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Abstract—One-dimensional (1-D) linearized Pierce theory is
examined for high space charge wideband traveling-wave tubes
(TWTs). The more exact quartic equation is shown to provide
reasonable predictions for the frequency-dependent small signal
gain function, provided one has an accurate knowledge of the
cold circuit phase velocity and space-charge reduction factor.
Accurate knowledge of these parameters is particularly critical for
predicting the high-frequency end of the positive gain region. The
common simplified cubic equation is shown to underestimate the
gain. On the other hand, quantitative comparisons show that the
cubic solution remains acceptably accurate for first-trial design
procedures where it offers advantages of scaling insights and
incorporation into closed-form ‘“optimized design” expressions.
Guidelines are provided for approximating the growing wave’s
wavenumber in calculating the space-charge reduction factor.
These guidelines are needed for all 1-D TWT models and simula-
tions. Calculations illustrate that positive gain always involves the
beam velocity exceeding the “hot” phase velocity of the wave.

Index Terms—Pierce theory, space charge, traveling-wave tube
(TWT), velocity synchronism, wideband.

I. INTRODUCTION

HERE are several reasons why an examination of basic

one-dimensional (1-D) analytic linear traveling-wave tube
(TWT) theory is pertinent to current research and technology
development. For example, ultrawideband TWT development
for electronic countermeasures (ECM) applications requires
careful attention to what happens at the band edges [1]. Teasing
out additional performance at these band edges is a very high
priority for some recent applications. Also, recent research
shows that the level of harmonic distortion and harmonic
injection for linearization depend on the linear growth rate of
the frequency corresponding to the harmonic [2]. Therefore,
it is useful to have a good understanding of TWT growth rate
behavior, even at the edges of positive gain. As the discussion
in this paper illustrates, accurate theoretical predictions of gain
near band edges requires a highly precise knowledge of the
TWT circuit’s phase velocities and space-charge characteris-
tics. On a related issue, accurate evaluation of the space-charge
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reduction factor Rgc used in 1-D TWT modeling [3]-[5]
requires an a priori choice of using either the “cold circuit”
wavenumber

w

Boe = ———— 1
Be Ve (@) (D
or the “electronic” wavenumber
w
Be = — (2)
Vo

as an approximate substitute for the “hot” wavenumber, Re((.)
of the growing wave on the TWT circuit. Above, v..(w) is the
phase velocity of a wave at frequency w, in the absence of the
electron beam. vg is the initial velocity of the electron beam.
The results discussed in this paper provide guidance for the best
choice of approximation for Re(/3,). A third point relates to ap-
preciating the tradeoffs between the approximated but analyti-
cally accessible versus more exact but computationally solved
solutions for small signal gain.

II. BACKGROUND DISCUSSION

Virtually all 1-D TWT models share a common concep-
tual framework. This includes a beam-current-sourced wave
equation for the slow-wave-circuit guided wave and a force
law equation for the effect of the wave’s longitudinal electric
field component on the electrons’ velocities [6]. A complete
review of the previously published 1-D TWT models is beyond
the scope of this paper. However, we briefly review a subset of
typical model equations, variable definitions, and conceptual
assumptions in order to facilitate subsequent discussions.

First, we will assume a 1-D electron force law of the form

dv  Ov v e g €

it "ot T T me RSCmESC' )
FE, and Ej, are the axial components of the wave’s electric field
and the beam space-charge fields, respectively. R = wq/wp
is the 1-D “plasma frequency reduction” factor. It accounts for
reductions in the magnitude of the axial component of space-
charge electric field due to either finite beam radius or close
proximity to surrounding conducting walls [3]-[5].

Next, as discussed in many references, a traveling-wave in-
teraction requires the electron and wave velocities to remain
approximately equal, or synchronous, for net energy transfer.
For amplification of the wave, the electrons need to be traveling
slightly faster than the wave, so that as they decelerate and the
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wave grows they do not immediately fall back into the acceler-
ating phase and start taking energy back out of the wave. The
difference between the electrons’ (initial) velocity and the wave
velocity is referred to as velocity detuning. One useful param-
eter to characterize the relationship between wave growth and
velocity detuning is the cold circuit velocity detuning parameter

Vg — Vee (W)

C (W) Ve (w)

where C' is the Pierce gain parameter (see below).

