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High-Bandwidth Interleaved Memories for 
Vector Processors-A Simulation Study 

Gurindar Singh Sohi, Member, IEEE 

Abstract- Sustained memory bandwidth for a range of ac- 
cess patterns is a key to high-performance vector processing. 
Interleaving is a popular way of constructing a high-bandwidth 
memory system. However, for some access patterns conflicts 
reduce the bandwidth of a standard, low-order interleaved mem- 
ory. To improve memory bandwidth for a wide range of access 
patterns, alternate interleaving schemes must be considered. This 
paper studies a family of alternate interleaving schemes called 
permutation-based interleaving schemes. Permutation-based in- 
terleaving schemes can be implemented with a small amount 
of additional hardware and with a minimal time overhead. 
A detailed simulation analysis been carried out in this paper. 
The simulation analysis suggests that, with adequate buffering, 
permutation-based interleaving schemes similar to those studied 
in this paper can be used to implement a high-bandwidth mem- 
ory system for vector processors. The resulting memory system 
sustains its bandwidth for a wide variety of access patterns and 
for large bank busy times far better than a memory system with 
standard interleaving. 

Index Terms-Interleaved memories, permutation-based inter- 
leaving, simulation analysis, sustained throughput, vector pro- 
cessing. 

I .  INTRODUCTION 
T is well understood that the rate at which a processor I can process information is limited by the rate at which 

the processor can access information from the memory. An 
increase in the processor speed must be coupled with a 
corresponding increase in the bandwidth of the memory. 
Several schemes to improve the bandwidth of memory exist. 
Cache memories provide an excellent means of improving the 
latency as well as the bandwidth of the memory as seen by 
the processor. However, their utility is limited by their size. In 
vector processing machines, cache memories have, to date, 
not been proven to be useful in providing high-bandwidth 
access to elements of large data structures. To achieve such 
high-bandwidth access, vector processing machines routinely 
use parallel or interleaved memories. A parallel or interleaved 
memory consist of several memory modules or banks. Parallel 
and interleaved memories improve memory bandwidth by 
allowing elements in distinct banks to be accessed in an 
overlapped manner. However, the actual bandwidth of the 
memory system may be less than the peak bandwidth because 
of collisions or conflicts. A bank conflict occurs when the 
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processor makes a request to a memory bank that is already 
busy servicing a previous request. 

For our discussion in this paper, we distinguish between 
parallel and interleaved memories. By parallel memories, we 
mean the memory modules of a SIMD array processor such as 
the Burroughs Scientific Processor [ l l ] .  The memory modules 
of a parallel memory are connected to P processing elements 
(PE’s) via an interconnection network. In the array processing 
paradigm, each PE operates on a different element of the same 
vector in the same cycle. The parallel memory system must, 
therefore, be capable of supplying P elements of the same 
vector in every cycle. By interleaved memories, we mean the 
memory modules of a SIMD vector processor such as the 
Cray-1 [19], or the follow-on Cray X-MP and the Cray Y-MP. 
In the SIMD vector processing paradigm, a single PE operates 
on the elements of a single vector, one at a time. Ideally, 
an interleaved memory system for a SIMD vector processor 
would have a throughput of V elements (possibly from V 
different vectors) per cycle where V is the number of vector 
access streams that are active simultaneously. 

The problem of conflicts in parallel and interleaved memo- 
ries has been the subject of intensive study [3], [4], [6], [12], 
[13], [15], [20], [24]. For interleaved memories, most of the 
previous work has focused on conflicts in the memory system 
for a single vector access stream though recent work has also 
investigated conflicts in multiport memory systems that allow 
simultaneous, multiple vector access streams [4], [15]. 

This paper is concerned with high-bandwidth interleaved 
memories for vector processors. We restrict our discussion to 
single port interleaved memory systems with a single vector 
access stream. An example of a computer with such a memory 
system is the Cray-1. Of course, the ideas presented in this 
paper can be extended to the design of a multiport memory 
system that allows multiple streams of access (such as the Cray 
X-MP and the Cray Y-MP). Our goal is to design a memory 
system that can sustain its peak throughput for a wide range 
of vector access patterns. 

The outline of this paper is as follows. Section I1 discusses 
the basic concepts in the design of interleaved memory systems 
for vector processors. Section 111 reviews alternate interleaving 
schemes that have been studied previously for both parallel and 
interleaved memories. Section IV discusses permutation-based 
interleaving schemes that use bit-wise Boolean operations 
to generate memory addresses. Section V contains a de- 
tailed, comparative simulation analysis of various interleaving 
schemes. Section VI contains a discussion and Section VI1 
presents some concluding remarks. 
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11. INTERLEAVED MEMORIES FOR VECTOR PROCESSORS 

In the vector processing paradigm, computation is carried 
out on an entire chunk or a vector of data. In order to carry out 
the computation, elements of the vector must be accessed from 
the memory. If the vector machine has memory-memory vector 
instructions (such as the Cyber 205), the vector computation 
instruction itself is responsible for fetching the data from 
the interleaved memory. If the vector machine has register- 
register vector instructions (such as the Cray-l), the vector 
computation instruction must be preceded by a vector load 
instruction. Before proceeding further, some definitions are in 
order. 

Definition 1: The stride of a vector access is the difference 
in the linear memory address between successive elements of 
the vector. 

Definition 2: An interleaved memory system of M banks 
and ill x N words is composed of N linear subvectors of M 
elements each. The M elements { X , }  of a linear subvector i 
are{X,IX3 = i x N + j : O < j < M - 1 ) .  

Definition 3: The bank busy time of an interleaved memory 
system is the number of processor clock cycles that a memory 
bank is busy servicing a request. 

