The parallelism profile distribution

is updated by incrementing a distribution entry indexed by

L&s~. When the range of L&.~ becomes too large to repre-

sent each possible value in a distribution, a range of Ld.st

values is mapped to each distribution entry, and in the final

output, the average number of operations per level within
the range is computed.

Paragraph’s implementation is complicated by the need

to continually release or reuse value storage in the live well.

This is required because a typical program’s DDG can con-

tain billions of operations, and thus billions of values will be

entered into the live well; many more than can be stored in

conventional memories. When a value becomes dead, it can

be removed from the live well. A value is dead when it will

never again be referenced by an instruction in the trace. Two

methods can be used to determine if a value is dead.

1.

2.

Process the trace in two passes, first in the reverse di-

rection and then in the forward direction. If the in-

structions are processed in reverse, the first occurrence

of a value is its last use, and value lifetime information

can be easily inserted into the trace for use on a second,

forward pass through the trace. The disadvantage of

this approach is that the entire trace must be stored for

reverse analysis.

Process the trace in a single pass in the forward di-

rection. This method can only determine that a value

has become dead after its storage location is reused.

While this is not a problem for registers, many mem-

ory locations will be used during a program’s execution

necessitating the need to track many potentially dead

values.

All the analyses of the SPEC benchmarks in Section 4

were performed in the forward direction, but a very large

memory (32 MBytes) was required to hold the working set

of Paragraph. A very space efficient hash table was used to

minimize the per value memory overhead.

Two special cases must be handled when processing in-

structions. First, if an instruction uses a value that existed

when the program began execution, i.e., a pre-initialized reg-

ister value, or a value from the DATA segment, the value

is placed in the live well such that it was created in the

level immediately preceding the topologically highest level in

the DDG (the variable highestLevel records the topologically

highest level in the DDG). This placement prevents a pre-

existing value from delaying any future computation placed

in the DD G. Any values created using only the preexisting

value will still be placed in the topologically highest level.

The second special case is the handling of system calls.

Paragraph does not determine the exact side effects of a sys-

tem call. Therefore, it must either assume that the system

call modified all live values in the program, or that it modified

not hing. The conservative assumption (all values modified)

is implemented by placing a jirewa{l in the DDG. A firewall

prevents any later encountered instruction from executing (or

firing) higher in the DDG than the firewall. The firewall must

be placed immediately after the deepest computation in the

DDG. This location is recorded by the variable deepestLeve-

/Yet Used, and is possibly updated each time a computation

is placed in the DDG. After placing a firewall in the DDG,

the variable highestLeve2 is updated to the level immediately

foIlowing the firewall. To ensure no computation is placed in

the DDG prior to the last firewall, the placement function is

redefined to be:

L&st = MAX(JL.,.I, L...z, highestLevel) + toP

The firewall can also be used to represent the effect of a

mispredicted conditional branch, resulting in all operations

after the conditional branch being placed into the DDG with

a control dependency to the firewall. Figure 5 shows the state

of the live well after processing the trace in Figure 1. The

edges between the records in the live well are not explicitly

stored. They are only included to show the order in which

values were placed into the live well. The value at the head

of an edge was used as a source value to the operation that

created the value at the tail of the edge. Each record contains

346

L1V9 W*11 \
/

8

s

3

highestLevel

o

dee.pestLevelYetUsed

3

Figure5: Live Well State After Processing Trace

the name of the location and the level in which the value was

created. The variables A, B, C, and Dare pre-initialized values

from the DATA segment, and therefore are placed into the

live well at level –1, the level immediately preceding the

topologically highest level inthe DDG.

The addition ofstorage dependencies can be implemented

by further constraining the placement ofcomputation in the

DDG:

~dest = MAX(L~~cI, L~,~2, highestLevei, Dd~~t + 1) + t~P

Dd..t is the deepest level in the DDG of any computation

that used a previous value stored in the same location as

the destination value. Given this strategy of placement in

the DDG, values stored in the same location will have non-

intersecting lifetimes in the DDG.

Paragraph can optionally limit thenumber ofviewable in-

structions when building the DDG. Figure 6 shows a concep-

tual view of the instruction window. The instruction window

passes along the entire trace allowing at most W instruc-

tions to be viewed at any one time. As instructions enter

the window, they are placed into a DDG being built in the

window. Instructions ahead of the window are not consid-

ered for placement until they enter the instruction window.

