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A systematic theory for radiation losses in intersecting optical waveguides is presented for the
first time. These losses are shown to arise from a coupling between guided and radiation fields
of the individual waveguides. The existence of a doubly peaked radiation loss characteristic
with respect to the intersection angle is predicted for single-An intersecting waveguides and
verified experimentally. A method for reducing the radiation losses by a simple modification of

the intersection region is also discussed.

1. INTRODUCTION

Intersecting waveguides are routinely used in the design
of a variety of circuit elements for integrated optics because
of their novel topological features. Small and large intersec-
tion angles offer the possibility of making switches' and
crossovers,” respectively. A proper understanding of the
mechanism of radiation losses in intersecting waveguides is
of vital importance for the development of more complex
optical circuits. The previous theory for intersecting wave-
guides is based on the concept of interference between the
modes of this composite waveguide structure.' Such an ap-
proach tacitly assumes the absence of radiation losses. The
coupling between intersecting waveguides is also treated by a
numerical technique known as the beam propagation meth-
od.> However, the calculated behavior of radiation losses is
not even in qualitative agreement with the experiments.**

We have recently developed a unified theory which is
able to account for recent experimental data on intersecting
waveguides.*~” In this theory the two waveguides interact by
scattering the fields of each other in a self-consistent manner.
The effect of source fields generated in such a sequence of
multiple scattering interactions can be evaluated by using
Green’s function for the individual waveguides. In a later
section the construction and physical significance of the
Green’s function for an optical waveguide is described and
its spectrum is shown to consist of both guided g(.) and
radiation #(.) fields/modes. The coupling between two opti-
cal waveguides, therefore, consists of the following type of
interactions: g(1)«> g(2), g(1)«> r(2), r(1)«> g(2), and
r(1)« r(2). The coupling between guided modes of inter-
secting waveguides has already been described in consider-
able detail.® In this paper an extension of the multiple scat-
tering analysis to include the coupling between guided and
radiation modes of intersecting waveguides, which is respon-
sible for radiation losses, is reported. The nature of calculat-
ed radiation losses is in good agreement with the experimen-
tal measurements.>® Finally, properties of fractional-An
intersecting waveguides as low-loss structures is also dis-
cussed.
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Il. MULTIPLE SCATTERING ANALYSIS OF
INTERSECTING WAVEGUIDES: AN OPERATOR
FORMALISM

The wave equation for the transverse electric (TE)
mode of intersecting waveguides (d/dx =0, V=3?/
dy* + 3%/3z%) with a harmonic time dependence ex-
p( — iwt) reduces to

[V} + 0’ne(y2) JE, (p,2) = 0. (1)
The dielectric permittivity of the medium is given by
€(y.2) =€, + 6,(32) + &(y2) + L(p.2), (2)

where €, pertains to the substrate, €,, (y,z) represent the
two intersecting single-mode waveguides, and ¢(y,z) is used
to incorporate an arbitrary scattering inhomogeneity in the
intersection region {see Fig. 1). The total electric field
E, (y,z) is decomposed in terms of fields E, , (v,z) associated
with the two waveguides with / = 1,2. The latter, in turn, are
expressed as a sum of fields due to an infinite sequence of
scattering interactions as

E. .yz)= Z E 7 (p.2), (3)

n=10

where the superscript within the parentheses denotes the or-
der of scattering interaction.

A guided wave is launched from the left of the junction
at infinity in waveguide 1. The fields in the absence of cou-
pling between the waveguides 1 and 2 are

Ei?ll(y?z) :Wl(yyz)y (43.)
E%(pz) =0, (4b)

where ¥, , represent the normalized eigenfunctions (TE,)
of the individual waveguides. However, in the presence of a

FIG. 1. Schematic diagram of the coordinate axes for the analysis of inter-
secting waveguides.
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coupling between the two waveguides, the nth-order scat-

tered fields £\ (y,z) which are generated in sequence ..