Let M be the number of banks in the interleaved memory. 
In most interleaved memories, M is a power of 2 ,  Le., M = 2" 
where n is an integer. However, M need not be restricted to a 
power of 2. Indeed, memory systems that have a prime number 
of banks have been studied [13] and built [ l l ] .  However, in 
a memory system with an arbitrary value of M .  the process 
of determining the location of a desired data element is quite 
complicated [13]. By restricting M to be a power of 2 ,  this 
process is greatly simplified. We shall, therefore, restrict our 
discussion to memory systems with a power-of-two number 
of banks. 

The simplest and most common interleaving scheme, i.e., a 
low-order or standard interleaving scheme, uses the low-order 
n = log, M bits of an N-bit address to select the bank and 
the remaining N - n bits to select the word within the bank. 
For such an interleaving scheme, the bank number in which an 
arbitrary address i is located is specified by i mod M and the 
word within the bank for the address i is i diu M .  Successive 
elements in the linear memory address space are placed in 
successive banks. 

Other interleaving schemes that use an arbitrary, but known, 
n bits of the address to select the bank and the remaining N - n  
bits of address to select the word within the bank are also 
possible. For example, a high-order interleaving scheme would 
use the high-order n bits of the address to select the bank and 
the low-order N - n bits of the address to select the word 
with the selected bank. However, they are not as popular as 
a standard interleaving scheme for vector processors because 
they do not allow for peak-throughput access to a vector of 
stride 1. 

If an interleaving scheme uses the low-order p bits to select 
the bank, address (2. x 1 + m) where 1 is an integer greater 
than 0 and 0 < m 5 2 P  - 1 will map on to the same bank as 
address m and, therefore, the distribution pattern of addresses 
amongst the banks will repeat after 2P elements. In a standard 

interleaved memory, successive components of a vector with 
stride 1 fall in successive banks and can be accessed in a 
conflict-free fashion. However, successive components of a 
vector with stride M lie in the same bank and will result in 
conflicts. Conflict situations can also arise for other strides 
depending upon the bank busy time. 

If the access patterns and the size of the data structures 
are known a priori at compile time, array reshaping tech- 
niques can be used to minimize the possibility of memory 
bank conflicts. Array reshaping involves the embedding of 
an array in a larger array in an attempt to make the stride 
of access relatively prime to the number of banks. Memory 
bank conflicts for common reference patterns are reduced at 
the expense of wasted memory. However, such techniques 
are of limited utility if sufficient compile-time information is 
not available and we shall not consider them any further in 
this paper. The interested reader is referred to [6] for some 
discussion on such techniques. 

111. DATA SKEWING ALTERNATE INTERLEAVING SCHEMES 

Reserchers have long realized the inadequacy of a standard 
interleaving scheme for parallel memory systems. To reduce 
the probability of conflicts, datu skewing schemes were in- 
troduced. Several data skewing schemes have been proposed 
and analyzed in the literature [3], [5], [lo], [12], [24]. In a 
memory system with a data skewing scheme, the mapping 
from the linear address space to the banks of the memory 
system is specified by the skewing scheme. In this paper, 
any interleaving scheme which uses a mapping function from 
the linear address space to the memory banks other than the 
mapping function used in standard interleaving shall be called 
an alternate interleaving scheme. 

One of the first alternate interleaving schemes, linear datu 
skewing schemes, were proposed for parallel memories in 
[lo] and analyzed in [12] and [24]. In a linear skewing 
scheme, element U , k  of a two-dimensional array A is stored 
in memory bank j * h 1  + k*b2 where bl and 62 are integers 
[ 121. The scheme generalizes for higher dimension arrays. 
However, to implement a linear skewing scheme, the bank 
selection hardware needs the capability to carry out arithmetic 
operations. The time taken to carry out arithmetic operations 
can easily degrade the latency of each memory request. 

To simplify the implementation (eliminate the need for 
arithmetic operations), Frailong, Jalby, and Lenfant presented a 
family of interleaving schemes called XOR schemes or Boolean 
schemes for parallel memories [ 5 ] .  Such schemes rely on 
cheaper, bit-wise Boolean operations to determine the memory 
module for an arbitrary address. Melton and Norton have 
shown how such schemes can be used to achieve conflict-free 
access to power-of-two strides in the IBM RP3 processor [14]. 

Traditionally, data skewing schemes were studied for par- 
allel memories in SIMD array processors. Recently, however, 
Harper and Jump proposed and studied a linear data skewing 
scheme for an interleaved memory in a vector processor [6]. 
In the I-Skew interleaving scheme proposed by Harper and 
Jump, the bank number (iWT) for an arbitrary address 7 in the 
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linear memory is calculated as: 

Mi = (i+ I$]) mod M .  

If M is a power of two ( M  = 2n) .  the division and modulo 
operations are trivial and the bank number calculation involves 
a single n-bit addition. 

Consider the distribution of 128 elements (16 linear sub- 
vectors of 8 elements each) from the linear address space 
amongst 8 banks using a 1-Skew storage scheme (see Fig. 
1). The elements of a subvector that comprises word k in the 
memory banks are distributed in a regular fashion, i.e., the 
only difference between word 0 and word k is that the first 
element of word k is placed in bank k (mod 2’’). Furthermore, 
since only 2n = 6 bits of the address are used to compute 
the bank, the distribution pattern repeats after 2*“ = 26 = 64 
elements (see Fig. 1). 

When compared to a standard interleaving scheme, the 1- 
Skew scheme eliminates conflicts for strides such as stride 8 
but introduces conflicts for some other strides, for example, 
stride 14. However, the degradation due to many of the 
conflicting strides can be reduced or even eliminated if buffers 
are provided at the input and the output of each memory 
module. For example, if 3 buffer elements are provided at the 
input and the output of each memory bank, stride 14 accesses 
can proceed at the rate of 1 element per cycle (see analysis 
in Section VI). Likewise, stride 7 accesses can proceed at the 
rate of 1 element per cycle if 6 buffer elements were provided 
at the input and output of each memory module. Harper and 
Jump provide a detailed analysis on the number of buffers 
that is needed in [6]. 

