
34 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 1, JANUARY 1993

High-Bandwidth Interleaved Memories for
Vector Processors-A Simulation Study

Gurindar Singh Sohi, Member, IEEE

Abstract- Sustained memory bandwidth for a range of ac-
cess patterns is a key to high-performance vector processing.
Interleaving is a popular way of constructing a high-bandwidth
memory system. However, for some access patterns conflicts
reduce the bandwidth of a standard, low-order interleaved mem-
ory. To improve memory bandwidth for a wide range of access
patterns, alternate interleaving schemes must be considered. This
paper studies a family of alternate interleaving schemes called
permutation-based interleaving schemes. Permutation-based in-
terleaving schemes can be implemented with a small amount
of additional hardware and with a minimal time overhead.
A detailed simulation analysis been carried out in this paper.
The simulation analysis suggests that, with adequate buffering,
permutation-based interleaving schemes similar to those studied
in this paper can be used to implement a high-bandwidth mem-
ory system for vector processors. The resulting memory system
sustains its bandwidth for a wide variety of access patterns and
for large bank busy times far better than a memory system with
standard interleaving.

Index Terms-Interleaved memories, permutation-based inter-
leaving, simulation analysis, sustained throughput, vector pro-
cessing.

I . INTRODUCTION
T is well understood that the rate at which a processor I can process information is limited by the rate at which

the processor can access information from the memory. An
increase in the processor speed must be coupled with a
corresponding increase in the bandwidth of the memory.
Several schemes to improve the bandwidth of memory exist.
Cache memories provide an excellent means of improving the
latency as well as the bandwidth of the memory as seen by
the processor. However, their utility is limited by their size. In
vector processing machines, cache memories have, to date,
not been proven to be useful in providing high-bandwidth
access to elements of large data structures. To achieve such
high-bandwidth access, vector processing machines routinely
use parallel or interleaved memories. A parallel or interleaved
memory consist of several memory modules or banks. Parallel
and interleaved memories improve memory bandwidth by
allowing elements in distinct banks to be accessed in an
overlapped manner. However, the actual bandwidth of the
memory system may be less than the peak bandwidth because
of collisions or conflicts. A bank conflict occurs when the

Manuscript received June 21, 1988; revised October 8, 1991. This work

The author is with the Computer Sciences Department, University of

IEEE Log Number 9204952.

was supported in part by NSF Grants CCR-8706722 and CCR-8919635.

Wisconsin, Madison, Madison, WI 53706.

processor makes a request to a memory bank that is already
busy servicing a previous request.

For our discussion in this paper, we distinguish between
parallel and interleaved memories. By parallel memories, we
mean the memory modules of a SIMD array processor such as
the Burroughs Scientific Processor [l l] . The memory modules
of a parallel memory are connected to P processing elements
(PE’s) via an interconnection network. In the array processing
paradigm, each PE operates on a different element of the same
vector in the same cycle. The parallel memory system must,
therefore, be capable of supplying P elements of the same
vector in every cycle. By interleaved memories, we mean the
memory modules of a SIMD vector processor such as the
Cray-1 [19], or the follow-on Cray X-MP and the Cray Y-MP.
In the SIMD vector processing paradigm, a single PE operates
on the elements of a single vector, one at a time. Ideally,
an interleaved memory system for a SIMD vector processor
would have a throughput of V elements (possibly from V
different vectors) per cycle where V is the number of vector
access streams that are active simultaneously.

The problem of conflicts in parallel and interleaved memo-
ries has been the subject of intensive study [3], [4], [6], [12],
[13], [15], [20], [24]. For interleaved memories, most of the
previous work has focused on conflicts in the memory system
for a single vector access stream though recent work has also
investigated conflicts in multiport memory systems that allow
simultaneous, multiple vector access streams [4], [15].

This paper is concerned with high-bandwidth interleaved
memories for vector processors. We restrict our discussion to
single port interleaved memory systems with a single vector
access stream. An example of a computer with such a memory
system is the Cray-1. Of course, the ideas presented in this
paper can be extended to the design of a multiport memory
system that allows multiple streams of access (such as the Cray
X-MP and the Cray Y-MP). Our goal is to design a memory
system that can sustain its peak throughput for a wide range
of vector access patterns.

The outline of this paper is as follows. Section I1 discusses
the basic concepts in the design of interleaved memory systems
for vector processors. Section 111 reviews alternate interleaving
schemes that have been studied previously for both parallel and
interleaved memories. Section IV discusses permutation-based
interleaving schemes that use bit-wise Boolean operations
to generate memory addresses. Section V contains a de-
tailed, comparative simulation analysis of various interleaving
schemes. Section VI contains a discussion and Section VI1
presents some concluding remarks.

001&9340/93$03.00 0 1993 IEEE

SOHI: INTERLEAVED MEMORIES FOR VECTOR PROCESSORS 35

11. INTERLEAVED MEMORIES FOR VECTOR PROCESSORS

In the vector processing paradigm, computation is carried
out on an entire chunk or a vector of data. In order to carry out
the computation, elements of the vector must be accessed from
the memory. If the vector machine has memory-memory vector
instructions (such as the Cyber 205), the vector computation
instruction itself is responsible for fetching the data from
the interleaved memory. If the vector machine has register-
register vector instructions (such as the Cray-l), the vector
computation instruction must be preceded by a vector load
instruction. Before proceeding further, some definitions are in
order.

Definition 1: The stride of a vector access is the difference
in the linear memory address between successive elements of
the vector.

Definition 2: An interleaved memory system of M banks
and ill x N words is composed of N linear subvectors of M
elements each. The M elements { X , } of a linear subvector i
are{X,IX3 = i x N + j : O < j < M - 1) .

Definition 3: The bank busy time of an interleaved memory
system is the number of processor clock cycles that a memory
bank is busy servicing a request.

Let M be the number of banks in the interleaved memory.
In most interleaved memories, M is a power of 2 , Le., M = 2"
where n is an integer. However, M need not be restricted to a
power of 2. Indeed, memory systems that have a prime number
of banks have been studied [13] and built [l l] . However, in
a memory system with an arbitrary value of M . the process
of determining the location of a desired data element is quite
complicated [13]. By restricting M to be a power of 2 , this
process is greatly simplified. We shall, therefore, restrict our
discussion to memory systems with a power-of-two number
of banks.

The simplest and most common interleaving scheme, i.e., a
low-order or standard interleaving scheme, uses the low-order
n = log, M bits of an N-bit address to select the bank and
the remaining N - n bits to select the word within the bank.
For such an interleaving scheme, the bank number in which an
arbitrary address i is located is specified by i mod M and the
word within the bank for the address i is i diu M . Successive
elements in the linear memory address space are placed in
successive banks.