It is convenient to assume a priori that the wave will have a
unique (complex) wavenumber /3, i.e., pure harmonic in space
E, ~ €P% and to express [ in terms of the amount that it
differs from the electronic wavenumber, i.e.,

/8:/88-*_5/8:/88-1_/8605' (5)

The final piece of mathematical apparatus needed is to de-
scribe the electron beam charge density in terms of the normal-
ized beam plasma frequency

w2
2 R (W_g)
= 2
where Rgc is the space-charge reduction factor discussed
above, w), is the usual plasma frequency, wﬁ = ep/mey, p is

the volume charge density of the beam, and C' is the Pierce
gain parameter

bec = “)

(6)

IoK
C? = : 7
e N
Vio is the dc beam voltage, numerically given by
Voo = muvi/2e, and K is the beam-averaged “interaction

impedance” [4]

®)

=5/ L

237 Py

where S}, is the beam cross-sectional area and P, is the power
in the wave. Note that the normalized beam plasma frequency
2, is equal to /4QC where @ is the Pierce space-charge pa-
rameter and C is the Pierce gain parameter defined in (7). This
equivalence is demonstrated in numerous texts [7], [8]. We will
use both notations interchangeably, since the QIQ) is more indica-
tive of the physical meaning, while the 4QQC' representation has
become universally adopted throughout the TWT literature and
within the minds of most TWT designers and researchers.

III. ONE-DIMENSIONAL TWT LINEARIZED GROWTH RATE

With the above parameter definitions, one can derive a deter-
minantal equation for the assumed wavenumber 3 [7]. Substi-
tuting with variable definitions such as (1), (2), (4), and (5), that
equation takes the form

(1+C&)* (1 + Chee)
(14 C€)? = (1+ Cbec)?
Equation (9) is a quartic equation for £, from which one can ob-

tain four distinct solutions (roots) for the assumed wavenumber
[ through the use of (5). As discussed in many texts, it turns out

C-w+&=0. (9
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that the general solution for the TWT wave propagating along
the circuit at frequency w is not pure harmonic in space. How-
ever, it can be described using a superposition of four harmonic
functions using all four pure harmonic roots [3], [6], [7], e.g., of
the form

4
z) Z A, etz (10)
m=1

In practice, one is usually not interested in the full general so-
lution, and so certain simplifications are acceptable. First, one
of the four roots represents a backward-traveling disturbance,
while the other three represent forward-traveling disturbances.
It is, therefore, common to assume an idealized circuit on which
the backward-traveling disturbance is never excited and, con-
sequently, neglect it. The second assumption is to focus atten-
tion on the region after the beam has been bunched and the
wave is growing (i.e., the “exponential small signal growth” re-
gion). In this region, the disturbance is well approximated by a
spatially pure harmonic solution, and the wave is described in
terms of a single complex root 3, of (9), i.e., the root associ-
ated with spatial growth. There are two other assumptions that
are commonly employed for mathematical convenience. Specif-
ically, one assumes that |3 — (.| < f; or, using (5), |C¢] < 1
and |U0 - 'Ucc| < Vecs
sumptions reduce the quartic (9) to a more easily solved cubic
equation

1
g_bcc

The exponentially growing wave is, thus, described as

&+

—4QC = 0. (11)

E, ~ elm(B:)z gjwt—jRe(B:)z _ ,BeCrz jwt—jf. (14+Cy)z (12)

where £ = Re(¢) +5Im(¢) = y+ jz. The reason that assuming
|8 — Be|] < B coincides with reducing the quartic equation
to a cubic one is that this assumption implicitly excludes the
backward-traveling root from consideration.

The three roots of (11) can be expressed analytically [9]

§1=<€/R+\/5+\3/R—\/5)+9 (13a)

fzz_——(\/R+\/_+\/R \/_>+g (13b)
+j§[(\3/R+\/5—f/R f}

53:_ <\/R+\/_—|—\/R \/_> g

K\/}Hf \/R \/—)} (13c)

w\%w

where
D =Q® + R? (13d)
= —w and (13e)
R 20 — liiﬂg — 27. (130

It can be shown that positive growth only occurs when D > 0,
and that the exponentially growing mode root is £&; when D > 0.
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Fig. 1. Normalized growth rate versus cold circuit velocity detuning

parameter. In this example C' = 0.1. Notice that the quartic root solution is
generally always slightly greater than the cubic root solution, except for the
unrealistic case of zero space charge and b.. < —1.