Unfortunately, the 1-Skew interleaving scheme (or any other 
scheme that uses linear data skewing) has an inherent disad- 
vantage-it involves arithmetic manipulation of the address 
bits. This arithmetic manipulation can degrade latency of each 
memory operation. However, the performance advantage of 
1-Skew interleaving over standard interleaving presented in 
[6] suggests that an alternate interleaving scheme in memory 
systems for vector processors may be worthwhile. 

Before proceeding further, let us distinguish between 
conflict-free and peak-throughput access. Conflict-free access 
occurs when references to the same memory bank do not 
occur within a time window determined by the bank busy 
time. Indeed, most alternate interleaving schemes presented 
in the literature are concerned with conflict-free access to a 
particular set of stridesi 

If no conflicts occur in accessing data, the data accesses can 
proceed at the maximum rate allowed by the memory system, 
i.e., with peak-throughput. However, peak-throughput access 
is possible even if the accesses are not conflict-free (see, for 
example, analysis for strides 7 and 14 of Fig. 1 in Section 
V-B). If a conflict situation occurs and the conflicting request 
can be buffered, succeeding requests might be able to proceed 
allowing peak-throughput access [2], [6]. 

Since conflict-free access to a wide variety of strides is 
not possible [3], one can attempt to improve the throughput 
for a wide variety of strides by using alternate interleaving 
schemes. Ideally, the interleaving scheme would minimize the 
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Fig. I .  Distribution of elements using 1-Skew storage 

possibility of a long sequence of accesses to the same bank. 
Then, by providing buffers, memory requests can be allowed 
to proceed even though previous requests may be waiting (in 
the buffers) for a memory bank to become free. However, keep 
in mind that the interleaving scheme should be simple enough 
that its implementation does not degrade the latency of each 
memory request. 

Fortunately, interleaving schemes that involve bit-wise log- 
ical operations on the address bits seem to fit the above- 
mentioned requirements and therefore we shall investigate 
their use in a high-bandwidth interleaved memory system. 
We shall refer to such schemes as Permutation-Based Inter- 
leaving (PBI) schemes and the resulting memory system as a 
Permutation Interleaved (PI) memory system. 

IV. PERMUTATION-BASED INTERLEAVING (PBI) SCHEMES 

In order to locate a desired word in an interleaved memory 
system with M = 2“ banks and 2‘ -” words in each bank, we 
need to specify: i) an n-bit bank number and ii) an N - n bit 
address that indicates the position of the word in the selected 
bank. In the PBI schemes that we use in this paper, the position 
of the word within each bank (or the linear subvector number) 
is determined in the same way as it is determined in a standard 
low-order interleaved memory, i.e., by using the high-order 
N - 71 bits of address. 

The power and the elegance of PBI schemes lies in the 
calculation of the bank number. Rather than using only n bits 
of address to determine the bank number, we an potentially use 
all N bits of address to determine the bank number as follows. 
If x is the N-bit address of the word and 7 is the 76-bit vector 
that represents the bank number, then is calculated as: 

- 

Y = A T  (1) 

where A is an 71 x N matrix of 0’s and 1’s. The inner product 
is a logical inner product with the “multiplication (*)” being a 
logical AND operation and the “addition (e)’’ being a logical 
Exclusive-OR operation. Element 1; of P is, therefore: 

Y,  = (A,.o*Xo)$(A, 1 * X i ) $ . . . ~ ( A , , , ~ - 1 * X n . - l )  (2) 

where X, is the j th  bit of the address. 
A memory system using the PBI schemes described above 

can be viewed as a memory rystem consisting of 2‘y-n 
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subvectors each of 2" elements. The subvectors are distributed 
in a regular, ordered fashion amongst the memory banks with 
one component of a subvector in each memory bank. However, 
the distribution of the elements of a subvector amongst the 
memory banks can be quite irregular thereby leading to an 
overall randomness. The name "PBI schemes" is derived from 
the fact that the elements of the subvectors are permuted 
amongst the banks in different ways. 

Notice that by modifying the contents of the A matrix, 
we can obtain PBI schemes that distribute the elements of 
a subvector across the memory banks in a nonregular fashion. 
That is, the distribution of the elements of subvector (word) 
i have no clear relationship to the distribution of elements of 
subvector (word) j. 

In order to clarify a PBI scheme, consider the example of 
distributing the elements of a 64-element vector in 8 banks. 
Suppose that the bank number Y2YlYO is given by: 

rX5i  

0 1 1 0 1 0  
1 0 0 1 1 0  
1 1 0 0 1 1  1 [:I = [ 

x4 

x3 

x2 

XO - ?l 

(3) 

Le., YO = X4 63 X3 @ X1,Yl  = X 5  @ X2 63 X1, and 
Y2 = X5 @ X, 63 X I  @ X O ,  the distribution of 64 elements 
of the linear address space amongst 8 banks is given in Fig. 
2. In this case, the bank selection process involves 6 bits and, 
therefore, the distribution pattern repeats after 64 elements. 

Before proceeding with an analysis of PBI schemes, let us 
discuss some issues in the design and the properties of the A 
matrix. However, the main thrust of the paper is to present 
the use of PBI schemes in a high-bandwidth PI memory 
and evaluate their effectiveness using a detailed simulation 
analysis. Therefore, we shall keep theoretical discussion to a 
bare minimum. 

We can rewrite (1) as: 

where x~ is the high-order N - n bits of the address and X L  
is the low-order n bits of the address. The reader should note 
that the standard low-order interleving scheme is a special case 
of our more general PBI schemes. For a standard interleaving 
scheme, AH is the zero matrix and AL is the identity matrix. 

