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A Patient-Adaptable ECG Beat Classifier
Using a Mixture of Experts Approach

Yu Hen Hu,* Senior Member, IEEESurekha Palreddy, and Willis J. Tompkirzllow, IEEE

Abstract—We present a “mixture-of-experts” (MOE) approach One obvious approach to alleviate this problem is to use as
to develop customized electrocardigram (ECG) beat classifier in much training data as possible to develop the ECG classifier.
an effort to further improve the performance of ECG processing - s s the approach taken by all the vendors of ECG pro-
and to offer individualized health care. A small customized . T . .
classifier is developed based on brief, patient-specific ECG data, C®SSINg devices: A large in-house ECG database is developed
It is then combined with a global classifier, which is tuned to a and maintained to test each ECG processing algorithm to be

large ECG database of many patients, to form a MOE classifier incorporated into the product. However, such an approach
structure. Tested with MIT/BIH arrhythmia database, we observe g ffers several pitfalls.

significant performance enhancement using this approach. . o
1) No matter how large this database may be, it is not

possible to cover every ECG waveform of all potential
patients. Hence, its performance is inherently limited.
2) The complexity of the classifier grows as the size of the
I. INTRODUCTION training database grows. When a classifier is designed

OMPUTERIZED electrocardiography is now a well- to correctly classify ECG from millions of patients

established practice, after several years of significant (if it ever becomes possible), it has to take numerous
progress. Many algorithms have been proposed over years for €Xceptions into account. The result is a complicated
electrocardiogram (ECG) beat detection and classification. In ~ classifier which is costly to develop, maintain, and
a clinical setting, such as an intensive care unit, it is essential update.
for automated systems to accurately detect and classify elec3) Itis practically impossible to make the classifier learn to
trocardiographic signals on a real-time basis. Since several correct errors during normal clinical use. Thus, it may be
arrhythmia are potentially dangerous and life threatening, if ~ rendered useless if it fails to recognize a specific type of
not detected within a few seconds to a few minutes of its ECG beats which occurs frequently in certain patient's
onset, automated electrocardiographic monitoring assumes a ECG records.
challenging role. Several algorithms have been proposed iThe answer, we believe, is to allow the classifier to be
the literature for detection and classification of ECG beats arghtient-adaptable.” That is, to let the classification algorithm
reported results, that leave room for improvement. They igdaptable to the special characteristics of each patient's ECG
clude signal processing techniques; such as frequency analygigords. For example, we may include the training algorithm
template matching, and other parameter extraction methoggd the database used to develop the classifier to be delivered
Artificial neural networks were also employed to exploit theify the users, so that the classification algorithm can be fine-

natural ability in pattern-recognition tasks for successful clagined to each patient. Unfortunately, this is impractical for
sification of ECG beat [2], [3], [6]-[8], [23]-[25], [28]-[31]. several reasons.

One major problem faced by today’s automatic ECG anal-
ysis machine is the wild variations in the morphologies of
ECG waveforms of different patients and patient groups.
An ECG beat classifier which performs well for a given
training database often fails miserably when presented with
a different patient's ECG waveform. Such an inconsistency
in performance is a major hurdle preventing highly reliable,
fully automated ECG processing systems to be widely used
clinically. )

Index Terms—ECG beat classification, MIT/BIH database,
mixture of experts, neural network, patient adaptation.

« While it is possible to turn over training algorithms and
databases to the users in an academic environment, it
is unlikely that any commercial ECG machine vendor
is willing to risk revealing their proprietary information

to their competitors. Moreover, in-house database often
contains millions of ECG records which could be costly
to distribute.

Users often do not want to be bothered by implementation
details of an ECG algorithm. Thus, few users will be able
to take advantage of this patient-adaptation feature even
Manuscript received September 13, 1995; revised May 5, 188frisk if it is available.
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patient-specific training data must be tightly controlled.the purpose of ECG beat detection and classification. Previ-
In this study, we propose a novel approach to patierffus reported efforts include [2], [3], [6]-[8], [23]-[25], and
adaptation while avoiding these difficulties: 1) We do nd28]-[31].
require the factory-trained ECG classifier to provide training Hu et al. [7] reported the development of an adaptive
algorithms or training databases. Instead, all we need is tfagltilayer perceptron (MLP) for classification of ECG beats.
this classifier gives both its classification results, as well diey have achieved an average recognition accuracy of 90%
an estimate of posterior probability of the feature vector asifgclassifying the beats into two groups; normal and abnormal.
drawn from each particular class. Hence, no company propifi-an attempt to classify the beats into 13 groups according to
etary information is needed. 2) A patient-specific classifier wilhe MIT Database annotations, they have reported an average
be developed using an automated procedure, without huni&gognition accuracy rate of 65%. An hierarchical system of
Supervision. 3) On|y a brief manua”y edited patient Ec@e MLP networks which first ClaSSify the beat into normal
record (2-5 min) is needed to achieve significant performan@eabnormal, and then classify it into the specific beat type, is
improvement. developed, which improved the recognition accuracy to 84.5%.
This proposed approach is based on three popular artificial
neural network (ANN)-related algorithms, namely, the selB. Self-Organization Map (SOM) and Learning
organizing maps (SOM), learning vector quantization (LvQYector Quantization (LVQ)