ERW2), E ""(y,z), ... for n> 1, can be expressed in terms

of Green’s function G; of the individual waveguides with
= 1,2 as follows:

ERW2) = ——ff (.2 +(y,2)]

XEN~V(V.2)G,(zy 2 )dy dZ, (5a)
ENN(p2) = —fj[fl(y 2Z) +u(y,2)]
EXRW.2)G(yzy' 2)dy dz . (5b)

The Green’s function G, (y,z;y',2') provides a complete de-
scription of fields generated at an arbitrary observation point
(»,2) due to a source point at (3',z'). It is shown in the next
section that the Green’s function can be written as a sum of
guided and radiation fields as

G, (yzy'2) =G (yzy 7)) + G (pzy' 7). (6)
Two scattering operators W, and W, are defined such

that Eqs. (52) and (5b) can be written in a compact manner
as

EZ(p2) = WE ™V (p,2), (7a)

EM(pz) = WER(3,2). (7b)

Equations (7a) and (7b) are rewritten as the following re-
currence relations:

ENTV(yz) =W,W,E D (y,2), (8a)
E,(t."l+l)(y,z) -':wlsz,(v,nl)(y,Z)- (8b)

Moreover, the expressions for E () and E {7} in terms of the
incident fields {see Egs. (4) and (7) ] become

‘"’(y,Z) (wzwl)"‘lwz‘px(}ﬁz): (9a)
ED () = (W W,)"¥,(y.2). (9b)
Note that the number of times (multiplicity) the scattering
operators occur in the expressions for the ath-order scat-
tered fields E (% and E ") are given by 2n — 1 and 2n, re-
spectively. Fmally, the scattenng operator W, withi = 1,2is
split into suboperators U; (guided) and V; (radiation) in
order to account for Eq. (6) as follows:

W, =U, +V,. (10)

Iil. GREEN’S FUNCTION FOR AN OPTICAL WAVEGUIDE

In the multiple scattering analysis of intersecting wave-
guides, the solution to the wave equations obtained in differ-
ent orders of scattering interaction is expressed in terms of
the Green’s function for the individual waveguides {see Egs.
(4) and (5)]. In this section, the Green’s function for an
optical waveguide is constructed by a method similar to that
of Coliin.® The Green’s function for a step-index optical
waveguide is defined as

[Vi+ 0’ue(r.2)} Gzy'.2) = idoub(y —y'z — 2'),

(1ia)

where
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€ if —agy<+a.

€, otherwise.

€(y,z) = [ (11b)

The wave equation (11) is converted to an ordinary differen-
tial equation in y by taking its Fourier transform in the z
coordinate as follows:

(dy2 + (0pe; ~ & 2)) G.Lw'2) = hopd(y — y')e = %
for | yi<a, (12a)
(dy2 + (0’ue, — & ))G(y,gy,z)=0
for |y| > a, (12b)

where § is the Fourier transform variable and the source
point (y',2') is assumed to be inside the waveguide. Since the
Green’s function defined by Eq. (11) corresponds to the TE
mode, the boundary conditions on its Fourier transform are
1 G continuous and dG /dy discontinuous at y = y’ and (ii)
G continuous and dG /dy continuous at y = + a. The dis-
continuity in dG /dy at y = y' is obtained by integrating Eq.
(12) around the source point. Matching the fields at source
point (y = y’) and boundaries (y = 4 a) of the waveguide,
the Fourier transform of the Green’s function is obtained as

cos(&y')ePr =

(~;(y,§;y’,z') = 1"2a),u( §11)

e

> sin(&y’)e” - ‘”) e~

4

for + a<y < o0, (13a)

- D
Gysy.2) = wa/t( §D° cos(&y')cos(£y)

e

_ E%i.sin(é‘y')sin(s“y)

o

—ésin(gy’)cos(é'y)

+ —;’_—- oos(§y')sin(§y))e‘ %z

for —a<y <y< +a, (13b)

- D,
GLye) = ﬂwﬂ( D cos(£y )cos(&y)

e

- E%:-Sin(§Y')Sin(§Y)

+ —;-sin@y’)cos(s’y)

— % cos(§y’)sin(§y))e‘ &
for —a<y<y'< + q, (13c)
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1
£D.