A general PBI scheme must make sure that each memory 
address maps on to a distinct location in the memory system, 
Le., is a distinct word within a distinct bank. Since the word 
selection process of our PBI schemes does not involve any 
Boolean operations other than simple bit selection, the word 
within the selected memory bank for each memory address 
is unique and exactly 2" elements (the elements of a linear 
subvector) have the same word within the memory banks. The 
PBI scheme must make sure that these 2" elements all fall 
into distinct banks, i.e., no 2 distinct elements from the linear 
address space map into the same word within the same bank in 
the memory system. In order to do so, the AL matrix must be 

Bank 
Word 
- 

0 
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5 

Mo M I  Mz M, M, MI Mg M, 
0 7 4 3 1 6 5 2  
8 15 12 11 9 14 13 10 

22 17 18 21 23 16 19 20 
30 25 26 29 31 24 27 28 
34 37 38 33 35 36 39 32 
42 45 46 41 43 44 47 40 

Fig. 2. Distribution of elements using the permutation based interleaving 
scheme of (3). 

chosen properly. The following theorem guides the selection 
of the AL matrix. 

Theorem: A PI memory system has a unique location for 
each addressed element iff the associated matrix AL is of 
full rank with respect to the Boolean matrix multiplication 
operation. 

Proof: We shall prove the necessary and sufficient condi- 
tions separately by making use of well-known results in linear 
algebra. 

For a given liner subvector i , x ~  is constant and X L  can 
take on 2" distinct values. Therefore, the term A H X H  in (4) 
is a constant. Since = A H Y H  + A L x L ,  the submatrix 
AL is solely responsible for guaranteeing a one-one mapping 
between the 2" elements of the linear subvector i and the 2" 
memory banks. To do so, AL must be of rank n. If the rank of 
AL is m,O 5 m < n, then the 2" elements of the subvector 
would be mapped to a subset of the memory which contains 
2" banks. This proves the necessary condition. 

Now we prove the sufficient condition. Since AL is of rank 
n,  the term A L X L  will generate 2" distinct bank numbers 
for the 2" elements of a linear subvector i (word within 
bank). Since Z H  is a constant for a given linear subvector 
i, A H X ~  is a constant and does not alter the one-one mapping. 
Therefore, the bank selection process will generate a unique 
bank number for each element of a linear subvector and 
consequently guarantee a unique location in the memory 
system for each addressed data element. Q.E.D. 

While designing a PBI scheme, the only consideration is that 
AL should be of full rank with respect to the Boolean matrix 
multiplication operation. AH participates in the interleaving 
scheme by permuting the elements of different subvectors 
in different ways (see the distribution of the elements from 
different words in Fig. 2). Any choice of AH will result in a 
valid PBI scheme. Of course, PBI schemes with different AH 
submatrices will have different vector access performance for 
different strides. 

A. Bank Number Calculation in a PI Memory 
Let us now consider the hardware needed to calculate the 

position of an arbitrary word in the PI memory system. Keep 
in mind that unless the hardware needed to implement the 
PI memory is extremely simple, cheap and fast, its use in 
a high-performance system is unlikely. Recall that our PBI 
schemes use the high-order N - n bits of address to determine 
the word in each bank. These bits are passed directly to the 
decoding logic within each bank and no additional hardware 
(as compared to a standard interleaved memory) is needed. 
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calculations (a carry ripple) in the calculation of the bank 
number. Furthermore, the additional hardware is of the order 
of a few XOR gates and is less than the additional hardware 
needed to implement an interleaving scheme that linear Fig. 3.  Hardware organization for determining the bank number in a per- 

mutation interleaved memorv. 
data skewing. 

The additional hardware needed for a PI memory system is, 
therefore, the hardware needed to compute the bank number. 

is 
determined by computing an appropriate Boolean sum (parity) 
of the input address bits. The bits that participate in the 
Boolean sum for bit Y,  are indicated by row i of the A matrix. 
The n-bit vector then needs to be decoded to generate 
the appropriate bank select signals. The overall organization 
of the hardware needed to carry out this task is shown in 
Fig. 3. N address bits are fed into n partiy computation 
circuits that compute the appropriate Boolean sum. Each partiy 
circuit calculates the parity of a select number of input bits as 
determined by the A matrix. These partiy bits represent the 
n-bit bank number that contains the addressed word. These 
parity bits are then input to a decoder which is responsible for 
generating the 2" bank select signals. In a standard interleaved 
memory, n bits of the address are directly fed to the decoder. 
The overhead for the PI memory is, therefore, the delay 
through the partiy computation circuits. For a simple PBI 
scheme such as the one described by (3), this overhead can be 
as little as the delay through a single 4-input XOR gate. 

For more complicated schemes that make use of an arbitrary 
number (a maximum of N )  bits of address, the N-bit parity 
circuit can be implemented with [logk N1 levels of xOR gates 
where k is the fan-in of each XOR gate. For k = 4, the parity 
of up to 64 input bits can be computed with only 3 levels of 
XOR logic. 

The reader should note that in some cases, it may be 
possible to merge part or all of the parity computation logic 
with the decoding logic. In other cases, it may be possible 
to incorporate some of the parity computation logic within 
the address generation hardware itself (for example in the 
address calculation adder) without increasing the length of the 
critical path. In such cases, the PI memory has no additional 
time overhead over a standard interleaved memory. In any 
case, the time overhead for an arbitrary PBI scheme is not 
more than a few levels of logic and is far less than the 
overhead for interleaving schemes that involve arithmetic 

From (2) we see that each bit of the n-bit vector 

V. A SIMULATION ANALYSIS 

To evaluate the relative performance of a PI memory system, 
we carried out a detailed simulation analysis. Our model of the 
memory system is the same as the one proposed by Harper and 
Jump [6] and is shown in Fig. 4. Before proceeding further 
with the experiments, let us describe the memory system in 
some more detail. 