algorithms, along with the mixture-of-experts (MOE) method. SOM and LVQ are both clustering based algorithms pro-
SOM and LVQ together are used to train the patient-specifigsed by Kohonen [14], [15]. SOM is an unsupervised on-line
classifier, and MOE is a paradigm which facilitates the congiustering technique. In SOM, each cluster center (prototype
bination of the two classifiers (original and patient-specifi@r code word) is represented by the weights of a neuron which
to realize patient-adaptation. In MOE, the two classifiers aj¢ assigned to a coordinate in the feature map. The SOM
modeled as two experts on ECG beat classification. Th@ining algorithm forces adjacent neurons in the feature map
original classifier, called th&lobal expert(GE) in this work, to respond to similar feature (input) vectors. In a way, this
knows how to classify ECG beats for many other patientsature map is analogous to the spatial organization of sensory
whose ECG records are part of the in-house, large EGfpocessing areas in the brain. Let;(t) be denoted as the
database. The patient-specific classifier, calleddbal expert weights (code word) or th&h neuron in SOM during the time

(LE) in this work, is trained specifically with the ECG recordnstant¢, the weights of SOM then are updated according to
of the patient. A gating function, based on the feature vectgfe following simple formula:

presented, dynamically weights the classification results of the
GE’s and the LE’s to reach a combined decision. The process mi(t+1) = mi(t) + hei ([a(t) — mi(?)] 1
is analogous to two human experts arriving at a consensus(¢) is the so-callecheighborhood kernelwhich determine
based on their own expertise. the size of neighborhood of thih neuron within which all
Section Il reports the results of literature survey angdeighboring neurons will be updated in response to the present
Section Ill discusses data acquisition with preprocessingature vectorz(t). Initially, the neighborhood is large. The
Section IV discusses the proposed algorithms and thie reduces as clustering converges, until no neighboring
development of experts. Section V reports the results of theurons will get updated.
classifier on the database records and discusses the resulisvQ is a supervised, clustering-based classification tech-
Section VI is a summary of the findings of this paper. nique which classifies a feature vectoft) according to the
label of the cluster prototype (code word) into whigly) is
clustered. Classification error occurs when the feature vectors
within the same cluster (hence, assigned to the same class
label) are actually drawn from different classes. To minimize
classification error, the LVQ algorithm fine tunes the clustering
Automated ECG beat classification was traditionally peboundary between clusters of different class labels by modi-
formed using a decision-tree-like approach, based on varidyfhg the position of the clustering center (prototype or code
features extracted from an ECG beat [1], [4], [5], [13], [20lword). This method is called “learningector quantizatioh
[22]. The features used include the width and height of QR$cause this clustering based classification method is similar to
complex, RR interval, QRS complex area, etc. One of thRe “vector quantizatiohmethod used for signal compression
difficulties is that these features are susceptible to variationsiefthe areas of communication and signal processing.
ECG beat morphology and temporal characteristics. As suchAccording to Kohonen, there are three different LVQ algo-
the classification rate reported in these earlier efforts are rathigtims, called LVQ1, LVQ2, and LVQ3 developed at subse-
moderate. quent stages to handle classification problems with different
Artificial neural networks (ANN’s) have been widely ac-natures. In this study, the optimized learning-rate LVQ1 and
cepted for pattern recognition tasks. Their abilities to lealrnvQ3 algorithms were used for the training and fine-tuning of
from examples and extract the statistical properties of tliee code book respectively. In LVQ1, for a given input vector
examples presented during the training sessions, make thef), a code wordy. is found such that
an ideal choice for an automated process that imitates human
logic. Several efforts have been made to apply ANN's for

Il. PRELIMINARIES

A. ECG Beat Classification Techniques

c=arg mzln{||a:—yz||} 2
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The code wordis then updated as follows: The basic idea is to leave the existing black-box classifier
intact. Instead, we use the given small, user-specific training
Ye(t +1) = [(1 = s(t)ae(®)]ye(t) + s(t)ae(t)z(t) ()  data set to develop a LE classifier. Then we invoke a modified

wheres(t) = +1 if the classification is correct [i.ez(t) and MOE approach to combine these two classifiers, hoping to

- ; achieve better performance.
Ye ha_ve the same clas§ label] asd) = -1, otherws_eac(t) To apply the MOE approach to solve the customization
is a time-varying learning rate. Other code words in the code

ok reran urchanges LVQ3 difers fom LVQL n huf 277 8 MDY 1 908t £ OF a0t & L€, e OF
the code words are updated: Assuming thét) falls within b P y: '

a window between two adjacent clusters with CorrGSpondmﬂ-house ECG database. The LE represents a specialized ECG
code wordsy; andy,. Suppose that andy; belong to the o .
. beat classifier, trained on a small segment of annotated ECG
same class, and andy; belong to different classes, then bot o .
. . . eats taken from the specific patient. As such, the GE and the
these code words will be updated in LVQ3: .
LE are endowed with complementary knowledge bases, and
vt +1) =y(t) — a®)[z(t) — v (t)] (4a) can work together to reach a better decision than any one can

, . o reach individually.
vi(t+1) =y5(t) +al®)fz(®) — () “b) " rhe expert network is a combination of the GE and LE