Other interleaving schemes that use an arbitrary, but known,
n bits of the address to select the bank and the remaining N - n
bits of address to select the word within the bank are also
possible. For example, a high-order interleaving scheme would
use the high-order n bits of the address to select the bank and
the low-order N - n bits of the address to select the word
with the selected bank. However, they are not as popular as
a standard interleaving scheme for vector processors because
they do not allow for peak-throughput access to a vector of
stride 1.

If an interleaving scheme uses the low-order p bits to select
the bank, address (2. x 1 + m) where 1 is an integer greater
than 0 and 0 < m 5 2 P - 1 will map on to the same bank as
address m and, therefore, the distribution pattern of addresses
amongst the banks will repeat after 2P elements. In a standard

interleaved memory, successive components of a vector with
stride 1 fall in successive banks and can be accessed in a
conflict-free fashion. However, successive components of a
vector with stride M lie in the same bank and will result in
conflicts. Conflict situations can also arise for other strides
depending upon the bank busy time.

If the access patterns and the size of the data structures
are known a priori at compile time, array reshaping tech-
niques can be used to minimize the possibility of memory
bank conflicts. Array reshaping involves the embedding of
an array in a larger array in an attempt to make the stride
of access relatively prime to the number of banks. Memory
bank conflicts for common reference patterns are reduced at
the expense of wasted memory. However, such techniques
are of limited utility if sufficient compile-time information is
not available and we shall not consider them any further in
this paper. The interested reader is referred to [6] for some
discussion on such techniques.

111. DATA SKEWING ALTERNATE INTERLEAVING SCHEMES

Reserchers have long realized the inadequacy of a standard
interleaving scheme for parallel memory systems. To reduce
the probability of conflicts, datu skewing schemes were in-
troduced. Several data skewing schemes have been proposed
and analyzed in the literature [3], [5], [lo], [12], [24]. In a
memory system with a data skewing scheme, the mapping
from the linear address space to the banks of the memory
system is specified by the skewing scheme. In this paper,
any interleaving scheme which uses a mapping function from
the linear address space to the memory banks other than the
mapping function used in standard interleaving shall be called
an alternate interleaving scheme.

One of the first alternate interleaving schemes, linear datu
skewing schemes, were proposed for parallel memories in
[lo] and analyzed in [12] and [24]. In a linear skewing
scheme, element U , k of a two-dimensional array A is stored
in memory bank j * h 1 + k*b2 where bl and 62 are integers
[121. The scheme generalizes for higher dimension arrays.
However, to implement a linear skewing scheme, the bank
selection hardware needs the capability to carry out arithmetic
operations. The time taken to carry out arithmetic operations
can easily degrade the latency of each memory request.

To simplify the implementation (eliminate the need for
arithmetic operations), Frailong, Jalby, and Lenfant presented a
family of interleaving schemes called XOR schemes or Boolean
schemes for parallel memories [5] . Such schemes rely on
cheaper, bit-wise Boolean operations to determine the memory
module for an arbitrary address. Melton and Norton have
shown how such schemes can be used to achieve conflict-free
access to power-of-two strides in the IBM RP3 processor [14].

Traditionally, data skewing schemes were studied for par-
allel memories in SIMD array processors. Recently, however,
Harper and Jump proposed and studied a linear data skewing
scheme for an interleaved memory in a vector processor [6].
In the I-Skew interleaving scheme proposed by Harper and
Jump, the bank number (iWT) for an arbitrary address 7 in the

36 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 1, JANUARY 1993

linear memory is calculated as:

Mi = (i+ I$]) mod M .

If M is a power of two (M = 2n) . the division and modulo
operations are trivial and the bank number calculation involves
a single n-bit addition.

Consider the distribution of 128 elements (16 linear sub-
vectors of 8 elements each) from the linear address space
amongst 8 banks using a 1-Skew storage scheme (see Fig.
1). The elements of a subvector that comprises word k in the
memory banks are distributed in a regular fashion, i.e., the
only difference between word 0 and word k is that the first
element of word k is placed in bank k (mod 2’’). Furthermore,
since only 2n = 6 bits of the address are used to compute
the bank, the distribution pattern repeats after 2*“ = 26 = 64
elements (see Fig. 1).

When compared to a standard interleaving scheme, the 1-
Skew scheme eliminates conflicts for strides such as stride 8
but introduces conflicts for some other strides, for example,
stride 14. However, the degradation due to many of the
conflicting strides can be reduced or even eliminated if buffers
are provided at the input and the output of each memory
module. For example, if 3 buffer elements are provided at the
input and the output of each memory bank, stride 14 accesses
can proceed at the rate of 1 element per cycle (see analysis
in Section VI). Likewise, stride 7 accesses can proceed at the
rate of 1 element per cycle if 6 buffer elements were provided
at the input and output of each memory module. Harper and
Jump provide a detailed analysis on the number of buffers
that is needed in [6].

Unfortunately, the 1-Skew interleaving scheme (or any other
scheme that uses linear data skewing) has an inherent disad-
vantage-it involves arithmetic manipulation of the address
bits. This arithmetic manipulation can degrade latency of each
memory operation. However, the performance advantage of
1-Skew interleaving over standard interleaving presented in
[6] suggests that an alternate interleaving scheme in memory
systems for vector processors may be worthwhile.

Before proceeding further, let us distinguish between
conflict-free and peak-throughput access. Conflict-free access
occurs when references to the same memory bank do not
occur within a time window determined by the bank busy
time. Indeed, most alternate interleaving schemes presented
in the literature are concerned with conflict-free access to a
particular set of stridesi

If no conflicts occur in accessing data, the data accesses can
proceed at the maximum rate allowed by the memory system,
i.e., with peak-throughput. However, peak-throughput access
is possible even if the accesses are not conflict-free (see, for
example, analysis for strides 7 and 14 of Fig. 1 in Section
V-B). If a conflict situation occurs and the conflicting request
can be buffered, succeeding requests might be able to proceed
allowing peak-throughput access [2], [6].

Since conflict-free access to a wide variety of strides is
not possible [3], one can attempt to improve the throughput
for a wide variety of strides by using alternate interleaving
schemes. Ideally, the interleaving scheme would minimize the

Word

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

~

~

Bank

Mo M I M2 M I M1 M I M6 M,
0 1 2 3 4 5 6 7

15 8 9 10 11 12 13 14
22 23 16 17 18 19 20 21
29 30 31 24 25 26 27 28
36 37 38 39 32 33 34 35
43 44 45 46 47 40 41 42
50 51 52 53 54 55 48 49
57 58 59 60 61 62 63 56
64 65 66 67 68 69 70 71
79 72 73 74 75 16 77 78
86 87 80 81 82 83 84 85
93 94 95 88 89 90 91 92

100 101 102 103 96 97 98 99
107 108 109 110 111 104 105 106
114 115 116 117 118 119 112 113
121 122 123 124 125 126 127 120

Fig. I . Distribution of elements using 1-Skew storage

possibility of a long sequence of accesses to the same bank.
Then, by providing buffers, memory requests can be allowed
to proceed even though previous requests may be waiting (in
the buffers) for a memory bank to become free. However, keep
in mind that the interleaving scheme should be simple enough
that its implementation does not degrade the latency of each
memory request.

