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Nonconvexity of the Capacity Region of the 
Multiple- Access Arbitrarily Varying Channel 

Subject to Constraints 
John A. Gubner, Member, IEEE, and Brian L. Hughes, Member, IEEE 

Abstruct- The random-code capacity region of the multiple- 
access arbitrarily varying channel subject to both state and input 
constraints is determined. Consideration of a simple erasure 
channel shows that the capacity region is not convex in general. 

Index Terms-Random code, multiple-access channel, arbitrar- 
ily varying channel, state constraint, input constraint, convexity. 

I. INTRODUCTION 
HE (discrete memoryless) multiple-access arbitrarily T varying channel (MAVC) subject to constraints models 

a jammed multiuser channel in which the transmitters and 
jammers are constrained in average power. Our interest is 
in characterizing the random-code capacity region of such 
channels. These results can be applied to determine the 
performance limits of communications systems, such as spread 
spectrum, in which the transmitter's code is varied with time 
in a random (or pseudorandom) manner that is known to the 
receiver but unknown to the jammers. 

Formally, the MAVC with two senders, one jammer, and 
one receiver is defined to be a transition probability W from 
X x Y x S into Z, where X, Y, S, and Z are finite sets. We 
interpret W(zlz ,  y, s) as the conditional probability that the 
channel output is z E Z given that the channel input symbol 
from sender 1 is z E X, the channel input symbol from sender 
2 is y E Y, and the channel state (jammer symbol) is s E S. 
The channel operation on n-tuples 5 = ( 2 1 ,  . . . , 2,) E X", 
y E Y", s E S", and z E Z" is given by 

In general, the state sequence s, which is unknown to the 
senders and the receiver, can be completely arbitrary. How- 
ever, to model the power limitations in practical communica- 
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tion systems, we require that s satisfy the state constraint 

where l is a nonnegative function defined on S and L 2 0. 
In other words, l ( 5 - k )  represents the energy in the symbol S k ,  

and L is a bound on the time-average power of the sequence 
s. In Section 11, analogous input constraints are imposed on 
the transmitted codewords. 

The main contribution of this paper is the characterization of 
the random-code capacity region of the MAVC subject to state 
and input constraints. The analogous results for the single- 
user arbitrarily varying channel (AVC) were established by 
CsiszAr and Narayan [4]. For the MAVC in the absence of state 
and input constraints, Jahn [ 111 established the deterministic- 
code capacity region, assuming it has a nonempty interior. As 
an easy corollary, he characterized the random-code capacity 
region, again assuming that the deterministic-code capacity 
region has a nonempty interior. Without this assumption, Jahn 
did not know whether his characterization of the random-code 
capacity region still holds (see the paragraph preceding [ 11, 
Remark IIA3, p. 2141). By specializing our coding theorem 
to the unconstrained MAVC, it is clear that Jahn's character- 
ization always holds. Further work on deterministic codes for 
the MAVC has appeared in [6], [SI, [9]. Deterministic codes 
for the single-user AVC have been studied by several authors, 
e.g., 111, [2], [ 5 ] ,  and the references therein. 

For the MAVC, state constraints introduce subtle problems 
which have no counterpart in the theory of the single-user 
AVC or the conventional multiple-access channel (MAC). One 
such problem, near the heart of the present paper, concerns the 
classic time-sharing principle employed in the proofs of many 
multiuser coding theorems. This principle, which asserts that 
the capacity region is a convex set, holds for the conventional 
MAC [3, p. 2721 and even for the unconstrained MAVC [ 113. 
However, it fails for the MAVC subject to a state constraint. 
The difficulty arises as follows [9]. Suppose n = 7Ll + 722. 

Then the inequality in (1) does not imply that both 

which is a necessary condition to apply the time-sharing 
principle to an MAVC subject to a state constraint. As a 
consequence of this observation, we are able to show that the 
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capacity region of this channel is not convex in general. We 
remark here that, whereas the classic time-sharing principle 
fails, an alternate form of time-sharing based on an auxiliary 
variable [3, p. 2781 will play a central role in this paper. 

The remainder of this paper is organized as follows. Our 
main coding theorem is stated in Section I1 and proved in 
Section 111. In Section IV, we consider a simple erasure 
channel and show that its capacity region is not convex. 