On the other hand, if both; andy, belong to the same classclassifiers. Let () andy,(z) be the output (row) vectors of
as z(t), and z(t) fall in a window centered at the clusterthe two respective GE and LE classifiers. Each element of each

it is trained to classify all types of ECG beats present in the

boundary of these two classes, then vector indicates the degree of proximity of an unknown ECG
beat to a predefined ECG beat class (category). In the MOE
y(t+ 1) =yr(t) + ea(®)[z(t) — u ()], method, the combinedh output vector of both the experts
ke {i, j},01<e<0.5. (5) s given by
The optimal value of depends on the size of the window, hie(2) = g1e(@)y1e(2) + g2e(2)y2e () (6)

being smaller for narrower windows. This algorithm is sel

stabilizing, and optimal placement of the does not change \eignting vectors for each expert fromgating networkand
in continual training. are defined by
Software packages of both SOM and LVQ are available

in the public domair, and the application of these packages

fwhere = is the input feature vectorg;., j = 1, 2 are the

exp (vh,r)

to the ECG beat classification problem is straight forward. gje(®) = 2 (7)
The adaptation parameters in these packages ($8Kiand Z exp (v}cx)
LVQ_PAK) were carefully fine tuned while developing the j=1

classifiers. As such, the development of the code book a\?vﬂerevij’s are the weight vectors of the gating network. Note

eventually decision boundary can be made completely trans- 2 _
i i at Ej:l gje(z) = 1.
parent to the user. Moreover, performance obtained using thes‘f’heorem 1: Define Rlyi(z)] = {z|z € X, andyi(z) =

package is very competitive compared to other approachesbkra\j)}' i = 1, 2 to be the subregion in the feature space where

;thurrees\e/::grgvﬁ_rﬁé \r'\éitr:trlsnt acpopcjli t?oool\lf (toro?o?eteosf) :La‘;zlcv%e classifiery;(«) makes correct classification of and let
' 9 prototyp [y(x)] be defined the same way. Assuméz) € {0, 1} and

be submitted to the LVQPAK to facilitate fine tuning and 2(z) € {0, 1}, then

classification.
Rly(z)] € Rly1(x)] U Rlya(x)]. (8

Proof: We need only to prove that if both,(z) and
This user adaptation problem bears certain resemblancey;@x) misclassify a given feature vectar, theny(z) cannot

the incremental learning problem in that new data are {five correct classification om. Since the correct classifica-

be incorporated to improve existing classifier's performancggn output z(x), the combined outpuy(z), and individual

However, the black-box model of the existing classifier prejassifier outputy; (z) andy»(z) are all binary vectors of the

vents us from directly modifying the classifier structure asame dimension, if both classifiers misclassify a given feature

incremental learning algorithms do. Instead, we proposevéctor: which belongs to class, we must have, for theth
different method called the MOE, to circumvent this problenglements of these binary vectors

The MOE approach was proposed by Jacetal. [9]-[12],
[16], [26], [27]. The basic notion is that linear combinations 2e(2) @ Y1e(2) = 2(2) B y2e(2)
of several statistical estimates can perform better than any =0

individual estimate. This strategy is not new. It is a well . . .
9y ere ‘p” is the “exclusive-OR” operator in Boolean algebra.

known fact that a panel of experts often arrive at a bett%th ¢ 7 1 lud o

diagnosis than any single expert, because each expert is aplS oM ( )gli(g)Jrgéc(a:) o ’1W9f concludey.(z) __’i

to contribute from his/her own expertise. Y1e(2) = te(2) = 0, ANdye(x) = 1, if yre(a) = () = L.
Hence, z.(z) @ y.(z) = 0. In other words,y(z) must also

LUniversity of Helsinki, Finland, URL: ftp://cochlea.hut.fi/pub/ misclassify the same feature vecterregardless the choice

[ll. M IXTURE OF EXPERTS (MOE)
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of gi.(x) and go.(x). This is to say, ifx € R[y;(x)], and if The initial values ofy;. andw,. are set to be the centroids of

x € Rly2(z)], thenz € Rly(z)]. m the regionsR[y1 (z)] and R[y2(x)], respectively, forz in the
The implication of Theorem 1 is that the maximum perdser-specific training data set. The gradientfwith respect

formance enhancement of a MOE approach occurs wheny;. can be calculated as

Ry ()] N Rlyz2(x)] = ¢ (empty set). An example is to LK

designate each classifier to be responsible for classifying , _ 1 _

a particular class. The assumption thatz) € {0, 1} is "FviE 2K’ 2 Lo vaer )=z

essential in this theorem. ¥;(z) € [0, 1] (interval between .VV’j;(:I(Ulc Voo, TH) (12)

zero and one), it is possible to find a counter example. Let - T

yi(z) = [0.1 0.5 0.4], yo(x) = [0.5 0.1 0.4], and z(z) = 1 ,

[0 (0 )1]. T[hen y(x) :] [0.1;1)+ 0.[592 0.5g +] 0.1g2 0(.4%. If ToK > [e(@n) = zuclo o))

g1 = g2 = 0.5, theny(z) = [0.3 0.3 0.4] which yields correct =t

classification. 2
On the other hand, whethey;(z) takes binary values or o> yje(z1) o Vuigje(vic, vac, T1)

not, if both classifiers make correct classification, so will the j=1

combined classifier. (13)
Theorem 2: With the same definitions as in Theorem 1, and

yi(z) € [0, 1] whereh.(z) = g1.(z) ’ylc(ﬂf_) +_92c(37)_’y2c(37_)- In (13), we

assumed the transfer functiohis a differentiable threshold
Rly1 ()] N Rly2(2)] € Rly(z)]. (9) function, and is applied to the vector, element by element.