Fig. 1 compares the normalized growth rate « for the growing
root solution calculated using both (9) and (11) versus the cold
circuit velocity detuning parameter b... For these results, it has
been assumed that C' = 0.1 and a range of values of the space-
charge parameter Qg = 4QC have been examined, spanning
negligible to very large space-charge regimes.

There are several things to be learned from this figure. First,
the simplified cubic solution always underestimates the growth
rate of the growing wave, except in the unrealistic idealized case
of QZ = 0, and even there, only for negative values of b.. < —1.
A second observation is that the magnitude of this underesti-
mate can be quite significant for situations where total small
signal gain of the device is of interest. This is because small
signal gain scales as ~ e?<“?L where L is the TWT circuit
length. To provide a quantitative context, the underestimate in
maximum growth rate varies from a minimum of ~5% for the
Q2 = 0 case to as much as 17% for Q2 = 4QC = 4. There-
fore, for a TWT with nominal gain of 20 dB and 4QC = 4,
the cubic root underestimates the overall gain by as much as
3.5 dB. This is not an insignificant error from the point of view
of final stage design specifications. On the other hand, this re-
veals that even for large space-charge TWTs, the error of the
cubic solution are within bounds acceptable for draft design ef-
forts. This is interesting because the cubic solution is available
in analytic closed form. Therefore, it offers advantages for in-
corporation into closed-form derived expressions for optimized
design points and for appreciation of scaling relationships be-
tween device parameters and growth rates. Finally, the cubic and
quartic solutions are in quite good overall qualititative agree-
ment, especially with regard to the value of velocity detuning
bc. for which one obtains maximum gain. In this regard, the
agreement improves with higher space charge.

The reason that the cubic solution underestimates the growth
rate compared to the quartic derives from the errors implicit in
assuming 3 = . and vg & v... As will be seen in later discus-
sion, the assumption 3 =~ [, is only a good approximation for
large and negative values of b..< — 1. Thus, the cubic approxi-
mate solution always underestimates the growth rate for b.. > 0
where the assumption § = [, is not a good approximation.
Meanwhile, for the example shown with C' = 0.1, the assump-
tion vy & Ve requires |bCC|<~1. In fact, for the case of C' = 0.1,
the two assumptions 3 ~ (. and vy & v, are simultaneously
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Fig. 2. Tllustration of how the sensitivity of growth rate predictions and gain to

errors in space charge or phase velocity depend on whether the velocity detuning
for the frequency in question corresponds to maximum growth rate or marginal
growth rate.
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Fig. 3. Measured small signal gain versus frequency for the XWING TWT.
very accurate in the vicinity of b, ~ —1. This is supported by
the observation in Fig. 1 that the cubic and quartic solutions are
equal for b.. &~ —1 for both 4QC = 0 and 4QC = 1.0. For
bee < —2 and 4QC = 0, the § = (3. assumption is very accu-
rate, but vy & v is not a good assumption. Consequently, the
cubic solution overestimates the growth rate in comparison to
the more accurate quartic solution in this region.

The next insight one can glean from Fig. 1 is that accurate
prediction of gain for some frequencies will be considerably
more challenging than for other frequencies. The “inverted-U”
shape of the growth rate versus velocity detuning means that
the prediction of growth rate (and, thus, device gain) for fre-
quencies with velocity detuning close to maximum growth rate
(top of the inverted U) will be relatively insensitive to errors
in either velocity or space-charge parameters. In contrast, ac-
curate prediction of gain for frequencies with velocity detuning
corresponding to the edges of the inverted U will be extremely
sensitive to accurate and precise knowledge of the cold circuit
phase velocity and the space-charge parameter 4QC'. This issue
is depicted in Fig. 2. Since all modern TWTs have nonnegli-
gible space-charge (4QC ranges from ~0.4 for space TWTs to
as high as ~4 for TWTs used in electronic countermeasures),
this issue is a general challenge.