GC(riy'2) = I‘pr( cos(£y')e = PO+

+ sin(gy’)e —ip(y + ‘”)e — iz
for — o <y< —a, (13d)
where
D, =sin(&a) + (ip/§)cos(£a), (13e)
D, =cos(£a) — (ip/&)sin(éa). (13f)
The constants £ and p are defined by
Er=0ue, —LP=k2 L2, (14a)
PP =w’ue, — =k -2 (14b)

In order to obtain the Green’s function G in real space,
its Fourier transform G is inverted using the following rela-
tion:

Cyy') = — J Gyl 2 e dt. (15)

2rJc
The Fourier transform G is a multiple valued function of ¢
because of the two branches of p with branch points at
{ = = k,. The complex £ plane must be cut by branch lines
running from the branch points to infinity in order to pro-
vide a passage between the two Riemann sheets [see Fig.
2(a)]. The contour of integration C in the £ plane is chosen
such that G has a proper behavior (which means that it re-
mains finite) at infinity (|y|— o). It follows from the time

m({) :
*r : — Re ({)
(a)
'rf(o)
W
77,
w2 0 J 4,/// /////

w2+ g, q

(b)

FIG. 2. (a) Contour of integration C in ¢ plane along which the Green's
function has a proper behavior at infinity and the Sommerfeld’s radiation
condition is satisfied. (b) Mapping of proper (shaded) and improper (un-
shaded) sheets of the Riemann surface into a connected strip in the ¢ plane
and deformation of original contour C into the steepest descent contour
(SDC).
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dependence e~ “' and Eqs. (13a) and (13d) that this re-
quires Im (p)>0. Moreover, the branch of p such that
Re(p) >0, gives outward going waves for |y|»a and hence
satisfies the Sommerfeld’s radiation condition.’ The Fourier
transform G has a discrete distribution of poles in the £
plane. These poles when obtained by solving the dispersion
relations D, = 0 and D, = 0 for £ in the interval k, < ||
< k, correspond to even and odd guided modes of the wave-
guide, respectively. Since the contour of integration cannot
be closed in the upper or lower half plane for the choice of
branch cuts specified in Fig. 2(a), it is convenient to trans-
form the variable of integration using

(16a)
(16b)

&=k, cosg,
p=k,sing,

where £, p, and ¢ are complex variables. Equation (16) rep-
resents a mapping of the £ plane into a strip of ¢ plane [see
Fig. 2(b)]. The proper (shaded) and improper (unshaded)
sheets of the Riemann surface map into a connected strip
givenby — 7/2< Re(g) < 37/2. In the transformed g plane
there are no branch cuts and the Fourier transform G is
analytic everywhere except in the neighborhood of its poles.
Therefore, the contour of integration is deformed from C to
steepest descent contour (SDC) without affecting the value
of the Fourier integral. The significance of the new contour
is explained later in this section. The line integral along SDC
in the g plane is broken into paths which are comprised of
circles warped around the poles plus the rest of the contour
SDC [see Fig. 2(b)].

The contribution of the poles can be evaluated using the
residue theorem. Thus, the guided part of the Green’s func-
tion for a single-mode waveguide is obtained in terms of its
normalized (unit power) eigenfunction W (,z) as

G®™(pzy 2y =V*(y,2 )W (pz) forzpz, (17a)
G¥(p,zy,2) =V (V,2)¥*(y,z) forz<Z. (17b)
The eigenfunction in turn is given by
[ -~ y(y — a) ,iBz
Y(y,z) = 2ope d
VB @+ 1/ + 77aD
for 4+ a<y < w, (18a)
iBz
W(pz) = VIO o acy< ta,  (18b)
VB (a+1/7)
/ vy + a) iz
V(y,z) = Zop ¢ ¢
VBV (a + /(1 + ¥ /a%)
for ~ o0 <y< —a. (18¢)