Fortunately, interleaving schemes that involve bit-wise log-
ical operations on the address bits seem to fit the above-
mentioned requirements and therefore we shall investigate
their use in a high-bandwidth interleaved memory system.
We shall refer to such schemes as Permutation-Based Inter-
leaving (PBI) schemes and the resulting memory system as a
Permutation Interleaved (PI) memory system.

IV. PERMUTATION-BASED INTERLEAVING (PBI) SCHEMES

In order to locate a desired word in an interleaved memory
system with M = 2“ banks and 2‘ -” words in each bank, we
need to specify: i) an n-bit bank number and ii) an N - n bit
address that indicates the position of the word in the selected
bank. In the PBI schemes that we use in this paper, the position
of the word within each bank (or the linear subvector number)
is determined in the same way as it is determined in a standard
low-order interleaved memory, i.e., by using the high-order
N - 71 bits of address.

The power and the elegance of PBI schemes lies in the
calculation of the bank number. Rather than using only n bits
of address to determine the bank number, we an potentially use
all N bits of address to determine the bank number as follows.
If x is the N-bit address of the word and 7 is the 76-bit vector
that represents the bank number, then is calculated as:

-

Y = A T (1)

where A is an 71 x N matrix of 0’s and 1’s. The inner product
is a logical inner product with the “multiplication (*)” being a
logical AND operation and the “addition (e)’’ being a logical
Exclusive-OR operation. Element 1; of P is, therefore:

Y, = (A,.o*Xo)$(A, 1 * X i) $. . . ~ (A , , , ~ - 1 * X n . - l) (2)

where X, is the j th bit of the address.
A memory system using the PBI schemes described above

can be viewed as a memory rystem consisting of 2‘y-n

SOHI: INTERLEAVED MEMORIES FOR VECTOR PROCESSORS

6
7

37

52 51 48 55 53 50 49 54
60 59 56 63 61 58 57 62

subvectors each of 2" elements. The subvectors are distributed
in a regular, ordered fashion amongst the memory banks with
one component of a subvector in each memory bank. However,
the distribution of the elements of a subvector amongst the
memory banks can be quite irregular thereby leading to an
overall randomness. The name "PBI schemes" is derived from
the fact that the elements of the subvectors are permuted
amongst the banks in different ways.

Notice that by modifying the contents of the A matrix,
we can obtain PBI schemes that distribute the elements of
a subvector across the memory banks in a nonregular fashion.
That is, the distribution of the elements of subvector (word)
i have no clear relationship to the distribution of elements of
subvector (word) j.

In order to clarify a PBI scheme, consider the example of
distributing the elements of a 64-element vector in 8 banks.
Suppose that the bank number Y2YlYO is given by:

rX5i

0 1 1 0 1 0
1 0 0 1 1 0
1 1 0 0 1 1 1 [:I = [

x4

x3

x2

XO - ?l

(3)

Le., YO = X4 63 X3 @ X1,Yl = X 5 @ X2 63 X1, and
Y2 = X5 @ X, 63 X I @ X O , the distribution of 64 elements
of the linear address space amongst 8 banks is given in Fig.
2. In this case, the bank selection process involves 6 bits and,
therefore, the distribution pattern repeats after 64 elements.

Before proceeding with an analysis of PBI schemes, let us
discuss some issues in the design and the properties of the A
matrix. However, the main thrust of the paper is to present
the use of PBI schemes in a high-bandwidth PI memory
and evaluate their effectiveness using a detailed simulation
analysis. Therefore, we shall keep theoretical discussion to a
bare minimum.

We can rewrite (1) as:

where x~ is the high-order N - n bits of the address and X L
is the low-order n bits of the address. The reader should note
that the standard low-order interleving scheme is a special case
of our more general PBI schemes. For a standard interleaving
scheme, AH is the zero matrix and AL is the identity matrix.

A general PBI scheme must make sure that each memory
address maps on to a distinct location in the memory system,
Le., is a distinct word within a distinct bank. Since the word
selection process of our PBI schemes does not involve any
Boolean operations other than simple bit selection, the word
within the selected memory bank for each memory address
is unique and exactly 2" elements (the elements of a linear
subvector) have the same word within the memory banks. The
PBI scheme must make sure that these 2" elements all fall
into distinct banks, i.e., no 2 distinct elements from the linear
address space map into the same word within the same bank in
the memory system. In order to do so, the AL matrix must be

Bank
Word
-

0
1
2
3
4
5

Mo M I Mz M, M, MI Mg M,
0 7 4 3 1 6 5 2
8 15 12 11 9 14 13 10

22 17 18 21 23 16 19 20
30 25 26 29 31 24 27 28
34 37 38 33 35 36 39 32
42 45 46 41 43 44 47 40

Fig. 2. Distribution of elements using the permutation based interleaving
scheme of (3).

chosen properly. The following theorem guides the selection
of the AL matrix.

Theorem: A PI memory system has a unique location for
each addressed element iff the associated matrix AL is of
full rank with respect to the Boolean matrix multiplication
operation.

Proof: We shall prove the necessary and sufficient condi-
tions separately by making use of well-known results in linear
algebra.

For a given liner subvector i , x ~ is constant and X L can
take on 2" distinct values. Therefore, the term A H X H in (4)
is a constant. Since = A H Y H + A L x L , the submatrix
AL is solely responsible for guaranteeing a one-one mapping
between the 2" elements of the linear subvector i and the 2"
memory banks. To do so, AL must be of rank n. If the rank of
AL is m,O 5 m < n, then the 2" elements of the subvector
would be mapped to a subset of the memory which contains
2" banks. This proves the necessary condition.

Now we prove the sufficient condition. Since AL is of rank
n, the term A L X L will generate 2" distinct bank numbers
for the 2" elements of a linear subvector i (word within
bank). Since Z H is a constant for a given linear subvector
i, A H X ~ is a constant and does not alter the one-one mapping.
Therefore, the bank selection process will generate a unique
bank number for each element of a linear subvector and
consequently guarantee a unique location in the memory
system for each addressed data element. Q.E.D.

While designing a PBI scheme, the only consideration is that
AL should be of full rank with respect to the Boolean matrix
multiplication operation. AH participates in the interleaving
scheme by permuting the elements of different subvectors
in different ways (see the distribution of the elements from
different words in Fig. 2). Any choice of AH will result in a
valid PBI scheme. Of course, PBI schemes with different AH
submatrices will have different vector access performance for
different strides.