A. The Memory System 

An address is generated by the address source at a maximum 
rate of one address per clock cycle. The addresses are trans- 
mitted to the input buffer of the selected bank for service. All 
requests pass through the input buffer; no request is forwarded 
to the bank directly even if the bank is free. The address source 
also provides a sequence number for each memory request. 
The sequence number is used by the data sequencer to return 
the data back to the data sink in the same order as the addresses 
generated by the address source. 

Each memory bank services requests from its input buffer 
in the order that they were submitted to the buffer. A serviced 
request, along with its sequence number, is placed in the output 
buffer of the bank. 

The data sequencer keeps track of the sequence number of 
the next element to be returned to the data sink. It monitors the 
sequence numbers in the output buffers of the banks. When a 
match results, the corresponding data item is sent to the data 
sink, the relevant output buffer is updated and the sequence 
number in the data sequencer is also updated. Both the address 
source and the data sink maintain their sequence numbers by 
starting out with a zero value and incrementing their current 
sequence number modulo a given number. To ensure correct 
operation, the number should be larger than the maximum 
number of data requests that can be outstanding at any given 
instant. 

Note that the input and output address latches of a standard 
interleaved memory can be regarded as buffers of size one. 
Indeed, in our simulations, we treat the input address latch of 
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each memory bank as an input buffer of size 1. Likewise, a 
latch at the output of each bank is treated as an output buffer 
of size 1. 

The throughput of the memory system can be calculated 
in two ways. The first method of calculating throughput is to 
divide the number of data elements accessed by the number 
of cycles taken by the address source to generate all the 
addresses and submit them to the banks for service. Thus, if 
the address source took 1024 cycles to supply the addresses of 
1024 elements, the throughput would be 1 element per cycle 
even though the access operation takes more than 1024 cycles 
to complete. In this method, the time taken to flush the memory 
banks and buffers and return the last data item to the data sink 
is ignored. 

If no buffers are present in the memory system, the time 
taken to flush the memory system is constant; the address 
source blocks when a bank is busy and the access operation 
is complete B cycles after the last request is issued where B 
is the bank busy time. However, if buffers are present and 
the access pattern is not highly deterministic (as is the case 
in the 1-Skew and PBI schemes), requests can queue up at 
the input of a single bank (consider, for example, stride 14 
access in Fig. 1) and the time taken to flush a sequence of 
requests may be quite significant. A more realistic measure of 
the throughput would, therefore, use the total time taken to 
access the data elements. The second method for calculating 
throughput is to divide the number of cycles that would ideally 
be taken to access the vector in a conflict-free fashion (vector 
length + bank busy time + time through buffers) by the total 
number of cycles that are actually taken to access the vector. 
We shall use this method to calculate the throughput for all our 
experiments since we believe it is more realistic in a vector 
processing environment. 

1 2 3 1 2 3 1 2 3  

B. Simple Interleaving Schemes 

Our first set of experiments compares standard interleaving 
with 1-Skew interleaving and a simple PBI scheme. We do not 
attempt to analyze various PBI schemes in this paper. (How- 
ever, see Section VI1 for related work.) For the experiments 
of this section, we use the 6-bit PBI scheme described by (3). 
Our choice of the PBI scheme for this experiment was quite 
arbitrary; the main criterion was to involve 6 bits of address in 
the computation of the bank number, the same as in a 1-Skew 
scheme (indeed, several other 6-bit logical skewing schemes 
that we considered had very similar performance). In Section 
V-C, we investigate other PBI schemes that use more address 
bits to compute the bank number. 

To prevent an explosion in the number of experiments, we 
do not attempt to evaluate the orthogonal effect of the number 
of memory banks on the throughput. Clearly, if more banks 
are available with the same bank busy time, the probability 
of bank conflicts is reduced and the average throughput is 
increased. All the experiments in this paper are carried out on 
a memory system with 8 banks. 

In the first experiment, the bank busy time is set to 4 clocks 
(we consider other bank busy times in Section V-Bl), the 
stride of the input vectors was varied from 1 to 64, and the 
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length of each vector was 1024 elements (in Section V-B2 we 
consider the effect of different vector lengths). The number 
of input and output buffers with each bank was varied from 
1 to 3 (the number of input buffers is equal to the number 
of output buffers). The results for this set of experiments are 
presented in Table I. The cases for which a throughput of 
1 cannot be achieved have been shown (the unfilled entries 
have a throughput of 1). 

With 8 memory banks, a standard interleaving scheme uses 
only the low-order 3 bits of address to select the bank and, 
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therefore, the pattern of throughput repeats after a stride of 8. 
Any stride that is a multiple of 8 has a throughput of 0.25 
elements per cycle and any stride that is a multiple of 4 (but 
not of 8) has a throughput of 0.5. Since the pattern of bank 
conflicts is regular, there are no transients and buffers are of 
no use. 

Both the 1-Skew an PBI schemes use 6 address bits to com- 
pute the bank number and the throughput pattern repeats after 
a stride of 64. In the 1-Skew scheme, many of the conflicts 
that arise are transient in nature and the degradation due to 
such transients can be reduced by the use of buffers. Consider, 
for example, stride 5 accesses (refer Fig. 1). Addresses 40 
and 55 both lie in bank 5 and will result in a conflict if 
the bank busy time is more than 4 clock cycles. However, 
other stride 5 accesses, i.e., 5, 10, 15, 20, 25, 30, and 35 
are to distinct banks and do not cause a conflict. If a buffer 
is provided, the request to address 55 can be buffered until 
bank 5 is available. The address source can proceed with 
generating addresses 60, 65, 70, etc., without waiting for bank 
5 to become free, thereby allowing the memory system to have 
a throughput of 1 element per cycle. Likewise, the throughput 
for other strides can be increased. For example, the throughput 
for strides 7 and 57 peaks out at 0.98 if the number of buffers 
is equal to 6. Therefore, if 1-Skew interleaving is used and 
adequate buffering is provided, strides that are multiples of 64 
have a throughput of 0.25 elements per cycle, strides that are 
multiples of 32 (but not 64) have a throughput of 0.5 elements 
per cycle, all other strides have a peak or near-peak throughput. 