The following relations are satisfied by the constants a5,y

a’ = o'ue, — B2, (19a)
Y'=B%— e, (19b)
v = a tan(aa). (19¢)

The Fourier integral along rest of the contour represents
radiation fields and is too complicated to evaluate for all
points in space [see Egs. (13) and (15) ]. However, in the far
zone it can be simplified by the asymptotic technique known
as saddle-point method. In order to employ this method we
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convert to cylindrical coordinates for fields above
(yzam=1) and below (y< —ag;np= — 1) the waveguide
using
z=rcosg, (20a)
y—mna=rsing. (20b)
Substituting Egs. (16) and (20) in Eq. (13), the expression
for Green’s function (|y|>a) becomes

G(",¢;y’,2') = L[ge (q) — g, (q) ]eirk\cos(qA né)

X ( — k, sin g)dg, (21a)
where
_ Jop (COS(@")G“W) 21b
gE(q) T \ §De g’:k\cosq, ( )
iop fsin(§y')e"'§z') a1
o = : )
g (q) T \ gDD &=k, cos g ( ¢

The complex argument f of the exponential term in Eq.
(21a) is approximated as

Sg)=irk, cos(q — nd)

The value of saddle point g, is obtained from the relation
S'(g,) = 0 which implies g, = n¢. The SDC contour which
also passes through the saddle point is defined by f,(g)
=Im{f(q) — f(g,)} = 0. Note that along SDC the function
f[i(g)y=Re[f(q) — flq, )] is negative and varies at a maxi-
mum rate away from the saddle point. Therefore, the entire
contribution to the line integral (apart from that due to
poles) comes from a small neighborhood of the saddle point
as r— oo . In this way the radiation part of the Green’s func-
tion is obtained in the far zone from Eq. (21) as

G (rdy'2) = [Tk Ty 400

X [g. (nd) — 1g, (n¢) |sin(n¢),
(23)

where the terms which vary slower than r~ ' are ignored
because they do not contribute to the power flow across a
closed cylindrical surface at infinity. Note that except in the
far zone this method is not applicable for the evaluation of
radiation fields.

A ray optical interpretation of the Green’s function can
be obtained as follows (see Fig. 3). Substituting Eqgs. (13)
and (14) in Eq. (15) shows that the radiation fields inside
and outside the waveguide can be viewed as a superposition
of plane waves/rays with wave vectors given by

1

v %
__ =

\v‘ \gulded mode
radiation modes

point source

FIG. 3. Ray optical interpretation of the Green’s function for a slab wave-
guide in terms of guided and radiation modes.
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Kf = (é_: + §)E(kf Ccos Qfa + kf sin Qf>7 (24a)
K, = ({, +p)=(k, cos Q,, + k, sin Q,). (24b)

In a similar manner the guided fields inside the waveguide
are represented [see Eqs. (18) and (19)] as

K, =B +ta)=(k;cos @, + k;sin Q,). (25)
The ray angle for guided fields outside the waveguide is
imaginary. Note that the ray angles Q,, Q, in Eq. (24) and
Q. in Eq. (25) assume continuous and discrete values, re-
spectively. The consistency between Eqs. (24a) and (24b)
requires

kycos Q; =k, cos @, (26)

which is simply the Snell’s law of refraction. The critical
angle Q. for the film-substrate interface is given by
cos™'(k./ k;). Thus, the radiation fields can be interpreted
in terms of optical rays (Q,> Q.) which refract out from
film into the substrate and the guided fields as rays
(Q, <Q.) which are total internally reflected within the
waveguide. As a numerical example, @, =2.33° and
Q. = 3.77°is obtained for waveguide parameters, half width
a =2 pum, substrate index n, =2.300, and film index
n, = 2.305 corresponding to the single-mode titanium indif-
fused waveguides in lithium niobate at 1 = 1.3 um. Finally,
it should be noted that the duality between real (#,¢) and
momentum (k,,Q,) space variables allows a description of
radiation fields outside the waveguide in terms of either an-

gle ¢ or ray angle Q..