A. Bank Number Calculation in a PI Memory
Let us now consider the hardware needed to calculate the

position of an arbitrary word in the PI memory system. Keep
in mind that unless the hardware needed to implement the
PI memory is extremely simple, cheap and fast, its use in
a high-performance system is unlikely. Recall that our PBI
schemes use the high-order N - n bits of address to determine
the word in each bank. These bits are passed directly to the
decoding logic within each bank and no additional hardware
(as compared to a standard interleaved memory) is needed.

3s IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 1, JANUARY 1993

Panty CircUlt
Row 0 of A

l I N-bit Address

Parity Circuit Parity Circuit Mo M1 MM-,
R o w n - l o f A

.
Row 1 of A

l l

Si

Address
source

Input Buffers 1

Data
Sequencer

.v.
2" Bank Select Signals

calculations (a carry ripple) in the calculation of the bank
number. Furthermore, the additional hardware is of the order
of a few XOR gates and is less than the additional hardware
needed to implement an interleaving scheme that linear Fig. 3. Hardware organization for determining the bank number in a per-

mutation interleaved memorv.
data skewing.

The additional hardware needed for a PI memory system is,
therefore, the hardware needed to compute the bank number.

is
determined by computing an appropriate Boolean sum (parity)
of the input address bits. The bits that participate in the
Boolean sum for bit Y, are indicated by row i of the A matrix.
The n-bit vector then needs to be decoded to generate
the appropriate bank select signals. The overall organization
of the hardware needed to carry out this task is shown in
Fig. 3. N address bits are fed into n partiy computation
circuits that compute the appropriate Boolean sum. Each partiy
circuit calculates the parity of a select number of input bits as
determined by the A matrix. These partiy bits represent the
n-bit bank number that contains the addressed word. These
parity bits are then input to a decoder which is responsible for
generating the 2" bank select signals. In a standard interleaved
memory, n bits of the address are directly fed to the decoder.
The overhead for the PI memory is, therefore, the delay
through the partiy computation circuits. For a simple PBI
scheme such as the one described by (3), this overhead can be
as little as the delay through a single 4-input XOR gate.

For more complicated schemes that make use of an arbitrary
number (a maximum of N) bits of address, the N-bit parity
circuit can be implemented with [logk N1 levels of xOR gates
where k is the fan-in of each XOR gate. For k = 4, the parity
of up to 64 input bits can be computed with only 3 levels of
XOR logic.

The reader should note that in some cases, it may be
possible to merge part or all of the parity computation logic
with the decoding logic. In other cases, it may be possible
to incorporate some of the parity computation logic within
the address generation hardware itself (for example in the
address calculation adder) without increasing the length of the
critical path. In such cases, the PI memory has no additional
time overhead over a standard interleaved memory. In any
case, the time overhead for an arbitrary PBI scheme is not
more than a few levels of logic and is far less than the
overhead for interleaving schemes that involve arithmetic

From (2) we see that each bit of the n-bit vector

V. A SIMULATION ANALYSIS

To evaluate the relative performance of a PI memory system,
we carried out a detailed simulation analysis. Our model of the
memory system is the same as the one proposed by Harper and
Jump [6] and is shown in Fig. 4. Before proceeding further
with the experiments, let us describe the memory system in
some more detail.

A. The Memory System

An address is generated by the address source at a maximum
rate of one address per clock cycle. The addresses are trans-
mitted to the input buffer of the selected bank for service. All
requests pass through the input buffer; no request is forwarded
to the bank directly even if the bank is free. The address source
also provides a sequence number for each memory request.
The sequence number is used by the data sequencer to return
the data back to the data sink in the same order as the addresses
generated by the address source.

Each memory bank services requests from its input buffer
in the order that they were submitted to the buffer. A serviced
request, along with its sequence number, is placed in the output
buffer of the bank.

The data sequencer keeps track of the sequence number of
the next element to be returned to the data sink. It monitors the
sequence numbers in the output buffers of the banks. When a
match results, the corresponding data item is sent to the data
sink, the relevant output buffer is updated and the sequence
number in the data sequencer is also updated. Both the address
source and the data sink maintain their sequence numbers by
starting out with a zero value and incrementing their current
sequence number modulo a given number. To ensure correct
operation, the number should be larger than the maximum
number of data requests that can be outstanding at any given
instant.

Note that the input and output address latches of a standard
interleaved memory can be regarded as buffers of size one.
Indeed, in our simulations, we treat the input address latch of

SOHI: INTERLEAVED MEMORIES FOR VECTOR PROCESSORS

Standard

InpuVOutplr Buffer Size
Smde

39

I-Skew PBI

InpuVOutplt Buffer Sire InpuVOutput Buffer Sire

each memory bank as an input buffer of size 1. Likewise, a
latch at the output of each bank is treated as an output buffer
of size 1.

The throughput of the memory system can be calculated
in two ways. The first method of calculating throughput is to
divide the number of data elements accessed by the number
of cycles taken by the address source to generate all the
addresses and submit them to the banks for service. Thus, if
the address source took 1024 cycles to supply the addresses of
1024 elements, the throughput would be 1 element per cycle
even though the access operation takes more than 1024 cycles
to complete. In this method, the time taken to flush the memory
banks and buffers and return the last data item to the data sink
is ignored.

If no buffers are present in the memory system, the time
taken to flush the memory system is constant; the address
source blocks when a bank is busy and the access operation
is complete B cycles after the last request is issued where B
is the bank busy time. However, if buffers are present and
the access pattern is not highly deterministic (as is the case
in the 1-Skew and PBI schemes), requests can queue up at
the input of a single bank (consider, for example, stride 14
access in Fig. 1) and the time taken to flush a sequence of
requests may be quite significant. A more realistic measure of
the throughput would, therefore, use the total time taken to
access the data elements. The second method for calculating
throughput is to divide the number of cycles that would ideally
be taken to access the vector in a conflict-free fashion (vector
length + bank busy time + time through buffers) by the total
number of cycles that are actually taken to access the vector.
We shall use this method to calculate the throughput for all our
experiments since we believe it is more realistic in a vector
processing environment.

1 2 3 1 2 3 1 2 3

B. Simple Interleaving Schemes

Our first set of experiments compares standard interleaving
with 1-Skew interleaving and a simple PBI scheme. We do not
attempt to analyze various PBI schemes in this paper. (How-
ever, see Section VI1 for related work.) For the experiments
of this section, we use the 6-bit PBI scheme described by (3).
Our choice of the PBI scheme for this experiment was quite
arbitrary; the main criterion was to involve 6 bits of address in
the computation of the bank number, the same as in a 1-Skew
scheme (indeed, several other 6-bit logical skewing schemes
that we considered had very similar performance). In Section
V-C, we investigate other PBI schemes that use more address
bits to compute the bank number.

To prevent an explosion in the number of experiments, we
do not attempt to evaluate the orthogonal effect of the number
of memory banks on the throughput. Clearly, if more banks
are available with the same bank busy time, the probability
of bank conflicts is reduced and the average throughput is
increased. All the experiments in this paper are carried out on
a memory system with 8 banks.