The simple PBI scheme used in our experiments does not 
perform very well without buffers in addition to the address 
and data latches. However, this is not in conflict with our 
goals. As with the 1-Skew scheme, the conflicts that occur are 
of a transient nature and the degradation due to such conflicts 
can be alleviated by the use of additional buffers. As we can 
see from Table 1, with only 2 buffers at the input and output of 
each bank, the overall throughput is superior to the throughput 
of both the standard and the 1-Skew interleaving schemes. For 
the simple 6-bit PBI scheme, with adequate buffering, strides 
that are 32 modulo 64 have a throughput of 0.5, strides that 
are a multiple of 64 have a throughput of 0.25 and all other 
strides have peak or near-peak throughput. 

1) Effect of Bank Busy Time: It is quite obvious that as the 
bank busy time is increased, the throughput of the memory 
system degrades [l] .  However, because of the nonregular 
access pattern and the presence of buffers, there is a possibility 
that the degradation will not be as severe in the 1-Skew and 
PI memories as in the case of standard interleaving. 

In order to evaluate the effect of bank busy time on 
throughput, we carried out a second set of experiments. For 
this set of experiments, we considered a memory with 8 banks 
and evaluated the average throughput achieved in accessing 
1024 element vectors for the different interleaving schemes. 
The average throughput is the average of the throughputs for 
each stride (note that since the number of elements accessed 
is constant, the arithmetic and harmonic means are the same). 
We realize that stride 1 accesses are most important. However, 
all the interleaving schemes achieve peak-throughput access 
for stride 1 and, therefore, the average throughput provides 

a good metric for measuring the performance of the memory 
system for the remaining strides. We should point out that the 
weighted average throughput would be greater if more weight 
is given to stride one access as in (61. 

Fig. 5 presents the results of our experiments for bank busy 
times varying from 1 to 8 clock cycles. A bank busy time 
of 1 clock cycle is the trivial case since all memory requests 
can proceed with peak throughput. Bank busy times of greater 
than 8 clock cycles were not considered because there is no 
hope of achieving a throughput of 1 element per clock cycle 
if the bank busy time is greater than the number of memory 
banks, regardless of the interleaving scheme used. 

From Fig. 5 one can see that, while the performance of 
a standard interleaved memory degrades considerably as the 
bank busy time is increased, both the 1-Skew and PI memories 
retain their performance for large bank busy times. The result 
is not counter-intuitive. If the access pattern is not regular, one 
can tolerate larger bank busy times by increasing the amount 
of buffering available. We consider this aspect of alternate 
interleaving schemes to be very important for memory system 
design in current vector processing supercomputers. With 
clock speeds shrinking more rapidly than memory speeds, 
the relative bank busy times are increasing. To allow for 
adequate vector access throughput using standard interleaving, 
the number of memory banks would have to be increased 
considerably [ 11. Increasing the number of banks arbitrarily 
is not an attractive option. Alternate interleaving schemes that 
can achieve peak throughput with a relatively large bank busy 
time are, therefore, quite attractive. This trend has been verified 
for a memory system with 64 banks and with bank busy times 
ranging from 16 to 64 clock cycles. 

2) Effect of Vector Length: In the 1-Skew and PBI schemes, 
several elements may be queued at the input of a memory 
bank when the address source finishes generating requests. 
Depending upon the number of queued requests and the rela- 
tive vector length, the time taken to flush the memory system 
can a significant impact on performance. In the experiments 
so far, we have used a vector length of 1024 elements and 
because of the relatively long vector length, the flush time 
penalty is minimal. However, the flush time overhead can 
be significant if the vectors are short. To evaluate the flush 
time overhead, we carried out another set of experiments. For 
this set of experiments, we consider a memory system with 
8 banks and 4 clock cycle bank busy time. Table I1 presents 
the average throughput of the memory system using different 
interleaving schemes as the vector length is varied from 64 
to 1024 elements. 

From Table I1 we observe that the standard interleaving 
scheme has a near-uniform throughput for varying vector 
lengths. The minor difference arises because of the flush 
penalty for strides with bank conflicts. For example, a stride 
8 access of a 64-element vector will have a throughput of 
((64 + 4 + 2)/(64 x 4 + 4 + 2) = 0.27) (64 elements plus 4 
cycles through bank plus 2 cycles through the buffers) while a 
stride 8 access of a 1024-element vector will have a throughput 
of ((1024 + 4 + 2)/(1024 x 4 + 4 + 2) = 0.25). 

Both the 1-Skew and PBI schemes suffer a slight penalty 
if the vector length is small. In particular situations, if the 
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vector length of the machine is not adequate, the flush penalty 
might be of concern. However, for large vector lengths, the 
flush penalty is minimal. Also note that the flush penalty is 
important because we calculate the throughput in completing 
the operation. Of course, the effects of this penalty can be 

minimized even for small vector lengths by overlapping con- 
secutive vector accesses since the address source can proceed 
with requests from another vector access while requests from a 
previous access are still queued in the buffers of the memory 
system. 
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TABLE I1 
AVERAGE THROUGHPUT FOR DIFFERENT VECTOR 

LENGTHS: BANK BUSY TIME = 4 CLOCK CYCLES 

C. Higher Order Interleaving Schemes 

The 1-Skew scheme and the 6-bit PBI scheme discussed 
above make use of only 2n = 6 address bits to determine the 
bank number. Since the distribution pattern repeats after 2p 
elements, where P is the number of low-order address bits 
used in the bank selection process, by involving more address 
bits in the bank selection process, i.e., by increasing P, we 
can reduce the number of strides for which peak throughput 
access cannot be achieved. 