11. DEFINITIONS AND STATEMENT OF RESULTS 

Let N ,  M ,  and n be positive integers. A (deterministic) code 
of blocklength R. is a triple ( f ,  g,  'p) consisting of a codebook 
f = ( ~ 1 ,  . . . , ZN) for sender 1, a codebook g = (yl, . . . , yM) 
forsender2,andadecoder'p:Z" + {l , . . . ,  N } x { l , . . . , M }  , 
wherez; E X", i = l , . . . , N ,  and yj E Y n , j  = l , . . . , M  . 
The set of all codes U = ( f ,  g, p) is denoted by Ut". A 
UfM-valued random variable is called a random code. 

The error probability of the code U E U,"" for message 
( i l j )  and state sequence s E S" is given by 

e ; j ( s ,u )  := W"({z  E Z" : 'p(z) # (i,j)}lz;,yj,s). ( 2 )  

The corresponding average error probability is 

In Section I, we assumed that C is a nonnegative function 
defined on S. For convenience, we assume minSEsl(s)  = 0 
and set L,,, := max,,sL(s). We also let 

S"(L) := {s E S" : C,(s) 5 L } .  

Note that if L 2 e,,,, then S"(L) = S" and we say that the 
state constraint is inactive. 

We now impose constraints on the input sequences. Let 
a and b be nonnegative functions defined on X and Y, 
respectively. We assume min,u(x) = min, b ( y )  = 0. Set 
amax := max, a(.) and b,,, := max, b(y). We say that a 
random code U = ( F ,  G ,  @) satisfies input constraint ( A ,  B )  
if almost surely we have 

. n  

and 

When A 2 amax and B 2 b,,,, all codes satisfy (3a) and 
(3b), and the input constraints are said to be inactive. 

Dejinition I: A pair of nonnegative real numbers, (RI  , Rz), 
is said to be achievable under state constraint L and input 
constraint ( A ,  B )  if, for every 0 < A < 1, every AR > 0, and 
all sufficiently large n, there exists a U:"-valued random 
code U = (F ,G ,  @) such that N > exp [n(R1 - AR)] and 
M > exp[n(& - AR)],  F and G are independent, (3a) and 
(3b) are satisfied, and 

E [  e(s ,  U ) ]  I A, for alls  E S"(L).  (4) 

Here and in the sequel, exp, log, and all entropies and mutual 
informations are to the base 2. 

Definition 2: The (random-code, average-error) capacity 
region of the MAVC W ,  under state constraint L and input 
constraint ( A ,  B) ,  is defined to be the set of all pairs ( R I ,  Rz) 
that are achievable in the sense of Definition 1 .  We denote 
this region by C(L, A ,  I?). 

The random coding problem is to characterize C(L, A ,  B) .  
Remark: Following all earlier work on random coding for 

the MAVC [6]-[8], [ l l ] ,  we have restricted F and G to be 
independent. If this restriction is dropped, the capacity region 
can be strictly larger than C(L, A ,  B) .  To keep the present 
paper to a reasonable size, we defer discussion of this issue 
to a future paper. 

In order to present our result, we require the following 
notation. If W is a finite set, D(V) denotes the set of all 
probability distributions on V. Given another finite set S, 
D(SlV) denotes the set of all transition probabilities from W 
into S .  

When y E D(V),  p E D(XlW), q E D(YlW), and T E 
D(SlV) are understood, we let V ,  X ,  Y ,  S ,  and 2 be random 
variables with joint distribution 

~ V X Y S Z ( ~ ,  x, Y, s, .) 
= r(~)P(~lv)q(Ylv).(slv)W(zlz, Y, s). ( 5 )  

Observe that 

and depends only on y and r .  We therefore define 

DL(Sly) := { T  E D(S1V) : E[C(S)] 5 L } .  

Next define 

which depends on y, p ,  q, and W, but not T .  The quantities 
I L ( X  A Z ( Y V )  and I L ( X Y  A ZlV) are defined similarly. 
With these definitions, we set 

R ( L , y , p , q )  := ((R1,Rz): 
0 5 RI I I L ( X  A Z J Y V ) ,  
0 5 Rz 5 I L ( Y  A Z l X V ) ,  
RI + R2 5 I L ( X Y  A Z l V ) } .  (8) 

Recalling (5) and (6), we similarly observe that E [ a ( X ) ]  
depends only on y and p and that E [  b(Y)] depends only on 
y and q. We therefore define 

DA(Xly) := { p  E D(X1V) 

and 

DB(Yly) := { q  E D(Y(W) 

Let 

R ( L ,  A ,  B )  := U R (9) 
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where the union is over all sets (VI < CO, all y E D ( V ) ,  and 
all p E DA(Xly) and q E DB(Yly). 