The first level available for placement is always the level at

the bottom of the instruction window. As the instruction

window moves along the trace, instructions displaced from

the window can no longer affect the placement of other in-

structions. This is implemented by including a firewall with

the operations displaced from the instruction window. The

firewalls are shown as vertical dashed lines in Figure 6. The

resulting DDG cannot contain more than W operations in

any single level, i. e., the case where all the instructions in

the window are independent.

4 SPEC Benchmark Analysis

To demonstrate DDG analysis of ordinary programs, we

present the results of some parallelism availability studies,

using a DDG analysis of the SPEC benchmarks [14]. The af-

fects on available parallelism due to system calls, renaming,

and instruction window size are explored.

All traces were generated using Pixie on DECstation

Bot t m TOP of
of Window window

Figure 6: Paragraph Instruction Window

3100/5000 workstations. All the benchmarks were compiled

with the MIPS ‘C’ and FORTRAN compilers, both version

2.1, at optimization level ‘-03’. Table 1 shows the instruc-

tion latencies (in DDG levels) for each operation class in the

MIPS processor. These values are used to determine how

many levels an operation will span in the DD G before the

value it creates is available for use by subsequent operations.

Table 1: Instruction Class Operation Times

1Operation Class Steps
Inteaer ALU I 1
Inte~er Multiply
Integer Division
Floating Point Add/Sub
Floating Point Multiply
Floating Point Division
LoadlStore

6
12

6
6

12

1

uSystem Calls 1

Table 2 details the SPEC benchmarks, their arguments,

and the inputs used. At most 100,000,000 instructions were

traced due to time restrictions during the writing of this

paper. Analyzed instructions are taken from the start of

the program’s instruction trace. The benchmarks ccl and

espresso were completely analyzed.

To give an upper bound on the available parallelism, we

first analyze DDGs containing only true data dependencies.

Table 3 shows the critical path length, and available paral-

lelism for the SPEC benchmarks. Figure 7 shows graphically

the parallelism profiles for all benchmarks analyzed (note

that the z and y scales differ for each benchmark.) The

results in Table 3 are given for both conservative and opti-

mistic system call assumptions; the results in Figure 7 are

for conservative system call assumptions. System calls are

relatively infrequent, the most frequent case being ccl with

a system call roughly every 14,861 instructions. Compar-

ing the Conservative and Optimistic columns indicates the

range in which the actual value of available parallelism lies.

The conservative system call assumption does not hide much

parallelism. For most of the benchmarks, the maximum ab-

solute measurement error is very small, with ccl being the

largest at 32%. For each analysis, all renaming is enabled,

the window size is the same size as the trace (no control de-

pendencies), and no functional unit resource restrictions are

imposed.

The critical path leugths in Table 3 show the absolute

347

Table 2: SPEC Benchmarks Analyzed

IEEz
ccl

doduc
eqntott

espresso

fpppp
matrix300

nasker
spice2g6
tomcat v
Xlisp

rccl
doduc
eqntott
espresso

fpppp
matrix300
nasker
spice2g6
tomcat v

Source

Language

c
FORTRAN
c
c
FORTRAN
FORTRAN
FORTRAN
FORTRAN
FORTRAN
c

Benchmark
Type

Int
FP
Int
Int
FP
FP
FP
Int and FP
FP
Irlt

Arguments

-o
none

-s -.ioplte

-t

none
none

none
none
none
none

Input

explow.i
doducin

int .pri S.eqn
opa

nat oms4
none

none
greycode.in
none
ii-input .lsp

Total Instructions

In Trace

59,313,327
1,619 ;374;300

1,241,913,236

119,134,865

2,396,679,406
2,766,534,109

919,571,920
28,696,843,509

1.872.460.466
1;234;252;567

Table 3: SPEC Benchmark Dataflow Results

Number of
System Calls

3,991
428

44
91

30
34
23

1,849

24

Conservative
Critical Available

Path Length Parallelism
1,321,:98

877,872
109,088
742,678

49,24
4,191

1,885,077
746,124

17,008

36.21

103.59
782.52
132.97

1,999.86
23,302.60

50.97
111.45

5,806.13

~ 3,470 5,650; 548 I 13.28

minimum number of steps required to evaluate the computa-

tions in each benchmark. The available parallelism (and the

parallelism profile) is computed only from instructions that

create values (and thus are placed in the DDGs and par-

allelism profiles,) and does not include control instructions

such as jumps and branches. (The average parallelism would

be higher if these were included.) The results indicate that

there is a significant amount of parallelism available in the

applications. In fact, significantly more parallelism than was

shown in [15] (compare the results with the “Perfect” results

in [15]). However, as we will see, exploiting the available

parallelism will require memory renaming and very large in-

struction windows for many of the benchmarks. Of course,

perfect control flow and memory disambiguation is assumed

in the dataflow analysis of Table 3 and Figure 7, whereas [15]

places some limitations on their analysis that are represen-

tative of the current state-of-the-art.