It is possible to extend the 1-Skew scheme to a linear 
skewing scheme that uses more than 2n bits to select the 
bank. For example, a linear skewing scheme in which the 
bank number (Mi )  for an arbitrary address i is calculated as: 

uses 4n address bits to compute the n-bit bank number. 
Unfortunately, both the hardware and the time overheads 
for linear skewing schemes increase as more and more bits 
are involved in the bank selection process. This is because 
several n bit arithmetic operations must be carried out (3 n- 
bit additions). Therefore, higher-order linear skewing schemes 
are of limited utility in a high-performance memory system. 

In a PI memory, involving more bits in the bank selection 
process is straightforward. As pointed out in Section IV-A, a 
PBI scheme that uses N bits of address can be implemented 
in log,N levels of XOR logic where k is the fan-in of each 
XOR gate. Therefore, we investigated a PBI scheme that uses 
12 address bits (4 sets of 3 bits) to compute the bank number. 
The 3 x 1 2 A  matrix for the interleaving scheme was: 

1 1 1 1 1 0 1 0 0 1 0 0  
A =  1 0 0 1  1 1  1 1 0 0 1 0  

11 @ 
Le., YO = X11 @ XIO @ x8 @ X5 @ X4 (4 X3 (4 X0,Yl = 

1 [ 1 1 0 1 0 0 1 1 1 0 0 1  

xi1 (4 x8 (4 x7 (4 xtj @ x5 @ xq @ 1 1  and Y2 = x 

Xlo G3 x g  @ x8 (4 x7 @ x5 @ xa. Many 3 x 1 2 A  matrices 
are possible, each affecting the overall stride access pattern in 
a different way. We are mainly concerned with a scheme that 
allows peak-throughput access in the presence of buffers and, 
as we shall see, the above matrix fulfills the criterion. 

We used the following reasoning in its construction. Starting 
from a standard interleaved memory with 8 banks, involving 
X3 in the calculation of YO eliminates stride 2 conflicts. 
Likewise, involving X4 in the calculation of YO and Y1 
eliminates stride 4 conflicts and involving X5 in the calculation 
of Y0,Yl and Y2 eliminates stride 8 conflicts. This process 
can continue in several ways. The path we chose is to 
involve address bits in such a manner that each bit Y, of 
the bank number computes parities of approximately the same 
number of a address bits. This is done to make sure that the 
bank calculation circuit is not lopsided. The resulting matrix 
eliminates conflicts for strides that are powers of two (up to 
211). While conflict situations do occur for other strides, the 
conflict pattern is of a transient nature and, by using buffers 
to smooth out the transients, near-peak throughput access can 
still be obtained. 

Using the above matrix, we calculated the performance 
of a PBI memory with 8 banks and a bank busy time of 
4 cycles. Since 12 bits of address are used, the throughput 
pattern repeats after a stride of 212 = 4096; strides that are 
multiples of 212 = 4096 have a throughput of 0.25 elements 
per cycle and strides that are a multiple of 211 = 2048 but 
not of 4096 have a throughput of 0.5 elements per cycle. 
With adequate buffering, the remaining 4094 strides (and their 
multiples) have peak or near-peak throughput. Rather than 
present the throughput pattern for 4096 strides, we present the 
results in a slightly different fashion in Table 111. The table 
presents the number of strides that have a throughput of less 
than 0.95 elements per cycle (number of strides row) and also 
the average throughput of the memory system as the buffer 
size is varied from 1 to 7 elements. The average is calculated 
assuming that each stride has an equal weight and the vector 
length is 1024 elements. 

Consider the results for the three interleaving schemes 
for a buffer size of 6 elements. In a standard interleaving 
scheme, all strides that are a multiple of 4 have a throughput 
of less than 0.95 elements per cycle. There are 1024 such 
strides in the range 1-4096 (4 ,8 ,12 ,16 , .  . . ,4096). For 1- 
Skew interleaving, strides that are multiples of 32 have a 
throughput of less than 0.95. There are 128 such strides in 
the range 1-4096(32, 64, 96, . . . ,4096). 

For the 12-bit PBI scheme, only 2 strides (2048 and 4096) 
have a throughput of less than 0.95. All other strides have a 
throughput of greater than 0.95. A throughput value of 0.95 
was chosen as a cut off. Indeed, of the 4094 strides with a 
throughput greater than 0.95, 4091 had a throughput of 0.97 
or greater and 4049 had a throughput of 0.98 or greater with 
a buffer size of 6 elements. These results indicate that, with 
adequate buffering, higher-order PBI schemes can be used to 
construct a memory sysem that achieves peak or near-peak 
throughput vector accesses for a wide variety of strides. More 
address bits can easily be incorporated into the PBI scheme. 
We do not do so in this paper. 
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TABLE 111 
COMPARATIVE PERFORMANCE OF A 12-bit PBI SCHEME 

VI. DISCUSSION 

The memory system that we have used throughout this 
paper (Fig. 4) has 3 places which have additional hardware 
as compared to a standard interleaved memory: i) the address 
source, ii) the input/output buffers and iii) the data sequencer. 
As we have emphasized throughout this paper, the cost of each 
of these components is not very high and the time penalty 
introduced by them is minimal. However, let us discuss in 
more detail some of the issues involved in the design of each 
one of these components. 