IV. SCATTERING OF LIGHT INTO RADIATION FIELDS

An exact evaluation of expressions for £, , and £, | giv-
en by Egs. (3)-(10) is not practical. The electric field asso-
ciated with waveguide 2 in the first order of scattering inter-
action (Born approximation) is given by Egs. (9) and (10)
forn=1as

ER(r,2,) =W, ¥, (5,,2,)
=(U2+V2)‘{"(‘y|,z‘). Q27

Beyond this order, the electric field associated with wave-
guides 2 and 1 can be obtained from the fields previously
scattered into the respective waveguides by a successive ap-
plication of the composite operators W,W, with i =2, j =1
and i =1, j =2 [see Egs. (8a) and (8b)]. The action of
these operators on an arbitrary operand field f'is expressed
using Eq. (10) as

WW/f=(UU, + VU, + UV, + V,V)f (28)

In the last two terms in Eq. (28) the radiation fields V, f, act
as sources for subsequent scattering. Since evaluation of
these terms requires knowledge of the radiation fields every-
where in space, it becomes difficult to proceed further to
higher-order analyses. Therefore, in this paper we restrict
our attention to a first-order analysis of scattering of light
into radiation fields. Nevertheless, this simplified analysis
provides valuable insights into the mechanism of radiation
losses. Note that in case of fow-loss waveguide structures the
effect of source terms V,U.f, U,V,f, and V,V,f can be ig-
nor&sd in calculations pertaining to coupling between guided
modes.’
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The radiation fields in the Born approximation are ob-
tained from Eq. (27) as

E:g(}’vzz)zvz‘]’] »i,z1)
= %u-fﬁez (3,23) +1(p3,23) ]
XYW, (#1,20)G T4 (0y,2,305,23 )dysdz;,  (29)

where the integral representation for the operator V, is ob-
tained from Eqgs. (5)—(7) and (10). The integral in Eq. (29)
can be performed in two equivalent ways depending on
whether the expression for the Green’s function is employed
in real or momentum space. However, it is more convenient
to use the momentum space representation due to the nature
of limits of integration. Substituting Eqs. (13), (15), (16),
and (20) for the Green’s function in Eq. (29), the radiation
fields above (y,»a@;7=1) and below (¥, — a;n= — 1) the
waveguide 2 are given in cylindrical coordinates as

LimE 2 (r,¢) = f [1.(¢) —nl,(q)]
r— oo C

Xeirkjcos(q—ﬂw( . ks sin q)dq, (30a)

uo=—‘%‘”[ez(ys,z;wt(y;,z;)]

— iz

cos(&y;de .
XWI(}’LZ; )_—é:é_;T—dyz dzZa (30b)
2
I,($) = —-afi‘—ff[ez(yé,zs) +t(r5,25) ]
4
sin(&y; e L
xw,(y;z;)———§25:—dyz dz;,  (30c)
Lo (@)=L (8 et cosq (30d)

Since an arbitrary scattering inhomogeneity ¢ can be selected
in the intersection region, the present formalism allows con-
sideration of a variety of waveguide structures. However, in
what follows, the special case of fractional-An intersecting
waveguides is considered. These waveguides are described in
terms of fractional permittivity y in the intersection region
(— asy,,< + a) as

t=(y—2)(& —€)=(y— 24, (31
where the two extensively studied cases, namely, single-An
and double-An intersecting waveguides correspondtoy = 1
and 2, respectively. Substituting Eq. (31) in Eq. (30) the
overlap integrals are readily evaluated to be