Misp stands out as the benchmark with the least amount

of parallelism. Further investigation revealed that the bench-

mark executes a Lisp program (li-input.lsp) that spends

nearly all of its time in a prog structure. This construct pro-

vides an imperative programming framework in Lisp. The

Lisp interpreter implements an abstract serial machine for

the prog structure, thus re-introducing the control depen-

dencies that are normally removed by Paragraph. The con-

trol dependencies show up as recurrences in the updating of

the prog structure program counter. The resulting program’s

DDG is riddled with data dependencies, and thus provides

little parallelism.

Time constraints prohib~ted us from running all the bench-

marks to completion. Had we done so, we believe that the

OptiI
Crvtical

Path Length

903,622

848,052
78,774

560,225

48,484
2,839

1,884,388
600,633

14,559

5,640,833

Instructions

Analyzed

59,313,327
100;000;000

100,000,000

119,134,865
100,000,000
100,000,000
100,000,000
100,000,000
100.000.000
100;000;000

i--l
107.22 0.03
942.35 0.16
176.26 0.25

2,032.78 0.02
33,748.58 0.31

50.99 0.00
138.44 0.19

6,800.33 0.15

13.30 0.00

benchmarks with large amounts of parallelism (i. e., few inter-

instrnction dependencies) would have continned to show an

increase in the available parallelism, as independent instruc-

tions would be placed into the same DDG levels as earlier

placed instructions. Benchmarks with smaller amonnts of

parallelism (i. e., many inter-instruction dependencies) would

probably reveal approximately the same amonnt of available

parallelism, as dependent instructions would be placed into

new levels of the DDG. Of course, later phases of a program

could be very mnch nrdike earlier phases, possibly exhibiting

much more, or much less parallelism. This issne remains to

be investigated.

Obtaining the parallelism shown in Table 3 will not be

possible if storage and control dependencies cannot be re-

moved. First consider the necessity to remove storage de-

pendencies in order to expose parallelism. Table 4 shows the

available parallelism when all storage dependencies (register

and memory) are left in the DDG, when only memory storage

dependencies are left in the DDG (registers renamed), when

only non-stack memory storage dependencies are left in the

DDG (registers and stack renamed), and when no storage

dependencies are in the DDG. For alf experiments, system

caJls force the insertion of a firewal, the instruction window

size is the same size as the trace, and there are no functional

unit resource restrictions.

The results illustrate that renaming must occur, otherwise

the available parallelism in the trace will be substantially re-

duced. Without register renaming, very little parallelism is

detected. This is to be expected since the use of a limited

number of storage elements, namely 32 registers, for buffer-

ing the results of computations is a severe impediment to

348

.1 P.alle.liun Prom.

0 20m00400000 e— 300000 1.+06 1.2.+06 1.4.+06
Level in DDD

eqntitt Paralldkm Profile
-

60000

-

300cCI

20000

10000

0—
0 2cQ00400w 60c0060000 lcOcc1012m00

Level in DDD

fmpp pm~.~ l%fil.
i t-

36000

w3000

26000

20000

16000

10000

6000

0
0 10000 20000 30000 40Cxx) 60000

La..l in DDG

Iladcer Pnrauelimu Profile
200

I 1
1s0

160

140

lZO

100

30

60

40

20

0
0 — 600000 1.2e+06 1,69+06 2.+06

IAV.1 in DDG

140000

120000

lwJ@JO

60000

60rK10

40000

20000

0

tomlcat.Parallelism Prom.