In the first experiment, the bank busy time is set to 4 clocks
(we consider other bank busy times in Section V-Bl), the
stride of the input vectors was varied from 1 to 64, and the

lnpuYoutplt Buffer Size

- - .-
- - - _ _ _ _ _ _

050 050 O S _ _ - _ _ _
_ _ _

0.25 035 0.25

- - -
050 050 O S - - - - - -
035 0.25 0.25

- - .-
- - .-
O M O M O M -

- - -
0 3 5 0 3 5 0 2 5 - _ - -
- - -

030 OS0 OM - - -
- - -
- - -
0.25 0.25 0.25

TABLE I
THROUGHPUT VERSUS STRIDE FOR VARIOUS INTERLEAVING SCHEMES

InpuYoutput Buffer Size

1 2 3 1 2 3 1 2 3

InpVOutpur Buffer Size

- - - - - - - - - - - -
0.91 - - - - - - - -
os0 - - - - - _ _ _ om - -

0.73 0.99 0.99 O S 9 - -
- _ _ _ _ _ 0.89 - - _ - - _ _ _ 0.73 0.99 0.99

0.57 0.99 0.99 0.89 - - - - - - - -
OM 0.99 0.99 0.80 0.99 0.99

- - - - - -

- - - - - - _ _ _ _ _ _ 054 - -
_ - _ _ _ _ 0.91 - -

0.40 0.66 0.99 0.80 - -
- - - 0.76 0.99 0.99

_ - - _ - - 089 - -
_ _ - _ - - 0.76 0.99 0.99

031 036 0.44 0.80 0.99 0.99

- - - - - -

- - - - -
- - - - - -

- - - - -
- - - - - - _ _ - _ _ - 0.94 - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

0.25 025 035 0.25 0.25 0.25

I II I, " I

6 -

9 -

_ - _ _
0.44 0.80 0.99 0.99

- 1 OJ6 I 0% 1 0%
-

14 11 -

21 -
28 lo: 0.50
29 11 -

Silide

- -
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 -

_ _ - -
035 0.25 0.50 0.50

0.99 0.30
- I/ 0.91
- -

0.99 0.80

0.99 0.89
0.80
0.80

- 0.91 - -
- -

0.50 050

0.99 ; I : 0.99

0.99 0.99

- -
- -
- -
- -

0.50 0.50

Interleaving Scheme

/I pB1
SLvdnrd I/ I-Skew

length of each vector was 1024 elements (in Section V-B2 we
consider the effect of different vector lengths). The number
of input and output buffers with each bank was varied from
1 to 3 (the number of input buffers is equal to the number
of output buffers). The results for this set of experiments are
presented in Table I. The cases for which a throughput of
1 cannot be achieved have been shown (the unfilled entries
have a throughput of 1).

With 8 memory banks, a standard interleaving scheme uses
only the low-order 3 bits of address to select the bank and,

40 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 1, JANUARY 1993

therefore, the pattern of throughput repeats after a stride of 8.
Any stride that is a multiple of 8 has a throughput of 0.25
elements per cycle and any stride that is a multiple of 4 (but
not of 8) has a throughput of 0.5. Since the pattern of bank
conflicts is regular, there are no transients and buffers are of
no use.

Both the 1-Skew an PBI schemes use 6 address bits to com-
pute the bank number and the throughput pattern repeats after
a stride of 64. In the 1-Skew scheme, many of the conflicts
that arise are transient in nature and the degradation due to
such transients can be reduced by the use of buffers. Consider,
for example, stride 5 accesses (refer Fig. 1). Addresses 40
and 55 both lie in bank 5 and will result in a conflict if
the bank busy time is more than 4 clock cycles. However,
other stride 5 accesses, i.e., 5, 10, 15, 20, 25, 30, and 35
are to distinct banks and do not cause a conflict. If a buffer
is provided, the request to address 55 can be buffered until
bank 5 is available. The address source can proceed with
generating addresses 60, 65, 70, etc., without waiting for bank
5 to become free, thereby allowing the memory system to have
a throughput of 1 element per cycle. Likewise, the throughput
for other strides can be increased. For example, the throughput
for strides 7 and 57 peaks out at 0.98 if the number of buffers
is equal to 6. Therefore, if 1-Skew interleaving is used and
adequate buffering is provided, strides that are multiples of 64
have a throughput of 0.25 elements per cycle, strides that are
multiples of 32 (but not 64) have a throughput of 0.5 elements
per cycle, all other strides have a peak or near-peak throughput.

The simple PBI scheme used in our experiments does not
perform very well without buffers in addition to the address
and data latches. However, this is not in conflict with our
goals. As with the 1-Skew scheme, the conflicts that occur are
of a transient nature and the degradation due to such conflicts
can be alleviated by the use of additional buffers. As we can
see from Table 1, with only 2 buffers at the input and output of
each bank, the overall throughput is superior to the throughput
of both the standard and the 1-Skew interleaving schemes. For
the simple 6-bit PBI scheme, with adequate buffering, strides
that are 32 modulo 64 have a throughput of 0.5, strides that
are a multiple of 64 have a throughput of 0.25 and all other
strides have peak or near-peak throughput.

1) Effect of Bank Busy Time: It is quite obvious that as the
bank busy time is increased, the throughput of the memory
system degrades [l] . However, because of the nonregular
access pattern and the presence of buffers, there is a possibility
that the degradation will not be as severe in the 1-Skew and
PI memories as in the case of standard interleaving.

In order to evaluate the effect of bank busy time on
throughput, we carried out a second set of experiments. For
this set of experiments, we considered a memory with 8 banks
and evaluated the average throughput achieved in accessing
1024 element vectors for the different interleaving schemes.
The average throughput is the average of the throughputs for
each stride (note that since the number of elements accessed
is constant, the arithmetic and harmonic means are the same).
We realize that stride 1 accesses are most important. However,
all the interleaving schemes achieve peak-throughput access
for stride 1 and, therefore, the average throughput provides

a good metric for measuring the performance of the memory
system for the remaining strides. We should point out that the
weighted average throughput would be greater if more weight
is given to stride one access as in (61.

Fig. 5 presents the results of our experiments for bank busy
times varying from 1 to 8 clock cycles. A bank busy time
of 1 clock cycle is the trivial case since all memory requests
can proceed with peak throughput. Bank busy times of greater
than 8 clock cycles were not considered because there is no
hope of achieving a throughput of 1 element per clock cycle
if the bank busy time is greater than the number of memory
banks, regardless of the interleaving scheme used.