where the overlap integrals between guided and radiation Io(§) =15,(0) + (x = DIZD), (32a)
fields are defined as where
i
150 = 0,244 Y2 ‘ 1 .
i C 2 B+ UV +77a?) ED.. [V + (Bcot 6 — fesc 6)*]sin 6
X{y cos{(Bcot @ — ¢ csc @a] — (Bcot 8 — £ csc O)sin] (B eot @ — & csc O)al}
(sin[(§+§cot9——/5'csc a] o sin{ (£ — {cot 6+ Besc H)a])’ (32b)
(E+Ecotf—PescH) ¢ (E—¢cotO+ Bcesch)
1% — o o’pA \f2—w72 1 1
T 4 VB@+1/7) £D., sin6
><(sin[ (a+ B cot@—Ccsch)a] | sin[(a—PBcotb+ ¢ cscBa] )
{(a+Bcotf— ¢ cscd) (a—fBcotf+ {cesc )
X(sin[(§+§cot0—ﬂcsc B)aj eosin{(f—§cot9+ﬁcsc 0)a]). (32¢)
(§+Ccot@—~PBcesch) ' (§—Lcot@+ Fesch)
i
A superscript on /, , represents the fact that the overlap inte- 1 9E_,
gral is between evanescent or guided fields of waveguide 1 H,= - —t-c;—,u_ ar (33c)

with the radiation fields of waveguide 2. The constants o,
and o, are given the complex values of ( — 1,0) and (0,1),
respectively.

V. POYNTING VECTOR AND RELATED EXPRESSIONS

In the present case (r,¢, — x) constitutes a cylindrical
coordinate system. The pertinent field components for the
TE mode are £ _ ,, H,, and H,, where

E— x = = Ex’ (333)
1 JE_,
r= (33b)
iour dé
4513 J. Appl. Phys., Vol. 65, No. 12, 15 June 1989

The power which flows out from a closed cylindrical surface
at infinity is

P= [ S, rdg, (34a)

where the radial component of the Poynting vector is given
by
S,=—;-Re( _E_HY). (34b)

It follows from Egs. (3), (9), and (10) that the total electric
and magnetic fields associated with the two waveguides can
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be expressed in terms of guided and radiation contributions
as

E_,=E% +E™, (35a)

H,=H% +H}. (35b)
It can be readily shown that the cross terms between guided
and radiation fields which are obtained by substituting Eq.
(35) into Eq. (34) do not contribute to the power flow Pin
the asymptotic limit, therefore,

P=pei pred (36)

In the present context the interest lies primarily in the
radiation fields and the corresponding power. The radiation
part of electric and magnetic fields is obtained in the Born
approximation by first performing the Fourier integral in
Eq. (30) by the saddle-point method and then using Eq.
(33), respectively, as follows:

E™ ,(re) = — 2wk /r Gl = /)
X [1.(n¢) — 71,(n¢) ]sin(n¢),
H:‘g(r,¢) = (ks/a)/z)Wei(k{—r/«t)

X [1.(n4) — 1l (ng) [sin(ng) + O(r~ "),
(37b)

(37a)

where the angle ¢ is measured with respect to the axis of
waveguide 2. Next, a coupling coefficient between guided
and radiation modes of the individual waveguides is defined
as

J($) =7k /op[l,(n¢) — 91, () Isin(nd), (38)

with — 7<@ <7and = + 1for $20. Substituting the far-
field expressions given by Eqgs. (37a) and (37b) in Eq. (34)
and using Eq. (38), the radiation pattern is obtained as

PP =J(H)T* (). (39)

Finally, the radiation pattern is integrated to evaluate the
power lost due to radiation as

P = f P ($)dd. (40)