1

zoca amo 6000 6000 Imm mom IaOO 13000 u3m0
Level in DDG

160
t ,1 -i

160 } II 1[11I 4
140

120

100

60

60

do

Zot,

0 200000 4C0000 — 8—

6000

7000

6000

6000

4000

Level in DDD
..pr...o Parallelism Pr.fde

I

I I J
-0 200000 400000 — 3w000

Level in DDD

.atrlx31x3 Paraucdi.m Rome
M41000 r

1200c0

looocm

60000

60000

40000

200Ce

n ~~ k

0600 lCi#J 1600 2000 2S00 9000 3600 4000 4600
Level in DDG

.picn2@ Pmrnlleliun PrOtun
9000 I
8000

7000

6000

4000

3000

2000

1000

0
0 mOOoo 4- 60aCD0 woooo

Level in DDG

100

60

m

40

20

n
0 1.+53 2. +06 3e+0e 4e+0e 6.+06 6.+06L9.d in DDG

Figure 7: Parallelism Profiles for the SPEC Benchmarks

349

Table 4: SPEC Benchmarks under Different Renaming Conditions

Name

ccl
doduc
eqntot t
espresso
fpppp
matrix300

nasker
spice2g6

tomcatv

xlisD

. . .
-NO Renaming Regs R enamed

3.65 I 33.70
1.62
3.67

2.53
1.69
2.05

2.58
1.85

1.52
3.32

29.97
532.69

42.46
18.34

1,235.74

50.84
39.67

66.63

13.27

parallelism. In most cases, renaming registers is enough to

expose a sizable fraction the parallelism in the trace. The

exception beirw matr-ix300 and tomcatv where manv of the

values (vectors) used are not allocated to registers. The regis-

ter renaming analysis axsumed an infinite number of physical

registers were available to rename logical registers.

As mentioned earlier, it is generally easier to rename vari-

ables resident on the stack, since their extent is known to be

the same as the procedure using the values. If the stack and

register values are renamed, only slightly more parallelism is

exposed except for torncatv and matrix300. Both tomcatv and

matrix300 manipulate arrays allocated on the stack. Since

all values stored on the stack are renamed, including array

accesses, the results are optimistic because it is unlikejy that

a stack based renaming technique could effectively rename

array accesses.

The parallelism values presented in Table 3 and Figure 7

also assume that the entire trace (100,000,000 instructions

in most cases) can be searched to find independent opera-

tions. For our next study, we vary the window size. This

will demonstrate how many instructions in the dvnamic in-

struction stream will have to be exposed before significant

parallelism is realized. Figure 8 shows the percent of total

available parallelism exposed as a function of instruction win-

dow size (note both axes are logarithmic scales.) Each point

in the graph represents a full DDG extraction and analysis of

up to 100,000,000 instructions (and requires approximately

10 hours on a DECstation 3100.) For each result, system

calls force the insertion of a firewall, all renaming is enabled,

and there are no functional unit resource restrictions. The

instruction window size, described in Section 3, determines

how much of the instruction trace is viewable when building

the DDG.

Figure 8 indicates that very extensive look ahead, on the

order of 100,000 instructions, will be required to garner all

the available parallelism in ccl, doduc, espresso, nasker, and

spice. For the applications with a large amount of avail-

able parallelism, z’.e., egntott, fpppp, matrix300, and tomca to,

the number of instructions needed in the window greatly in-

creases. For mat riz300, only 3.870 oft he tot al available paral-

lelism (an average of 875 operations per level or cycle in the

DDG) is exposed with a window size of 1,000,000 instruc-

tions. However, modest levels of parallelism (about 7-52 op-

erations per cycle), certainly enough to fuel the next several

generations of superscalar processors, can be obtained for all

benchmarks with window sizes as small as 100 instructions.

at31e Yarallelrsm
Regs/Stack R enamed

36.19
103.59
538.87

42.49
81.32

23,302.59

50.85
57.36

5,772.38

13.28

Kg/IVfeXenaii

36.21
103.59
782.52

132.97
1,999.86

23,302.60
50.97

111.45

5,806.13
13.28

It is unlikely that conventional superscaler designs could

ever remove all control dependencies and completely exploit

the parallelism in large instruction windows. This is because

1) the branch predictors currently available are not accu-

rate enough to expose even hundreds of instructions, and 2)

resolving dependencies between more than even a hundred

instructions would require a prohibitive amount of associa-

tive logic. It is apparent that other methods of exposing

independent instructions and resolving dependencies will be

required.

5 Summary

In this paper, we presented a methodology for building and

analyzing the dynamic dependency graph (DDG) of a pro-

gram from a sequential execution trace of the program. The

DDG of a program is a partially ordered, directed, acyclic

graph where the nodes of the graph represent computation

that occurred during the execution of the program, and the

edges represent dependencies that force a specific order on

the execution of the instructions. We also illustrated how the

analysis of a (sui~ably constrained) DDG can yield valuable

insight into the dynamics of program execution.

We then applied our DDG analysis methodology to study

the parallelism in the SPEC benchmarks (for executions of

100 million instructions in most cases). We constructed par-

allelism profiles, measured the length of the criticaf path of

computation through the programs, and measured the aver-

age (or available) parallelism. These studies indicated that

there is a useful amount of parallelism in the benchmarks,

ranging from 13 to 23,302 operations per cycle, but to fully

expose this parallelism requires large instruction windows as

well as the ability to rename both registers and memory.