From Fig. 5 one can see that, while the performance of
a standard interleaved memory degrades considerably as the
bank busy time is increased, both the 1-Skew and PI memories
retain their performance for large bank busy times. The result
is not counter-intuitive. If the access pattern is not regular, one
can tolerate larger bank busy times by increasing the amount
of buffering available. We consider this aspect of alternate
interleaving schemes to be very important for memory system
design in current vector processing supercomputers. With
clock speeds shrinking more rapidly than memory speeds,
the relative bank busy times are increasing. To allow for
adequate vector access throughput using standard interleaving,
the number of memory banks would have to be increased
considerably [11. Increasing the number of banks arbitrarily
is not an attractive option. Alternate interleaving schemes that
can achieve peak throughput with a relatively large bank busy
time are, therefore, quite attractive. This trend has been verified
for a memory system with 64 banks and with bank busy times
ranging from 16 to 64 clock cycles.

2) Effect of Vector Length: In the 1-Skew and PBI schemes,
several elements may be queued at the input of a memory
bank when the address source finishes generating requests.
Depending upon the number of queued requests and the rela-
tive vector length, the time taken to flush the memory system
can a significant impact on performance. In the experiments
so far, we have used a vector length of 1024 elements and
because of the relatively long vector length, the flush time
penalty is minimal. However, the flush time overhead can
be significant if the vectors are short. To evaluate the flush
time overhead, we carried out another set of experiments. For
this set of experiments, we consider a memory system with
8 banks and 4 clock cycle bank busy time. Table I1 presents
the average throughput of the memory system using different
interleaving schemes as the vector length is varied from 64
to 1024 elements.

From Table I1 we observe that the standard interleaving
scheme has a near-uniform throughput for varying vector
lengths. The minor difference arises because of the flush
penalty for strides with bank conflicts. For example, a stride
8 access of a 64-element vector will have a throughput of
((64 + 4 + 2)/(64 x 4 + 4 + 2) = 0.27) (64 elements plus 4
cycles through bank plus 2 cycles through the buffers) while a
stride 8 access of a 1024-element vector will have a throughput
of ((1024 + 4 + 2)/(1024 x 4 + 4 + 2) = 0.25).

Both the 1-Skew and PBI schemes suffer a slight penalty
if the vector length is small. In particular situations, if the

SOHI: INTERLEAVED MEMORIES FOR VECTOR PROCESSORS

1.00

0.95 -

0.90 -

41

*::.... . -..

.
“0 --+-... ... x... ..-x-...

B -+. “.‘x-.

.a +..-

.
...

...... - - x
........

.._
.__. -..

8- --+-
.

...
Q...

e... --+
.-.-Q

... ...
‘Q.

%..,

-. ..

T
h
r
0
U
g
h
P
U
t

............ Buffer Size = 1 Q 0

1 .00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

Standard Interleaving

Q. ..

,Q.,

Q.,

............

Q..,

‘D

All Buffer Sizes Y, Q 0

I 2 3 4 5 6 7 8
Bank Busy Time (Clocks)

1 .OO

0.95

0.90
T
h
r
0

0.85
g

P
U
t

0.80

0.75

0.70

1 -Skew Interleaving

0.85 -

0.80 -

Q.. ...

............ Buffer Size = 7 x

............ Buffer Size = 5 + +

Permutation Based Interleaving
._ .-. *...
,. - .

.........
.........:.. .y, --*~ *

‘Q\

....... *.-
0%. +-

Q.

?,

Permutation Based Interleaving
._ .-. *...
,. - .

.........
.........:.. .y, --*~ *

‘Q\

....... *.-
....

’.+ +

o... +...
............

?,

0

-+

0

............ Buffer Size = 3-7 ‘h,, + +

............ Buffer Size = 2 0 0

............

Q.,

Buffer Size = 1 0

0

1 2 3 4 5 6 7 8
Bank Busy Time (Clocks)

(4
Fig. 5. Average throughput for various bank busy times vector length = 1024 elements. (a) Standard interleaving, (b) I-Skew interleaving, (c) Permutation

based interleaving.

vector length of the machine is not adequate, the flush penalty
might be of concern. However, for large vector lengths, the
flush penalty is minimal. Also note that the flush penalty is
important because we calculate the throughput in completing
the operation. Of course, the effects of this penalty can be

minimized even for small vector lengths by overlapping con-
secutive vector accesses since the address source can proceed
with requests from another vector access while requests from a
previous access are still queued in the buffers of the memory
system.

42 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 1, JANUARY 1993

TABLE I1
AVERAGE THROUGHPUT FOR DIFFERENT VECTOR

LENGTHS: BANK BUSY TIME = 4 CLOCK CYCLES

C. Higher Order Interleaving Schemes

The 1-Skew scheme and the 6-bit PBI scheme discussed
above make use of only 2n = 6 address bits to determine the
bank number. Since the distribution pattern repeats after 2p
elements, where P is the number of low-order address bits
used in the bank selection process, by involving more address
bits in the bank selection process, i.e., by increasing P, we
can reduce the number of strides for which peak throughput
access cannot be achieved.

It is possible to extend the 1-Skew scheme to a linear
skewing scheme that uses more than 2n bits to select the
bank. For example, a linear skewing scheme in which the
bank number (Mi) for an arbitrary address i is calculated as:

uses 4n address bits to compute the n-bit bank number.
Unfortunately, both the hardware and the time overheads
for linear skewing schemes increase as more and more bits
are involved in the bank selection process. This is because
several n bit arithmetic operations must be carried out (3 n-
bit additions). Therefore, higher-order linear skewing schemes
are of limited utility in a high-performance memory system.

In a PI memory, involving more bits in the bank selection
process is straightforward. As pointed out in Section IV-A, a
PBI scheme that uses N bits of address can be implemented
in log,N levels of XOR logic where k is the fan-in of each
XOR gate. Therefore, we investigated a PBI scheme that uses
12 address bits (4 sets of 3 bits) to compute the bank number.
The 3 x 1 2 A matrix for the interleaving scheme was:

1 1 1 1 1 0 1 0 0 1 0 0
A = 1 0 0 1 1 1 1 1 0 0 1 0

11 @
Le., YO = X11 @ XIO @ x8 @ X5 @ X4 (4 X3 (4 X0,Yl =

1 [1 1 0 1 0 0 1 1 1 0 0 1

xi1 (4 x8 (4 x7 (4 xtj @ x5 @ xq @ 1 1 and Y2 = x

Xlo G3 x g @ x8 (4 x7 @ x5 @ xa. Many 3 x 1 2 A matrices
are possible, each affecting the overall stride access pattern in
a different way. We are mainly concerned with a scheme that
allows peak-throughput access in the presence of buffers and,
as we shall see, the above matrix fulfills the criterion.

We used the following reasoning in its construction. Starting
from a standard interleaved memory with 8 banks, involving
X3 in the calculation of YO eliminates stride 2 conflicts.
Likewise, involving X4 in the calculation of YO and Y1
eliminates stride 4 conflicts and involving X5 in the calculation
of Y0,Yl and Y2 eliminates stride 8 conflicts. This process
can continue in several ways. The path we chose is to
involve address bits in such a manner that each bit Y, of
the bank number computes parities of approximately the same
number of a address bits. This is done to make sure that the
bank calculation circuit is not lopsided. The resulting matrix
eliminates conflicts for strides that are powers of two (up to
211). While conflict situations do occur for other strides, the
conflict pattern is of a transient nature and, by using buffers
to smooth out the transients, near-peak throughput access can
still be obtained.