T

Vi. RESULTS AND DISCUSSION

Radiation loss phenomenon in single-An (y = 1) inter-
secting waveguides exhibits a doubly peaked characteristic
with respect to the intersection angle as shown in Fig. 4.
Such a behavior is not predicted by any theory of intersecting
waveguides except the scattering analysis. It is evident that
the theory and experiment™* are in general agreement, the
quantitative agreement being better at large intersection an-
gles. [ Note that the slab (TE) geometry is used to model the
titanium-diffused channel (TM) waveguides in fithium nio-
bate due to their equivalency.] These results can be inter-
preted as follows: At small intersection angles the interac-
tion between guided modes of intersecting waveguides
corresponds to several coupling lengths.® Therefore, the in-
cident power is scattered into the guided and radiation
modes of both waveguides. In order to incorporate these
physical effects the higher-order scattering interactions
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® Experimentai Data

Radiation Loss

Intersection Angle {degree)

FIG. 4. Calculated (normalized to incident power) and measured (refer-
enced to straight waveguide) radiation loss as a function of the intersection
angle for single-An intersecting waveguides. The parameters a = 2 um, n,
= 2.300, and n, = 2.305 are selected for numerical analysis so as to obtain
single-mode slab waveguides (TE) at 4 = 1.3 um. Measurements were
made on titanium in-diffused lithium niobate intersecting channel (TM)
waveguides (for experimental details, see Ref. 4).

must be considered [see Egs. (9) and (10)]. A more de-
tailed comparison of experimental results with scattering
analysis at small angles is reported elsewhere.* However, at
large intersection angles the strength of coupling between
intersecting waveguides is greatly reduced so that a first-
order scattering analysis is adequate.

The complexity of the closed-form expressions for the
radiation coupling coefficients obtained by substituting Eq.
(32) with § = k, cos(n¢) and p = k, sin(n¢) in Eq. (38),
makes it difficult to interpret them in an intuitive manner
except for some general observations. The radiation cou-
pling coefficient J(¢) for small and large intersection angles
isshown in Figs. 5 and 6, respectively. The angle ¢, or equiv-
alently the ray angles Q,, at which the radiation pattern van-
ishes are determined by zeros of (£D,,) ' and the factors
within large parentheses in Egs. (32b) and (32c). Note that
at small intersection angles the evanescent and guided con-
tributions (corresponding to regions outside and inside the
intersection region) to the radiation coupling coefficient are
always of the opposite polarity and scaled in magnitude as
compared to each other by roughly a constant factor. It is,
therefore, possible to adjust the magnitude of J #/( ¢) relative
to that of J *’(¢) through the fractional permittivity y so as
to eliminate or reduce the coupling between guided and radi-
ation modes [see Egs. (32) and (38) ]. The same is not true
for large intersection angles. Moreover, the overall angular
width of the radiation coupling coefficient increases with the
intersection angle. The angular width, which is a measure of
the stringency of phase matching condition between guided
and radiation modes, is influenced by the argument A® of
sinc functions and is expressed in terms of various ray angles
[see Eqgs. (24), (25), and (32)] as

AD = (&4 cot@ ThcescB)a

=k,| +-cos(Q,F6) Fcos Q,}acscH, (4la)

N. Agrawal and L. McCaughan 4514



64
Re (J%Y) —.—
= Re (J99) ——
o 4
=)
=
5 A
S 2 I\
£ h \
%‘ 0 “\N \ P
S \J.'
8 -2
©
g
z "4
(a)
= Y ~T =T T T T 1
-i6 -2 -8 -4 [o] 4 8 12 16
Angle (degree)
3-
Im (&) ==
- Im (J9d) ——
5 2
8
=
=
g 1
o ‘\_\
=3 N
E o ool ‘/\.AA‘
3 ZATA LS et e g
3 W [+
8 \
c v
Q
o
35 -2
2 1
(b)
~3 T T T T T Y gl
-8 -12 -8 -4 o] q 8 12 13

Angle {degree)

FIG. 5. (a) Real and (b) imaginary paris of radiation coupling coefficients
as a function of angle (¢) for two wavéguides intersecting at a small angle
(8 =1°). The waveguide parameters are @ =2 um, n, = 2.300, and n,
= 2.305.