Finally, with (13), we have as shown in (14) at the bottom of
Proof: Assumez [classc®, andy;.-(z) = max. y1.(z), the page. Hence, far, j € {1, 2}, i # j, we have
Yoo+ () = max, yac(x). Then

K C
1
he (2) = g1(z)y1e (7) + g2(@)y2e- (7) Vvike = 2K’ Z Z zr{[ye(wr) — zre] ® f'[he(zi)]}
= ma . )] (10 h=l o=l
max [g (2)y1e(2) + g2(x)y2e(x)].  (10) o (o) — ye(n)] @ g1e(x) ® goulzn).  (15)
Thus, the output.-(z) is correctly classified. B  Note that in above derivation, the errd is accumulated

From Theorem 2, it is clear that if both classifiers #1 and 42 er the entire epochi{’ feature vectors). The summation
correctly classify a pattern, then the combined classifier will o\qr 7 may be removed if we use on-line update @fs

also correctly classify the same pattern. Hence, this pattern ¢gp a5ch sample. This yields the following expression for
be excluded from the user-adaptation training set as it will np’tj € {1,2},i #
affect the result.

Adaptation Algorithm: Based on the result indicated in Vv E: =z o [y(zy) — 2" @ diag{f'[h(zs)]}

Theorems 1 and 2, the design objective of the MOE network in o [Yic(xr) — yje(zr)] @ gre(zr) @ goc(zi)}. (16)
(3) is to devise a training algorithm to estimate the parameter o o
vectors{v;.; i = 1, 2}. Given thaty; () andy,(z) are fixed Clearly, we haveVy,FE, = —Vy2E.. This is not surprising

classifiers, this problem can be solved by a gradient procediféh two parameter vectors arriving at a decision hyperplane
as follows: Let us assumgry; 1 < k£ < K/, x;[ X]} be a set (v1c — voc)tz = 0.
of training data used for searching the optimal gating functionsUntil now, we have assumed that the user-specific ECG
g1e(x) and go.(x), such that the square error at the outpdteat classifier.(x) is readily available. However, in reality
E, = (1/2K") Ef’_’l |26 (k)= y(v1e, vae, zx)||2 is minimized. it needs to be tramed Wlth 'the user-specific trammg data set.
A gradient search algorithm can be devised as follows: ~ AlS0, the combined classifieg.(«) needs to be trained by
the same data set in order to determine the gating network
ie(t+ 1) = vie(t) — pVyiEe. (11) parameters. Therefore, ik.(z) is trained to 100% accuracy

Vi exp (vf,z1)
V'Uigjc(vlca V2e, xk) = QW—JC

> exp (vhr)

m=1
2

Vi [exp (ch.’L'k)] A Z exp (U:ncxk) — €Xp (thcxk) o Vi exXp (Ufcxk)

m=1
2 2
[ Z €xp (Uﬁncxk)‘|

m=1

=(=1)"z1 0 gi.(z1) ® gac(x) (14)
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on the user-specific data set, then the gating network of choice TABLE |

may be!bc(a;) 7& 1 and glc(ﬂf) 7& 0. In Iight of the results REcorps oFMIT/BIH D ATABASE THAT WERE EXCLUDED FROM THE STUDY
of Theorems 1 and 2, we devised the following strategy 10 jyciuded files from MIT/BIH Arrhythmia Database
alleviate this problem: First, we construct the user-specific
training data set to contain only those feature vectors which
the original classifier misclassified. We further partition this
training data set into two subsets: one for the training of the
user-specific classifietz.(z), and the other for estimating

Paced beats 102, 104, 107, 217
No PVCs 101, 103, 112, 113, 115, 117, 122, 212, 220, 222, 232

d TABLE 1l
91c(z) and ga.(x). FOUR CATEGORIES OF INTEREST INTO WHICH THE
ECG BeaTs oF THIs StubY ARE CLASSIFIED

IV. EXPERIMENT Beat Labels (AAMI recommended practice)

The purpose of this experiment is to demonstrate the usefulx any beal that docs not fall into the V, I or Q categories (normal
1 ) beats, supraventricular cctopic beats, and others)
ness of the proposed user-adaptation procedure. In partlcula(, a ventricular ectopic beat (VEB): a ventricular prematurc beat, R-
we will show that an ECG beat classifier trained on general on-T ventricular premature beat, or ventricular cscape beal.
patient records does not perform well when presented withf fusion of ventricular and normal beat
patient records which contain rare beat types. Moreover, wel unclassifiable beats

show that the performance of the MOE classifier is able to gain
significant performance enhancement with a small amount of

annotated patient specific training data. variation, and signal quality. These records were reported to

) have gained considerable notoriety among database users [18].
A. Data Preparation In this experiment, we use the first group of files as the