Our main result is the following coding theorem, which is 
proved in Section 111. 

Coding Theorem: C(L, A , B )  is equal to the closure of 

As mentioned in Section I, the time-sharing principle does 
not hold for the MAVC subject to a state constraint. Neverthe- 
less, the use of the auxiliary variable V in (8) can be regarded 
as a form of time-sharing. In multiuser coding theorems, the 
use of an auxiliary variable is often equivalent to the operation 
of taking the convex closure [3, p. 2781; however, this is not 
generally true of R(L,  A ,  B )  due to the infimum operation in 
(9). In fact, we show by example in Section IV that R ( L ,  A, B )  
is not in general convex. As a consequence, the usual methods 
for restricting the cardinality of V in (9)-which depend 
essentially on convexi ty4o  not apply here. 

If the state constraint is inactive, the capacity region is 
always convex. If L 2 C,,, then D'(§Iy) = DL(§IV)  and 
is independent of y. Since 

R ( L ,  A ,  B).  

I ( Y  A z(xv) = y ( v ) I ( Y  A ZIX ,  v = U) 
V 

if we enumerate the elements of V as 211, . . . , IJK,  say, then 
IL(Y  A Z l X V )  can be written as 

K 

which simplifies to 
K 

where this last mutual information is computed from the joint 
distribution on (2, y, s, z )  

p ( z  1 vlc) 9 (9 1 vk ) T (3) w z , y , 
With the foregoing observation, one can prove directly that 
R ( L ,  A, B )  is convex. If the input constraints are also inactive, 
the foregoing observation also permits us to conclude that 
R ( L ,  A ,  B )  is closed and equals Jahn's random-code capacity 
region [ l l ] .  Let R,(L, A , B )  denote the right-hand side of 
(9) with the union restricted to V such that IVI = 1. Note 
that R,(L, A ,  B )  is closed. It follows from (10) that when the 
state constraint and input constraints are inactive, R ( L ,  A ,  B )  
is equal to the convex hull of R,(L, A ,  B) ,  which is Jahn's 
random-code capacity region. 

Thus far, we have considered only the average-error prob- 
ability criterion (4). The definition of the maximal-error ca- 
pacity region, denoted by C,(L,A,B), is similar to that of 
C(L,A,B)  except that (4) is replaced by the maximal-error 
criterion 

maxE[e i j ( s ,U)]  5 A, for all s E S"(L). (11) 

From the definitions, it is evident that C,(L, A ,  B )  C 
C(L,A,B) .  Implicit in our proof of the coding theorem is 
a demonstration that C(L,A,B)  = C,(L,A,B). This can 

2,3 

be seen by observing that the forward part of the coding 
theorem is proved for the maximal-error criterion (1 l ) ,  while 
the converse is proved for the average-error criterion (4) (cf. 
[ l ,  Theorem 2(b)l, [ l l ,  eq. (5)l). 

To conclude this section, we note that it is possible to ap- 
proximate R ( L ,  A, B )  to any prescribed accuracy as follows. 
Let R,(L, A ,  B )  denote the unicn of all R ( L ,  +,@, q ) ,  where 
the union is over any fixed set V with 

all + E D ( v ) ,  all E DA(Xl?), and E @(VI?). Using 
routine approximation arguments in Appendix 11, we have the 
following result. 

Approximation Theorem: For n 2 4(lXl + IYl) 
R ( L ,  A ,  B )  c %(L,  A ,  B )  + pnU (13) 

where U is the unit square { (R1, R2) : 0 5 R1 5 1 and 0 5 
RZ 5 l}, and ,U" := 28,log (~?//e,), On := 2(lXl + IVl)/n, 
and K := max(IX1, lYl, IZl}. 