and
AP =(ax+Bcotd Flcsch)a

=k +cos(Q, TO) FcosQ,jacsc . (41b)

It follows from Eq. (41) that the effective length over which
the wave vectors are mismatched is given by a csc 6. There-
fore, the phase matching condition is relaxed with an in-
crease in the intersection angle. Finally, we note that a sharp-
ly peaked radiation beam emanating from the junction of
single-An intersecting waveguides has been observed® in ac-
cordance with the radiation pattern p™ obtained through
the present analysis and shown in Fig. 7. (The preliminary
calculations reported earlier should be corrected by a factor
of two due to numerical error. Compare Figs. 3 and 4 in Ref.
6 with Figs. 4 and 7 in this paper, respectively.)

A different version of this geometry, namely, double-An
(¥ = 2) intersecting waveguides has been used to make opti-
cal switches with somewhat smaller losses."'® There is no
reason to assume that either single-An or double-An inter-
secting waveguides represent an optimum geometry with re-
spect to providing low-loss waveguide structures. Therefore,
we describe radiation losses in the generalized case of frac-
tional-An intersecting waveguides. The radiation loss is
shown in Figs. 8(a) and 8(b) as a function of fraction per-
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mittivity y for two different values of mode confinement

parameter (V = 41r‘/n} — nta/A) for small and large inter-
section angles, respectively. Note that whereas the losses are
drastically reduced in the fractional-An intersecting wave-

4.0

Radiation Pattern
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FIG. 7. Radiation pattern (p™) as a function of angle (¢#) for intersecting
waveguides with large intersection angles of 3 and 5°. The waveguide pa-
rameters are g = 2 um, #, = 2.300, and n, = 2.305.
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= 2.305 (¥, =2.93) and (ii) n, = 2.303 (V, = 2.27).

guides with small intersection angles, such effectiveness is
not seen at large angles. In addition, the minimum loss at-
tainable with respect to y decreases (increases) with increas-
ing Vat small (large) angles. At a small intersection angle of
1°, a low-loss waveguide structure is obtained for a value of
¥ = 1.54 which is intermediate between single-An and dou-
ble-An intersecting waveguides. In case of large intersection
angles, a value of y <1 yields the minimum radiation loss;
however, the minimum value in this case is somewhat high-
er. These results follow directly from the interference be-
tween evanescent and guided contributions to radiation cou-
pling coefficients depicted in Figs. 5 and 6.

Vii. CONCLUDING REMARKS

A first-order scattering analysis is presented to evaluate
radiation losses in intersecting waveguides under the as-
sumption that they are sufficiently small. This approxima-
tion is not of concern because, in practice, the primary inter-
est in integrated optics lies in low-loss waveguide structures.
Note that a semiquantitative agreement between theory and
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experiment is demonstrated even in the presence of large
radiation losses. Moreover, in the present formalism an arbi-
trary choice of scattering inhomogeneity ¢ (y,z) can be made
in the vicinity of the intersection region. Such a generality
allows consideration of index distributions for different
waveguide structures with a wide variety of potential appli-
cations. However, it is important to recognize that there are
some restrictions on ¢(»,z) due to its strong influence on
radiation losses as shown in Fig. 8.

Recently, there has been a considerable interest in the
design of optical switch arrays.''~'* Several different archi-
tectures with modest levels of integration have been demon-
strated. In most applications it is important that the loss
through the switch matrix be smali as well as path indepen-
dent. In order to fabricate such a switch array, both low-loss
switches and crossovers are indispensable. In the case of di-
rectional couplers, this requirement translates into an in-
crease in the length of the switch in order to accommodate
the larger S bends,'* which in turn reduces the packing den-
sity. However, as shown here, in an optical switch employing
fractional-An intersecting waveguides with small angles, the
radiation losses can be reduced without affecting its size.
Although the fractional doping of the intersection region has
a less dramatic effect in terms of making low-loss crossovers
with large angles, other variations of intersecting wave-
guides may prove more effective towards this purpose.
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