The address source has an address generation mechanism 
and a control mechanism that monitors the input buffers of 
the banks. Address generation (bank number calculation) is 
carried out using a set of parity computation circuits (see Fig. 
3). The parity computation circuits that we have discussed so 
far implement a particular PBI scheme, i.e., compute parities 
based using a given A matrix. The address generation can be 
made more flexible by having a programmable PBI scheme, 
Le., by allowing the A matrix to be altered under program 
control. This feature can be useful if some a priori knowledge 
about the access patterns is available (for example, we would 
like to alter the interleaving to standard interleaving if we 
know that all the strides of access are odd). 

Fortunately, extending the bank-selection hardware of Fig. 
3 to allow for arbitrarily programmable schemes is quite 
straightforward and does not have much additional hardware 
overhead. All that we have to do is to design each parity 
computation circuit to compute the parity of all N input bits 
but modify the input bits to the parity circuit by ANDing the 
address bits with a mask as shown in Fig. 6. The mask is 
simply a row of the A matrix and can be altered under program 
control. We should point out that the memory must start out 
in a “clean state” before the A matrix can be altered, Le., the 
memory must be flushed and reloaded with the data if the A 
matrix is altered. 

The control mechanism for the address source needs to 
determine the status of the input buffer associated with the 
selected bank before it can submit the request to the banks for 
service. It does so by monitoring a busy bit associated with 
each input buffer. The busy bit is set if all the elements in the 
buffer are full. In a standard interleaved memory, the busy bit 
is associated with the memory bank. Because of the precise, 
pre-determined timing of a standard interleaved memory, it 

1  circuit I , 
N-bit Parity 

Bit i of Bank Number 

Fig. 6. Bank selection in a programmable interleaved memory. 

is possible to incorporate the busy bits associated with the 
banks in the address source control logic itself. For example, in 
the Cray-1, the address generation logic determines whether it 
should generate full-, half- or quarter-speed accesses simply by 
looking at the stride of the vector access. This is not possible 
in a PI memory (it is also not possible in a more sophisticated 
memory system such as the memory system of the Cray X-MP 
or the Cray Y-MP). 

The additional overhead for the buffers includes the latches 
for the buffer elements, multiplexors and the control logic 
needed to enforce a queue mechanism. Of course, the width of 
each buffer element would be increased by the size of the tag 
needed to hold the sequence number for the data reference. 

The data sequencer by far requires the most amount of 
additional hardware. However, the additional hardware is 
straightforward. The data sequencer needs to compare its 
current sequence number with the sequence numbers of the 
data elements at the head of each output buffer and it also 
needs an incrementer. Other control logic associated with the 
data sequencer is trivial. 

VII. RELATED WORK 

Since the work reported in this paper was carried out 
and submitted for publication [21], [22], several papers have 
appeared that describe related work. Weiss considers an ape- 
riodic scheme, very similar to the PBI schemes presented in 
this paper [ 2 3 ] .  Harper discusses how xOR-based interleaving 
schemes can be used for dynamic storage schemes to reduce 
memory conflicts [7]. Rau, Schlansker, and Yen describe 
the stride-insensitive memory of the CydraTM 5 departmental 
supercomputer [ 171. The interleaving strategy used in the 
CydraTM 5 (later called pseudo-random interleaved memory, 
or PRIM, by Rau [MI), is an example of the PBI schemes 
discussed in this paper. It is worth mentioning that the CydraTM 
5 interleaved memory was conceived and built before this 
work was carried out, however, it was not made public until 
later. 

After the initial experimental work, there has been a fair 
amount of recent theoretial work that attempts to provide a 
mathematical foundation for xoR-based interleaving schemes. 
Raghavan and Hayes consider another interleaving strategy, 
one that uses multiplicative hashing to randomize the distribu- 
tion of data amongst the banks, and show that their scheme has 
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some interesting theoretical properties [ 161. Harper attempts to 
provide a theoretical understanding of the basics of “based 
interleaving schemes in [9], and provides a metric to evaluate 
various xoR-based schemes in [8]. Last, Rau provides a very 
solid theoretical basis for the construction of an XOR-based 
memory interleaving scheme by showing that schemes that 
use irreducible polynomials to construct the A matrix have 
certain attractive and provable properties [18]. 

VIII. SUMMARY AND CONCLUSIONS 

In this paper, we discussed the design of high-bandwidth 
interleaved memory systems for vector processors. The goal 
of such a design is to achieve a throughput of 1 element per 
clock cycle for a wide variety of strides and for a relatively 
large bank busy time for a single vector access stream. In 
order to do so, alternate interleaving schemes that use several 
address bits to determine the bank number must be used. 

This paper discussed permutation-based interleaving 
schemes and their application to the design of a permutation 
interleaved memory. Permutation-based interleaving schemes 
allow the distribution of data in the memory banks in a 
nonregular fashion so that the probability of a regular pattern 
of conflicting requests is reduced. By buffering conflicting 
requests, the throughput of the memory system can be 
enhanced considerably. The elegance of permutation-based 
interleaving schemes lies in the fact that the process of locating 
an addressed data element in the memory system relies solely 
on the logical manipulation of the address bits and does 
not involve any arithmetic calculations. Such schemes can, 
therefore, be implemented without a significant increase in the 
memory latency. 

We carried out a detailed simulation analysis of an example 
permutation interleaved memory system and compared it to 
an equivalent memory system with standard interleaving and 
a memory system with 1-Skew interleaving. The simulation 
results indicate that the performance of a permutation inter- 
leaved memory system is superior to other memory systems 
that have been proposed for vector processors. Moreover, 
permutation interleaved memories can maintain near-peak 
throughput access as the relative bank busy time is increased. 
Based upon the results presented in this paper, we believe that 
permutation interleaved memories can be designed to provide 
a sustained peak throughput for a wide variety of strides and 
their use should be considered for high-performance vector 
processors. 
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