In this study, we concentrate on the classification of vetiaining data to develop a GE classifier which is able to
tricular ectopic beats (VEB's). The 48 records (tapes) froglassify typical ECG beats. The second group of 20 records
MIT/BIH ECG arrhythmia database [17], [19] are used for this used to simulate the ECG records of 20 patients, which
development and evaluation of the classifier. The availabiligye to be classified by the GE classifier. Since these records
of annotated MIT/BIH database has enabled the evaluationasisist of less-frequently seen beats, it is expected that the
performance of the proposed beat classification algorithm. T&& classifier will not perform well. If this GE classifier were
American Association of Medical Instrumentation (AAMI)-a commercial device, it will be deemed not-applicable (due to
recommended practice [18] has provided a protocol for lew performance) to many of these 20 test records. However,
reproducible test with realistic clinical requirements, emphavith the MOE approach, we will adapt this GE classifier with
sizing tape-by-tape presentation of results that estimate @anE classifier to gain significant performance enhancement
algorithm’s ability to detect events of clinical significance. at low cost.

Accompanying each tape in the MIT/BIH database is an The beats in the MIT/BIH database are of several different
annotation file in which each ECG beat has been identifié¢pes. In this study, we are interested in identifying four
by expert cardiologist annotators. These labels are referreddiferent categories, as indicated in Table Il. Each of the
as “truth” annotations and are used in training (developingjur categories included beats of several types as shown in
the classifiers and also to evaluate the performance of theble lll. The AAMI convention was used to combine the
classifiers (experts) in testing phase. According to the AAMbeats into four classes of interest.
recommended practice, records containing the paced beats
(four records) can be excluded from the reporting require-
ments. Since this study is to evaluate the performance oPa
classifier that can identify a premature ventricular contraction In this study, a GE classifier was developed with SOM and
(PVC), certain records in the database with no PVC’'s (1VQ algorithms using the data from the records of the first
records) were excluded from the study, leaving 33 records gffoup (100-124). Before testing the records, a LE classifier
interest. These excluded records are listed in Table I. Datas developed for each of the records in the second group
from channel 1, down-sampled to 180 samples/s were usedising the first 2.5 min of data. The rest of the record is
this study. The selected files consist of 13 records (numbeitheén tested using the mixture of global and LE’s as explained
from 100-124, inclusive, with some numbers missing) arlibfore. Since each record in the MIT/BIH database is of
20 records (numbered from 200-234, inclusive, with somength 30 min, the 2.5 min segment account for 1/12th of total
numbers missing). The first group is intended to serve asagailable patient specific data and contains approximately 150
representative sample of a variety of waveforms and artifadi€G beats. In practice, the attending cardiologist or any expert
which an arrhythmia detector might encounter in routin@ ECG beat annotation will have to annotate a brief segment
clinical use. Records in the second group include complex patient-specific ECG in order to take advantage of the
ventricular, junctional, and supraventricular arrhythmias adOE approach. We believe that this is a reasonably small cost
conduction abnormalities. Several of these records are eompared to the potential gain in performance enhancement.
pected to present significant difficulty to arrhythmia detectots future, we will explore a more effective method to further
because of the features of the rhythm, QRS morphologgduce the amount of required annotated patient-specific data.

Training and Testing Procedure
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Fig. 1. Record by record comparison of sensitivity

TABLE 1l

of three methods:

BEATS oF MIT/BIH D ATABASE CLUBBED INTO FOUR
CATEGORIES BASED ON AAMI-R ECOMMENDED PRACTICE

Descriptor IIZIJZI lz;rlf:lt
Normal beat 1 1
Left bundle branch block beat 2 )
Right bundle branch block beat 3 1
Bundle branch block beat (unspecificd) 25 1
Nodal(junctional) premature beat 7 1
Atrial premature beat 8 1
Supraventricular prematurc beat(atrial or nodal) 9 1
Aberrated atrial premature beat 4 1
Nodal(junctional) escape beat 11 1
Atrial escape beat 34 1
Ventricular premature beat 5 2
R-on-T ventricular premature beat 41 2
Ventricular cscape beat 10 2
Fusion of ventricular and normal beat 6 3
Unclassifiable beat 13 4
Others Other [ 4

Record Number

GE, LE, and MOE.

other categories forming sensitized data. The sensitized data
was then used for developing the GE.

1) Preprocessing: The objective of this paper is to classify
the QRS beats into one of the four different categories. The
QRS beats are obtained as 29 point templates. The position
of annotation labels is used to identify the peak of the QRS
waveform and 14 points on either side of the peak were picked
up to form the template.