Using the above matrix, we calculated the performance
of a PBI memory with 8 banks and a bank busy time of
4 cycles. Since 12 bits of address are used, the throughput
pattern repeats after a stride of 212 = 4096; strides that are
multiples of 212 = 4096 have a throughput of 0.25 elements
per cycle and strides that are a multiple of 211 = 2048 but
not of 4096 have a throughput of 0.5 elements per cycle.
With adequate buffering, the remaining 4094 strides (and their
multiples) have peak or near-peak throughput. Rather than
present the throughput pattern for 4096 strides, we present the
results in a slightly different fashion in Table 111. The table
presents the number of strides that have a throughput of less
than 0.95 elements per cycle (number of strides row) and also
the average throughput of the memory system as the buffer
size is varied from 1 to 7 elements. The average is calculated
assuming that each stride has an equal weight and the vector
length is 1024 elements.

Consider the results for the three interleaving schemes
for a buffer size of 6 elements. In a standard interleaving
scheme, all strides that are a multiple of 4 have a throughput
of less than 0.95 elements per cycle. There are 1024 such
strides in the range 1-4096 (4 ,8 ,12 ,16 , . . . ,4096). For 1-
Skew interleaving, strides that are multiples of 32 have a
throughput of less than 0.95. There are 128 such strides in
the range 1-4096(32, 64, 96, . . . ,4096).

For the 12-bit PBI scheme, only 2 strides (2048 and 4096)
have a throughput of less than 0.95. All other strides have a
throughput of greater than 0.95. A throughput value of 0.95
was chosen as a cut off. Indeed, of the 4094 strides with a
throughput greater than 0.95, 4091 had a throughput of 0.97
or greater and 4049 had a throughput of 0.98 or greater with
a buffer size of 6 elements. These results indicate that, with
adequate buffering, higher-order PBI schemes can be used to
construct a memory sysem that achieves peak or near-peak
throughput vector accesses for a wide variety of strides. More
address bits can easily be incorporated into the PBI scheme.
We do not do so in this paper.

SOHI: INTERLEAVED MEMORIES FOR VECTOR PROCESSORS 43

TABLE 111
COMPARATIVE PERFORMANCE OF A 12-bit PBI SCHEME

VI. DISCUSSION

The memory system that we have used throughout this
paper (Fig. 4) has 3 places which have additional hardware
as compared to a standard interleaved memory: i) the address
source, ii) the input/output buffers and iii) the data sequencer.
As we have emphasized throughout this paper, the cost of each
of these components is not very high and the time penalty
introduced by them is minimal. However, let us discuss in
more detail some of the issues involved in the design of each
one of these components.

The address source has an address generation mechanism
and a control mechanism that monitors the input buffers of
the banks. Address generation (bank number calculation) is
carried out using a set of parity computation circuits (see Fig.
3). The parity computation circuits that we have discussed so
far implement a particular PBI scheme, i.e., compute parities
based using a given A matrix. The address generation can be
made more flexible by having a programmable PBI scheme,
Le., by allowing the A matrix to be altered under program
control. This feature can be useful if some a priori knowledge
about the access patterns is available (for example, we would
like to alter the interleaving to standard interleaving if we
know that all the strides of access are odd).

Fortunately, extending the bank-selection hardware of Fig.
3 to allow for arbitrarily programmable schemes is quite
straightforward and does not have much additional hardware
overhead. All that we have to do is to design each parity
computation circuit to compute the parity of all N input bits
but modify the input bits to the parity circuit by ANDing the
address bits with a mask as shown in Fig. 6. The mask is
simply a row of the A matrix and can be altered under program
control. We should point out that the memory must start out
in a “clean state” before the A matrix can be altered, Le., the
memory must be flushed and reloaded with the data if the A
matrix is altered.

The control mechanism for the address source needs to
determine the status of the input buffer associated with the
selected bank before it can submit the request to the banks for
service. It does so by monitoring a busy bit associated with
each input buffer. The busy bit is set if all the elements in the
buffer are full. In a standard interleaved memory, the busy bit
is associated with the memory bank. Because of the precise,
pre-determined timing of a standard interleaved memory, it

1 circuit I ,
N-bit Parity

Bit i of Bank Number

Fig. 6. Bank selection in a programmable interleaved memory.

is possible to incorporate the busy bits associated with the
banks in the address source control logic itself. For example, in
the Cray-1, the address generation logic determines whether it
should generate full-, half- or quarter-speed accesses simply by
looking at the stride of the vector access. This is not possible
in a PI memory (it is also not possible in a more sophisticated
memory system such as the memory system of the Cray X-MP
or the Cray Y-MP).

The additional overhead for the buffers includes the latches
for the buffer elements, multiplexors and the control logic
needed to enforce a queue mechanism. Of course, the width of
each buffer element would be increased by the size of the tag
needed to hold the sequence number for the data reference.

The data sequencer by far requires the most amount of
additional hardware. However, the additional hardware is
straightforward. The data sequencer needs to compare its
current sequence number with the sequence numbers of the
data elements at the head of each output buffer and it also
needs an incrementer. Other control logic associated with the
data sequencer is trivial.

VII. RELATED WORK

Since the work reported in this paper was carried out
and submitted for publication [21], [22], several papers have
appeared that describe related work. Weiss considers an ape-
riodic scheme, very similar to the PBI schemes presented in
this paper [2 3] . Harper discusses how xOR-based interleaving
schemes can be used for dynamic storage schemes to reduce
memory conflicts [7]. Rau, Schlansker, and Yen describe
the stride-insensitive memory of the CydraTM 5 departmental
supercomputer [171. The interleaving strategy used in the
CydraTM 5 (later called pseudo-random interleaved memory,
or PRIM, by Rau [MI), is an example of the PBI schemes
discussed in this paper. It is worth mentioning that the CydraTM
5 interleaved memory was conceived and built before this
work was carried out, however, it was not made public until
later.

After the initial experimental work, there has been a fair
amount of recent theoretial work that attempts to provide a
mathematical foundation for xoR-based interleaving schemes.
Raghavan and Hayes consider another interleaving strategy,
one that uses multiplicative hashing to randomize the distribu-
tion of data amongst the banks, and show that their scheme has

44 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 1, JANUARY 1993

some interesting theoretical properties [161. Harper attempts to
provide a theoretical understanding of the basics of “based
interleaving schemes in [9], and provides a metric to evaluate
various xoR-based schemes in [8]. Last, Rau provides a very
solid theoretical basis for the construction of an XOR-based
memory interleaving scheme by showing that schemes that
use irreducible polynomials to construct the A matrix have
certain attractive and provable properties [18].