It is useful to examine which frequencies within the positive
growth rate regime of a typical TWT correspond to maximum
versus marginal growth rates. For this purpose, the XWING
TWT [10] serves as a useful illustration, as it corresponds to
a fairly high space charge device with 4QC' ~ 4. The mea-
sured small signal gain of the XWING TWT is plotted in Fig. 3.
Fig. 4 shows the (quartic) growth rate solution versus b. cor-
responding to the XWING’s characteristics at 1, 3, and 5 GHz.
Also shown by “lines” are the typical operating values of b... for
1, 3, and 5 GHz, respectively. As the frequency increases, the in-
teraction increasingly becomes one of marginal growth. Hence,
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Fig. 4. Normalized wave growth rate - versus cold circuit velocity detuning
parameter b.. for 1, 3, and 5 GHz in XWING.

Fig. 4 illustrates the general principle that excessive velocity de-
tuning determines the upper frequency limit to the gain band-
width in a typical TWT. Extensive research experience confirms
that accurate predictions of gain at 4-6 GHz in the XWING de-
vice are extremely sensitive to the values of 4QC' and v..
There are several situations that can frustrate the ability
of a 1-D TWT model to accurately predict the gain at these
sensitive upper frequency bandwidth edges. First, conventional
experience indicates that a precise and accurate knowledge
of the cold circuit phase velocity is not a trivial matter. Batch
variations in helix rod permittivities or helix distortions arising
during circuit assembly can result in cold circuit velocities
that are not accurately predicted by three-dimensional (3-D)
electromagnetic simulations using original design parameter
values. An alternative is to measure the phase velocities of
every circuit prior to TWT assembly, but this introduces
considerable labor and cost. Meanwhile, accurate knowledge
of the space-charge parameter QIQ) requires accurate knowledge
of the space-charge reduction factor Rgc, which requires
accurate knowledge of the beam radius. It is impractical to
incorporate beam radius measurements of each TWT during
manufacture, so that 3-D electron optics simulations must
be relied upon. The accuracy of these simulations relies on
assuming that the electron gun and magnetic circuit of each
TWT performs according to original design specifications.
Not only is the beam radius not typically measured but only
inferred through optics simulations, but the beam is assumed to
be of constant density for simplicity in most interaction models.
This condition is only approximately true, even for a “good”
optics design, and any increased current at the beam edge
might be expected to play a disproportionate role in the actual
TWT gain. Cold-phase velocities are easily characterized for
benchmarking purposes, but the beam size (including ripple
and effects due to permanent periodic magnet (PPM) stack
errors) are not typically well known. Hence, prediction of small
signal gain at the upper edge of the positive gain band in high
space charge TWTs is more challenging for 1-D models than
predicting the gain near the center of the operating bandwidth.
While discussing the physics of gain at the edge of the TWT
bandwidth, it is interesting to ask what determines the lower
frequency limit of gain in a typical TWT. From Fig. 4, it is ap-
parent that velocity detuning does not determine the low-fre-
quency limit of the bandwidth in the same way that it determines
the high-frequency limit. For example, in Fig. 3, 1 GHz clearly
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Fig. 5. Wave growth rate  versus cold circuit and hot velocity detuning

parameters b.. and by, . For visual convenience, —x has been plotted versus by, .
It is evident that positive gain always corresponds to positive velocity detuning,
b, > 0.

corresponds to the low-frequency limit of the gain bandwidth,
yet in Fig. 4, the 1-GHz operating point is close to the max-
imum growth rate. The explanation to this apparent contradic-
tion is that at low frequencies (<1 GHz in XWING), the wave’s
wavelength becomes too long for significant bunching within
the TWTs length. For example, at 1 GHz, the helix circuit in
the XWING TWT is only approximately five wavelengths long.
This does not allow for significant bunching; therefore, negli-
gible gain is observed at frequencies below 1 GHz.

IV. VELOCITY DETUNING AND GAIN

Examination of Fig. 1 inspires a fundamental question. If
the condition of wave growth requires the beam velocity to be
greater than the wave velocity, how is it that low space charge
TWTs with small values of QIQ) or 4QC have positive gain (x >
0) for negative values of velocity detuning b.. < 0? The answer
is that b.. only characterizes the velocity detuning between the
beam velocity and the cold circuit wave phase velocity at fre-
quency w. The velocity detuning between the beam and the ac-
tual beam-loaded “hot” wave phase velocity vy, is generally very
different from b... To illustrate this point, (9) was solved for &
(and, thus, for 3,) as a function of b... b.. was allowed to vary
between —5 and 5 and the five values of 0.0, 1, 2, 4, and 8 were
considered for 4QC. Then the beam-loaded hot phase velocity
was calculated as

w
Vp = =————

Re (6-)

from which a “hot” velocity detuning parameter was calculated

(14)

Vo — Vh

by, = ———.
" C'Uh

15)

The results for normalized growth rate x have been plotted
against both by, and b, in Fig. 5 for comparison. It is immedi-
ately evident that positive gain always corresponds to positive
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velocity detuning by, > 0, i.e., a beam velocity that is greater
than the wave phase velocity vj. Although this point is intu-
itively reasonable, it has never (to the authors’ knowledge) been
previously demonstrated in a publication.