The 29-dimensional template is then reduced to a nine-
dimensional vector using principal-component analysis, also
known as the Karhunen—Loeve transformation. It is designed
such that the data set may be represented by a reduced number
of “effective” features and yet retain most of the intrinsic
information content of the data. We may reduce the nhumber of
features needed for effective data representation by discarding
those linear combinations that have small variances and retain
only those terms that have large variances. The data vector
x is then approximated with the: largest eigenvalues of the
correlation matrixR, introducing anapproximating error

Temporal parameters such as the instantaneous RR interval,
average RR interval, and the width of the QRS complex were
also extracted. The instantaneous RR interval is calculated as

The GE and LE classifiers were developed using the clustéte difference between the QRS peak of the present beat and
ing algorithm implemented in SOMAK, and the fine-tuning the previous beat. The average RR interval is calculated as the
algorithm implemented in LVQPAK. The MOE algorithm average RR interval over the previous ten beats. The width of
was implemented in MATLAB. The SOM's developed usinghe QRS complex is calculated according to the Pan—Hamilton
all the data available in the training files had many of thalgorithm [21].
nodes tuned to the normal beats providing a greater detailThe information of each beat is stored as a 13-element
to the normal beats than to the abnormal ones. This leagkctor, with the first nine elements representing the trans-
to a successful recognition of most normal ECG beats afatmed morphological template, and the next three elements
suboptimal recognition accuracies of abnormal beats. This biapresenting the temporal parameters. This leads to a 12-
was introduced due to the amount of data that falls into tlidmensional feature vector. The thirteenth element is the
category of normals was about ten times more than the data‘fabel” of the beat from the annotation file, after suitable
other rhythms. Since the detail of the map is dependent upmanslation as described in Table III.
the amount of data falling into that category, it is essential Several preprocessing steps were performed on the raw data
to provide equal amounts of data for each class. Therefote,study their effects upon the performance of the classifiers.
normal beats were clustered (using SOM) and the prototyBeecifically, subtracting the mean value from each template
vectors developed were added to the dataset of beats frehowed a remarkable improvement in the performance of the
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TABLE IV TABLE V
IDENTIFICATION OF TP, FP, TN,AND FN IN THIS StuDY. CoMPARISON OF PERFORMANCE BETWEEN THE GE, LE, AND MOE
N(n): NorRMAL BEATS, V(V): PREMATURE VENTRICULAR CLASSIFIERS ALL ENTRIES ARE IN PERCENT (%). FOR THOSE RECORDS
CoNTRACTIONS F(f): Fusion BEATs, Q(Q): UNCLASSIFIABLE BEATS WHERE FP = TP = 0, PosITivE PREDICTIVITY IS ASSIGNED TO
NAN (NoT A NUMBER) BECAUSE ITS DENOMINATOR IS ZERO
Algorithm = : =
“lassification [P . ositive
TRUTH n v £ q Rate Sensitivity Specificity Predictivity
N TN FP TN TN Re;‘"d GE | Lk | me| 6e | LE | ME| GE | LE | ME | 6E | LE | ME
\4 FN TP FN FN 200 162.3[97.0]81.0053.6[93.0]66.9[197.4[98.7]93.3[89.6[97.0]80.6
F TN FP TN N 201 [172.4189.3195.4[950] 0.0 [99.5(80.6] 100 {99.3(36.7 | NaN | 94.5
Q TN FP TN TN 202 |[66.7]99.1]71.7]94.4] 0.0 |94.4]66.8] 100 | 72.1| 2.6 |NaN| 3.0

2903 33.9193.7187.4[148.1{88.0{91.0|81.7]94.7190.81130.4173.0[62.2
205 81.2197.1[97.1)159.2] 0.0 | 33.8 100 | 100 | 100 | 100 | NaN| 100

LVQ Classrﬂer Even though the morphology Of the beafq207 80.692.2|88.3[ 6.2 | 0.0 1200194.0| 100 | 98.7| 7.6 |NaN| 54.7
belonging to the same Category is similar, a baseline chanéés 60.5]94.5[90.5159.6[95.0}195.2([87.3]94.4|93.4/69.5|89.0|87.5

. . . - Q [e 4 C o
can represent the data differently in the signal space. To avefl>—{>2 11009874 0 00| 0 }99.91100 {999} 0 I|NaN| O
. ) 210 ||88.1]96.2093.469.7]96.0| 703 92.8]96.3 | 98.6]42.5 | 67.0 | 79.0
this problem, the mean value of the templates is subtractc%h ~aalons ool 00 [aal7sel 100 Toosl 175 nen T 838
. 3 R . . 28,70 . . . . . N 3.
Templates were ngo scaled linearly betweénand—llbefore C 214 [92.4]95.2]98.2(192.1]69.0] 89.1[[92.8] 98.5 | 99.7 62.4 | 86.0 | 97.7
the expert classifiers are developed. Temporal information s 565 [o7.1 o84 13.7]99.0] 979 [ 99.9] 97.0 | 98.5] 952 | 62.0 | 76.4
of the beats such as instantaneous RR interval, average BRy [[o7.1]03.0]97.4] 182 89.0] 16.4] 100 |93.1 | 99.0] 100 | 25.0 | 90.0
interval over the past ten beats, and the width of QRS complex1 | 55.9]95.4]99.0]96.1]98.0]98.9]92.5]94.9| 100 70.8|79.0 100
showed improvement in the classification of PVC beats. 223 [126.7[91.0]|94.4]169.2| 66.0|91.94 17.8] 96.9 | 95.7 16.4 | 83.0 | 83.4
2) Training of the Global and Local Expert Classifier§or 228 1193.5197.9099.9]81.7]97.0] 100 ||96.1|98.1199.9]80.7 |91.0]99.7
the GE classifier, the sensitized data from 13 MIT/BIH data230 {72.4] 100 |99.1} 100} 0.0} 0 }|753] 100 }99.50 0.2 [NaN| 0
base tapes (#100-124) is used to develop a SOM of siZd! [98.51999]998) 0 | 0.0|50.0]99.8] 100 | 100} 0 |Nax] 100
15x 10 neurons. This is accomplished using SGWK. The Zz: 209 196.7197.8 166.9195.0193.51 5.7 | 97.3 )1;(: ?3: 2301988
. ? 3 97.4199.9]99.8 | 66.7] 0.0 | 66.7]99.5] 100 3.3 | NaN| 100