Renaming only registers exposed much of the parallelism in

most of the cases. The parallelism profiles indicate that par-

allelism is bursty, with periods of lots of parallelism followed

by periods of much less parallelism.
We also saw how the exposed parallelism was influenced

by the size of the window of dynamic instructions. If we are

interested in only small amounts of fine-grain parallelism (say

less than 10 or 20 operations per cycle), then window sizes of

a few hundred instructions are sufficient, but for larger levels

of parallelism, much larger window sizes (on the order of

thousands or tens of thousands of instructions) are required.

We feel that for a quantitative analysis of future-

generation fine-grain parallel architectures, DDG analysis is

350

....”:.- ..-” ‘ -,..X’-”

[

...’ .,” ‘ ./ -----
,,. ,.. /..-.

.,, ,.. y -.-..---’=
‘ ‘i” ,-,7/ A--

~ . ~ .: -.-:;,/

,.
, ,.

doduc +-
eqntott .F3--

espresso -X-—

fPPPP +-
matrix300 *.-

na sker .+. -. I

[spice2g6 .+--]
tomcat v .B ..

Xlisp -K--

0.01 j
1 10 100 1000 10000 100000 le+06

Window Size (instructions)

Figure 8: Window Size vs. Parallelism

going to be essential in understanding the dynamics of pro-

gram execution on such machines, and strongly advocate the

use of such analysis methods, despite their costs in execution

time and resource requirements.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

References

Arvind, S. Brobst, “The Evolution of Dataflow Archi-

tectures from Static Dataflow to P-RISC,” MIT Com-

putation Structures Group Memo 316, August 1990.

Arvind, D. E. Culler, “Resource Requirements of

Dataflow Program,” In Proceedings of the 15th An-

nual International Symposium on Computer Architec-

ture, pp. 141-150, May 1988.

Arvind, D. E. Culler, G. K. Maa, ‘Assessing the Benefits

of Fine-grained Parallelism in Dataflow Programs,” In

Proceedings of Supercomputing 88, pp. 60-69, November

1988.

Arvind, R. S. Nikhil, “A Dataflow Approach to General-

purpose Parallel Computing,” MIT Computation Struc-

tures Group Memo 302, July 1989.

M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales, M.

Shebanow, “Single Instruction Stream Parallelism Is

Greater than Two,” In Proceedings of the Eighteenth

Annual Symposium on Computer Architecture, pp. 276-

286, May 1991.

D. E. Culler, G. M. Papadopoulos, “The Explicit Token

Store,” In Proceedings of the 17th Annual International

Symposium on Computer Architecture, pp. 82-91, May

1990.

D. J. Kuck, et al,, “Measurements of Parallelism in Or-

dinary FORTRAN Programs,” Computer, vol 27, pp.

37-46, January 1974.

M. Kumar, “Measuring Parallelism in Computation-

Intensive Scientific/Engineering Application,” IEEE

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Transactions on Computers, C-37, 9, pp. 1088-1098,

September 1988.

A. Nicolau, J. Fisher, “Measuring the Parallelism Avail-

able for Very Long Instruction Word Architectures,”

IEEE Transactions on Computers, C-33, 11, pp. 968-

976, November 1984.

R. S. Nikhil, “The Parallel Programming Language Id

and its Compilation for Parallel Machines,” MIT Com-

putation Structures Group Memo 313, July 1990.

G. M. Papadopoulos, “Implementation of a General

Purpose Dataflow Multiprocessor,” MIT Laboratory for

Computer Science TR-432, December 1988.

M. D, Smith, M. Johnson, M. A. Horowitz, “Limits on

Multiple Instruction Issue,” In Third International Sym-

posium on Architectural Support for Programming Lan-

guages and Operating Systems, pp. 290-302, May 1991.

G. S. Tjaden and M. J. Flynn. “Detection and Parallel

Execution of Parallel Instructions,” IEEE Transactions

on Computers, C-19 (10), pp. 889-895, October 1970.

J. Uniejewski, “SPEC Benchmark Suite: Designed for

Today’s Advanced Systems,” SPEC Newsletter, Fall

1989.

D. W. Wall, “Limits of Instructional-Level Parallelism,”

In Proceedings of the Fourth International Conference

on Architectural Support for Programming Languages

and Operating Systems, pp. 176-188, April 1991.

351