V. APPROXIMATING [0t FOR SPACE-CHARGE REDUCTION
PARAMETER CALCULATIONS

There are additional timely insights that can be extracted from
this reexamination of 1-D Pierce theory for TWTs. The discus-
sion above shows that an accurate 1-D model prediction of TWT
gain, especially at the upper frequency edge of the gain band-
width, requires an accurate estimate of Qg and, thus, Rsc. On
the other hand, derivations of space-charge reduction coefficient
expressions all result in equations which require a priori knowl-
edge of the hot wavenumber for the circuit wave By, = Re(.).
Since a determination of (3, requires an a priori knowledge of
Rgc, while determination of Rgc requires a priori knowledge
of Re(/3.), one is faced with a paradox. The conventional reso-
lution is to calculate an estimate for Rgc by substituting an ap-
proximation for Re((3. ), either 3 or (... To determine which of
these approximations is more accurate, (9) has been solved for
C = 0.01 and 0.1, and for the same choices of 4QC as in pre-
vious calculations. In Fig. 6, both the normalized growth rate
x and the normalized wavenumber 1 + C'y have been plotted
versus b.. for C' = 0.1. In addition, curves have been plotted
for normalized (3. and ... Careful study of this figure shows
that for all values of space charge, in the region of positive gain,
the hot wavenumber of the growing wave is better approximated
by the cold circuit wavenumber

Re(ﬁz) ~ ﬁcc

for frequencies inside the positive growth rate band, while the
circuit wave’s beam-loaded wavenumber is better approximated
by S, for frequencies outside the positive growth rate band

Re(f:) ~ fe.
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Fig. 8. Normalized 8.., 8., and Re(3.) for C' = 0.01. Normalizations

are cold circuit wavenumber 3./ 3., electronic wavenumber 3. /3., and hot
wavenumber Re(3./3.) = 1 + Cy. The arrows at the top indicate the values
of be. corresponding to maximum gain («) for the indicated values of QC.
The four filled shapes indicate the locations where the slow space-charge wave
velocity equals the hot phase velocity of the growing waves corresponding to
the four values of 4¢}C'—specifically, a circle for 4QQC' = 0.0, a square for
4QC = 0.4, a diamond for 4QQC' = 1.0, and a pentagon for 4QC = 2.0.

The exception to this latter statement is that for unusually high
space charge beams Q2 = 4QC > 4

Re(f:) & fec

for frequencies outside the positive growth rate band. However,
such cases would be extremely rare in practical TWTs, because
they would imply the need for a very strong focusing magnetic
field.

The results for C' = 0.01 are shown in Fig. 7 and show that
similar conclusions can be drawn for both large and small C'
values.

VI. MAXIMUM GAIN AND THE SLOW SPACE CHARGE WAVE

Finally, it is instructive to reexamine a conventional wisdom
regarding the condition for maximum gain in a TWT. Fig. 8
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plots the normalized hot wavenumber of the growing mode (cal-
culated from the quartic equation) versus b.. for four values
of Q2 = 4QC = 0.0, 0.4, 2.0, and 4.0. On each of the
four curves, a filled shape (circle, square, diamond, or pent-
agon) has been placed, showing the point of intersection of the
slow space-charge wave’s wavenumber (normalized) and the
growing mode’s wavenumber. The slow space-charge wave’s
wavenumber is defined to be