weights of each neuron form a code word in the code boek - - :
) CoAvg ||62.2]95.9] 94.0]63.5] 79.0] s2.6] 83.5| 9s.0| 97.1] 31.9 | 83.0| 77.7

of 150 code words. Each code word, or equivalently ttre

associated neuron, then is labeled using annotated data. The

label of the code word is assigned based on the label ofrhe | E classifier is developed in exactly the same manner
annotated feature vectors assigned to that cluster. as the global classifier, except that it uses only the first two
Another classifier of 150 code words, based on LVQ alnq half minutes in the tape, and is constructed separately for
gorithm, is developed using LVRAK. The classification each particular “patient tape” (tape #200—234) in the MIT/BIH
performance of the classifier developed using LVQ is superiggtapase. We choose the first 2.5 min for training LE’s and
for classes 1 and 3, whereas, the performance of the classifif next 2.5 min of data to training the gating network of
developed using SOM is superior for classes 2 and 4. Thetge MOE classifier. This practice is conformed to the AAMI-
fore, the code books generated by LVQ and SOM were editggtommended procedure which allows to use of the first 5 min
manually to select and combine those code words which yielgl data in each tape to fine tune the classifier. During testing
superior performance. The resulting code book constitutes {jgh the combined MOE classifiers, only the last 25 min in
GE classifier. each tape are used. Hence the testing data are never part of
To enable the “soft combination” of the classifier outputany training data through the entire process.
it is desired that the outputs of each classifier be an estimates) Mixture of Experts (MOE) ClassifierA gating network
of the a posterior probability of the feature vector be|0ngin§rovides the scaling factorsy;(’s) for each class of both
to that class. To facilitate this requirement, we assume thatperts. The output of the gating network is & 2 matrix,
the posterior probability is a mixture of Gaussian distributioith each row forming a scaling factor vector for each expert.
with each code word in the class being the mean of fhe weights of the gating network are simply determined as
Gaussian distribution with unity variance. This is a reasonalilge centroids of the regions as indicated by the code-book
assumption since each code word is obtained using the SQbttors of the corresponding expert.
clustering algorithm based on therorm distance measure. The output of the classifieh(z) is calculated as given by
Therefore, for large amount of samples, the posterior prob@). Each input vector is classified into the class which has
bility distribution of each class will converge to a Gaussiamaximum output in the output vectdfz). Through extensive
distribution asymptotically. For small samples such as thoegperimentation, we further modified the computation of the
used for training a LE, a Gaussian distribution assumptigyating network output so thak.(x) = 1 [i.e., gi.(z) = 0],
seems to be an adequate approximation. Next the distaifcg..(x) > 0.9 regardless of what was calculated from the
denoted byD,.(c = 1,2, ---, 4) between a feature vectorgating network. This is intuitively convincing because it yields
z(t) and the nearest code word of clagsis computed. a decision for the LE when the LE classifier is certain about
The classc output of this GE classifier then is computedts diagnosis. We found that this modification improves the
asexp (—D?) which is proportional to the Gaussian densityccuracy of the combined classifier and also improves the
function exp [—||z(t) — m.||?]. sensitivity.
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TABLE VI
BEAT-BY-BEAT, RECORD-BY-RECORD TESTING RESULTS OF THE EXPERIMENT
Global Expert local Expert Mixture of Expert Data in Record
Re;‘" o | P | FN | IN | TP | FP | EN | TN | TP | ¥P | EN | TN gegg Normal| PVC
200 408 48 353 | 1796 707 24 54| 1820 509 124 | 252 1720 || 2605} 1844 761
201 188 322 10| 1338 0 0 198 | 1660 197 12 1 1648 || 1858 [ 1660 198
202 17 671 1| 1349 0 0 18 [ 2020 17 564 ] 1456 || 2038 [ 2020 18
203 197 452 213 | 2020 360 132 50| 2340 373 227 37 2245 2882 2472 410
205 42 0 29| 2420 0 0 71| 2420 24 0 47 2420 || 2491 | 2420 71
207 11 123 162 | 1919 0 0 173 | 2042 35 27| 138 | 2015 2215} 2042 173
208 551 241 3741 1657 877 107 48 1 1791 881 125 44 1773 || 2823 1898 925
209 0 3 1] 2856 0 0 1| 2859 0 3 1 2856 || 2860 | 2859 1
210 129 167 56| 2150 177 86 8| 2231 130 32 551 2285 2502 | 2317 185
213 128 610 92| 2241 0 0 220 | 2851 31 189 2845 |[ 3071 [ 2851 220
214 226 136 19| 1753 170 28 75| 1861 218 27 1883 || 2134 | 1889 245
215 20 3 128 | 3021 147 92 1] 2932 145 45 3 2979 || 3172 | 3024 148
219 10 0 451 2101 49 145 6] 1956 9 46 | 2099 || 2156 | 2101 55
221 355 145 14| 1788 360 98 91 1835 365 4 1933 || 2302 [ 1933 369
223 324 | 1654 144 358 309 63 159 | 1949 430 87 38 1925 || 2480 | 2012 468
228 270 64 60| 1584 319 31 11} 1617 330 2 0 1646 || 1978 [ 1648 330
230 1 569 01 1733 0 0 1] 2302 0 12 1] 2290 2303 | 2302 1
231 0 4 2 1871 0 2| 1875 1 0 1 1875 1877 1875 2
233 522 | 2033 258 123 741 58 39 [ 2098 729 11 51 2145 || 29361 2156 780
234 2 13 1] 2561 0 0 31 2574 2 0 1 2574 || 2577 2574 3
Avg 3406 | 7243 | 1957 |36654 || 4216 864 | 1147 [43033 || 4430 1273 | 933 | 42624 [ 49260 | 43897 | 5363
C. Results FN + FP). These three statistics, together with the percentage