VIII. SUMMARY AND CONCLUSIONS

In this paper, we discussed the design of high-bandwidth
interleaved memory systems for vector processors. The goal
of such a design is to achieve a throughput of 1 element per
clock cycle for a wide variety of strides and for a relatively
large bank busy time for a single vector access stream. In
order to do so, alternate interleaving schemes that use several
address bits to determine the bank number must be used.

This paper discussed permutation-based interleaving
schemes and their application to the design of a permutation
interleaved memory. Permutation-based interleaving schemes
allow the distribution of data in the memory banks in a
nonregular fashion so that the probability of a regular pattern
of conflicting requests is reduced. By buffering conflicting
requests, the throughput of the memory system can be
enhanced considerably. The elegance of permutation-based
interleaving schemes lies in the fact that the process of locating
an addressed data element in the memory system relies solely
on the logical manipulation of the address bits and does
not involve any arithmetic calculations. Such schemes can,
therefore, be implemented without a significant increase in the
memory latency.

We carried out a detailed simulation analysis of an example
permutation interleaved memory system and compared it to
an equivalent memory system with standard interleaving and
a memory system with 1-Skew interleaving. The simulation
results indicate that the performance of a permutation inter-
leaved memory system is superior to other memory systems
that have been proposed for vector processors. Moreover,
permutation interleaved memories can maintain near-peak
throughput access as the relative bank busy time is increased.
Based upon the results presented in this paper, we believe that
permutation interleaved memories can be designed to provide
a sustained peak throughput for a wide variety of strides and
their use should be considered for high-performance vector
processors.

ACKNOWLEDGMENT

The author is thankful to J . Smith for his discussions
throughout this research and to M. Hill for his comments on
an earlier draft of this paper.

REFERENCES

[l] D. H. Bailey, “Vector computer memory bank contention,” IEEE Trans.
Compuf., vol. C-36, pp. 293-298, Mar. 1987.

F. A. Briggs and E. S. Davidson, “Organization of semiconductor
memories for parallel-pipelined processors,” IEEE Trans. Compuf., vol.
C-26, pp. 162-169, Feb. 1977.
P. Budnick and D. J. Kuck, “The organization and use of parallel
memories,” IEEE Trans. Comput., vol. C-20, pp. 1566-1569, Dec. 1971.
T. Cheung and J. E. Smith, “A simulation study of the CRAY X-MP
memory system,” IEEE Trans. Compuf., vol. C-35, pp. 613-622, July
1986.
J . M. Frailong, W. Jalby, and J. Lenfant, “XOR-schemes: A flexible data
organization in parallel memories,” in Proc. 1985 Inf. Con$ Parallel
Processing, Aug. 1985, pp. 276-283.
D. T. Harper 111 and J. R. Jump, “Vector access performance in parallel
memories using a skewed storage scheme,” IEEE Trans. Compuf., vol.
C-36, pp. 1440-1449, Dec. 1987.
D. T. Harper 111, “Address transformations to increase memory perfor-
mance,” in Proc. I989 Int. Con& Parallel Processing, St. Charles, IL,
Aug. 1989, pp. 1-237-1-241.
D. T. Harper 111 and Y. Costa, “Analytical estimation of vector access
performance in parallel memory architectures,” Tech. Rep. TR-91005,
Dep. of EE, Univ. of Texas at Dallas, Dallas, TX, 1991.
D. T. Harper 111, “Increased memory performance during vector access
through the use of linear address transformations,” IEEE Trans. Compuf.,
vol. 41, pp. 227-230, Feb. 1992.
D. J . Kuck, “ILLIAC IV software and application programming,” IEEE
Trans. Compuf., vol. C-17, pp. 758-770, Aug. 1968.
D. J. Kuck and R. A. Stokes, “The Burroughs Scientific Processor
(BSP),” IEEE Trans. Compuf., vol. C-31, pp. 363-376, May 1982.
D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, pp. 1145-1155, Dec. 1975.
D. H. Lawrie and C. R. Vora, “The prime memory system for array
access,” IEEE Trans. Compuf., vol. C-31, pp. 435-442, May 1982.
A. Norton and E. Melton, “A class of Boolean linear transformations
for conflict-free power-of-two access,” in Proc. 1987 Int. Conf Parallel
Processing, Aug. 1987, pp. 247-254.
W. Oed and 0. Lange, “On the effective bandwidth of interleaved
memories in vector processor systems,” IEEE Trans. Comput, vol. C-34,

R. Raghavan and J. P. Hayes, “On randomly interleaved memories,” in
Proc. Supercomput. ’90, Nov. 1990, pp. 49-58.
B. R. Rau, M. S. Schlansker, and D. W. L. Yen, “The CydraTM
stride-insensitive memory system,” in Proc. 1989 Inf. Conf Parallel

pp. 949-957, Oct. 1985.

Processing, St. Charles, IL, Aug. 1989, pp. 1-242-1-246.
1181 B. R. Rau, “Pseudo-random interleaved memory,” in Proc. 18th Int.

Symp. Compuf. Architecture, Toronto, Canada, May 1991, pp. 74-83.
[19] R. M. Russel, “The CRAY-1 Computer system,” Commun. ACM, vol.

21, pp. 63-72, Jan. 1978.
[20] H. D. Shapiro, “Theoretical limitations on the efficient use of parallel

memories,” IEEE Trans. Compuf., vol. C-27, pp. 412-428, May 1978.
[21] G. S. Sohi, “Logical data skewing schemes for interleaved memories

in vector processors,” Computer Sciences Tech. Rep. 753, Univ. of
Wisconsin-Madison, Madison, WI 53706, Feb. 1988.

[22] __ , “High-bandwidth interleaved memories for vector processors-A
simulation study,” Comput. Sciences Tech. Rep. 790, Univ. of Wiscon-
sin-Madison, Madison, WI 53706, Sept. 1988.

[23] S. Weiss, “An aperiodic storage scheme to reduce memory conflicts
in vector processors,” in Proc. 16th Int. Symp. Comput. Architecture,
Jerusalem, Israel, June 1989, pp. 380-386.

[24] H. A. G. Wijshoff and J. van Leeuwen, “The structure of periodic storage
schemes for parallel memories,” IEEE Trans. Compuf., vol. C-34, pp.
501-505, June 1985.

Gurindar Singh Sohi (S’85-M’85) received his
B.E. degree in electrical engineering from the Birla
Institute of Technology and Science, Pilani, India,
in 1981, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Illinois,
Urbana-Champaign, in 1983 and 1985, respectively.

Since September 1985 he has been with the
computer Sciences Department at the University of
Wisconsin-Madison, where he is currently an Asso-
ciate Professor. His research interests are in the area
of computer architecture, parallel and distributed

processing and fault-tolerant computing.