Busow = B+, = B.(1+CV/2QC) = B.1+CR,)  (16)

where 8, = wy/v, and w, is the reduced plasma frequency
[6]. Hence, these four intersection points represent the points at
which the hot phase velocity of the growing wave and the phase
velocity of the slow space-charge wave are equal. At the top of
the figure are four labeled arrows, indicating the positions of
peak gain (maximum x) for each of the four values considered
for Qﬁ = 4QC. These particular results were computed for
C = 0.01, but the conclusion proves to be generally true for
any realistic value of C'. Specifically, it is often stated as a rule
of thumb that the peak gain corresponds to the condition where
the hot phase velocity of the growing wave equals the phase
velocity of the slow space-charge wave. What Fig. 8 clarifies,
however, is that this statement is only valid for values of 4QC >
0.4. From the results calculated here, in fact, the rule-of-thumb
is reasonably accurate for QIQ, = 4QC >~ 1 (or QC >~
0.25). This is also consistent with the results in [7, Fig. 10-14].
Obviously, for 4QC = 0, Bssew = Oe (i.€., there are no space-
charge waves), so it is clearly not appropriate to apply the rule
of thumb in that case. However, for values of 4QC' < 1, such as
might be encountered in many space TWTs, this rule of thumb
is not a good approximation for intuitive reasoning or simplified
initial design steps.

Using the cubic solutions in (13), one can confirm and explain
the observation illustrated by Fig. 8. First, it can be shown from
(13) that the normalized growth rate

w21111(§2)2§<\3/R+\/5—\3/R—\/5> (17

is always maximized under the condition that b? = le,, for
all values of QZ. This is also revealed in graphical form in [7,
Fig. 10-14]. Further algebra then reveals for the maximum

growth rate condition > ~ Q2, that D = @ + R*> ~ R” and

hence
20,\
21 =2 1

In the limit that (29, /3)3 > 1/2, theny ~ Q,, and Re(3) ~
Be(1 4+ CQ,), ie., indeed the slow space-charge wave. In the
limit that (292,/3)® < 1/2, then y ~ 1/2 and Re(8) =~
Be(1 + C/2), in agreement with the classic Pierce solution for
space charge free and synchronous (b = 0) conditions [6], [7].
The demarcation between these two extremes occurs approxi-
mately when (2€2,,/3)® ~ 1/2,0r Q2 ~ 1.4 ~ 1. This is in good
agreement with the main point of Fig. 8, especially considering
the approximation of neglecting the contribution of Q3 to D and
the fact that the maximum growth rate point does not precisely
correspond to b = . Implicit in this result is the point that

1/3 Q
=r, 18
+ 3 (18)

y=Re(@)~
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when 9127 = 4QC < 1, the space-charge wave model of TWT
interaction begins to lose meaning as the fast and slow modes
of the coupled beam-circuit disturbance are no longer closely
associated with the fast and slow beam space-charge waves.

VII. CONCLUSION

In summary, this reexamination of 1-D linearized TWT

theory leads to the following conclusions.

1) The assumptions |5 — .| < e and |vg — Vee| K Vee
produce qualitatively accurate predictions of the growth
rate, but can result in quantitative errors in gain of ~3 dB
for high space charge TWTs with 4QC ~4 and nominal
gain ~20 dB. The error increases for higher gain devices
and decreases for lower space charge. On the other hand,
the errors are sufficiently bounded to justify the use of the
analytic cubic solution in deriving closed-form expres-
sions for optimized design starting points.

2) Prediction of the gain at the high-frequency end of
the gain bandwidth by 1-D models is very sensitive
to precise and accurate knowledge of the wave’s cold
circuit phase velocity and the normalized plasma fre-
quency or effective (reduced) space-charge parameter
Q? = (Rscwy/Cw)? = 4QC. This sensitivity is greatest
for high space charge beams with 4QC > 2.

3) Regardless of the value of 4QC, positive gain occurs
when the dc beam velocity is faster than the “hot” circuit
phase velocity of the wave vy > vy,.

4) For 4QC > 1, maximum gain occurs when the hot phase
velocity equals the slow space-charge wave velocity v, =
Ussew- FOr 4QC' < 1, the space-charge wave interaction
model begins to lose meaning as the fast and slow modes
are no longer easily identified with the beam space-charge
waves.

5) For purposes of evaluating the 1-D model’s space-charge
reduction coefficient, it is recommended to use the ap-
proximation that Re(.) =~ [ for frequencies inside the
gain bandwidth and Re (3.) = (3. for frequencies outside
the gain bandwidth. The exception to this latter statement
is that for unusually high space charge beams 4QC > 4,
it is recommended to use Re((.) = [, for frequencies
both inside and outside the gain bandwidth.
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