The classifier was tested with the selected 20 records of ﬂgssification rates, are reported for each individual testing file
second group of the MIT database. The GE was left intact aftd required by the AAMI-recommended practice [18]. The

is used as is for testing the 25 min of data from each 30-mEﬁ
testing record with first 5 min excluded as they are used ?
develop the LE and the “gating network.” The performance S
the MOE classifier was compared to that of the GE and LE
for each of the 20 records.

All detection statistics are founded on the mutually exclu- 1)
sive categories of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). Since we are
interested in estimating the performance of the classifiers
based on the recognition of VEB's (rhythm 2), the true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) are defined appropriately as listed in
Table IV.

Three statistics: sensitivity, specificity, and positive pre-
dictivity are used to compare the results. The respective
definitions are as followsSensitivity [Se = TP/(TP+ FN)] is 2)
the fraction of real events that are correctly detected among all
real eventsSpecificitySpec= TN/(TN + FP)] is the fraction
of nonevents that has been correctly rejected; Roditive
Predictivity. [PP = TP/(TP + FP)] is the fraction of real
events in all detected events. Another statitilse positive
rate [FPR = FP/(TN+FP)] is the fraction of all nonevents
that are not rejected. Since FRR1 — Spec, it is not listed
here. Finally, the classification rate(TN + TP)/(TN+ TP +

sults are summarized in Table V (percentage) and Table VI
ctual number of beats). A graph comparing the sensitivities
each record for the three methods are shown in Fig. 1.

D. Discussion

From Tables V and VI, we observe that the MOE
approach is capable of significantly enhancing the per-
formance of an ECG beat classifier over the global
classifier. Moreover, we find that even with only 5
min of patient specific training data, the LE classifiers
fare very well in all categories compared to both GE
and ME classifiers. These observations confirmed our
claim in this paper that patient-specific training data
will significantly enhance the performance of a general
purpose ECG classifier.

Comparing the LE and ME, we found that LE out-
performed ME in terms of classification rate, mainly due
to higher specificity (ability to correctly classify normal
beats), but with lower sensitivity (ability to correctly
classify PVC beats as PVC). Especially for those records
where the first 5-min LE training data does not contain
any PVC beats. Hence, although a LE classifier performs
well, the availability of a global classifier does help to
further enhance its performance.
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3) In some cases, the improvement in classification ratgs)
is moderate; in others, significant improvements are
observed. For example, in records 203, 209, 215, 223
and 233, the classification error rates of the ME classifier
are all reduced by more than threefold below those of
the GE. A closer examination of these ECG recordsy)
indicates that patient-specific beat types are observed
during the initial 5-min ECG records. For example, in
record 215, the GE performs poorly because of the slight
variation in morphology of the normal beats present
in this record. However, the LE is able to pick up 9
those patient-specific beats, and therefore, provide sige]
nificantly enhanced performance (from 3.65% to 98.4%%
A potential drawback of this proposed method is th ]
need to develop a LE classifier for each individual
patient, even with only 5 min of patient's ECG record!?
Since this must be performed by a physician or a ECfz3)
specialist, potentially it would be very costly. We are
currently looking into unsupervised learning method[M]
hoping to reduce the number of beats a human expert
need to examine in order to develop such a LE. It shoul&®!
be pointed out that in cases where patients’ ECG recorgds;
have been annotated previously by a human expert, the
development of a LE would be quite easy and coﬁﬂ
effective.

4)

(18]

V. CONCLUSION

In this paper, we developed a novel approach to demonstrid
the feasibility of having a patient-adaptable ECG beat classifi-
cation algorithm. We outlined the basic requirements of sud#f!
a system, namely accuracy, cost-effectiveness and protection
of the device manufactures intellectual property rights. We1]
presented a SOM/LVQ-based approach to illustrate that th?n;
requirements can be met. The potential benefit of patient
adaptation is immense and is worth pursuing further. To the
best of our knowledge, the application of the MOE approa 133]

to the patient-adaptation problem has never been done before.

We believe it can be easily adapted to other automated patient-
monitoring algorithms and eventually support decentralizéd(!
remote patient-monitoring systems.
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