111. PROOF OF THE CODING THEOREM 

Our proof is adapted from [7] and relies heavily on the 
method of types as discussed in [3, pp. 29-33]. Recall that 
the type of an n-tuple z E X" is defined to be the empirical 
probability distribution & given by &z(z) = N(zIz) /n  for 
z E X, where N(z I z )  denotes the number of occurrences of z 
in the n-tuple z. The set of types generated by X" is denoted 
by Dn(X); more precisely, Dn(X) is the set of P E D ( X )  
such that P = &z for some z E X". In an analogous way, 
the joint type of a pair of n-tuples, z and g, is defined by 
&z,y(z,y) = N(z,y(z ,y) /n  for z E X and y E Y, where 
N(z,yJz,y) denotes the number of occurrences of (z,y) in 
the n-tuple ((21, y l ) ,  . . . , ( zn ,  y")). Finally, the conditional 

Let D(. 1 1  .) denote the Kullback-Leibler informational diver- 
gence [3, p. 201, and recall that the informational divergence 
dominates the variational distance between two probability 
distributions [3, p. 581. We now introduce what we call the t-6 
convention, by which we mean the following. All of the mutual 
informations I (  .) as well as I'( .) defined at the beginning of 
Section I1 as well as similarly defined entropy functions used 
below are uniformly continuous functions of the indicated joint 
distribution PVXYSZ. Thus given t > 0, there exists a 6 > 0 
such that whenever D(Pv,yys~ll$p-?psg) 5 6, any mutual 
information or entropy evaluated-under P is within t / 2  of the 
same function evaluated under P. 

type &ylZ(YIz) is given by &z,y(z, Y)/Ez(z). 

A. Proof of the Forward Result 

To prove the forward result, it suffices to prove that 
R ( L ,  y,p, 4 )  G C(L, A ,  B )  for all y E D(V), p E DA(X(y), 
and q E DB(YJy). Since the capacity region is closed, we 
may restrict attention to interior points of R ( L , y , p ,  q ) .  (The 
case in which R ( L ,  y,p, q)  has no interior points can be 
handled with minor modifications to the proof to follow.) 
Suppose ( R I ,  R2) is an interior point of R ( L ,  y,p, q ) .  Then 
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we can choose E > 0 so small that R1 + 2 t  < I L ( X  A Z I Y V ) ,  
R2+2t < I L ( Y A Z I X V ) ,  and R1+R2+2t < I L ( X Y A Z ( V ) .  
Let 6 be as in the 6-6 convention. Let n be sufficiently large; as 
will become clear in the course of the proof, how large n needs 
to be depends only on t, 6, and the cardinalities of the sets 
V, X, K, S ,  and Z. We begin by assuming n is large enough 
that we can approximate y by a type r E D n ( V )  and we can 
approximate p and q by conditional types P E D,(XlV) and 
Q E D,(KlW) such that if 

pQxpsz(v, 5, Y, s, 2 )  

= r(.)P(zl.)Q(~l.).(slv)W(ZIZ, Y, s) (14) 

where 7 E qLpy), then I L ( X A Z I Y V )  > I L ( X A Z I Y V ) -  
t, r L ( y  A zlxv) > I L ( Y  A zlxv) - t, rL(xY A zlv) > 
I L ( X Y  A ZlV) - E ,  and such that 

E [ a ( X ) ]  5 A and E [ b ( p ) ]  I B. (15) 

Let LtJ denote the greatest integer less than or equal to t. For 
N = Lexp (nR1)J and M = Lexp (nRZ)J, we will construct 
a random code U = (F ,  G ,  e) with F and G independent, and 
satisfying (3a) and (3b) almost surely and such that for all i, j 
and all s E S"(L) 

E [  ei j (s ,  U )  1 
5 Sexp ( -n6/8)  

+ exp [ -n ( IL (X  A Z I Y V )  - R1 - a t ) ]  

+ exp [-n(IL(Y A Z l X V )  - R2 - 2 t ) ]  
+ exp [ - n ( I L ( X Y  A Z l V )  - RI - R2 - a € ) ] .  

(16) 
Observe that, given any AR > 0 and sufficiently large n, 
exp [n(R1 -AR)] < N 5 exp (nR1) and exp [n(RZ-AR)] < 
M 5 exp(nR2). 

The Decoder: Fix any v E V" such that EW = r. Given 
a set of codewords f = (51,. . . , Z N )  and g = (yl,. . . , y"), 
we show how to construct a typicality decoder cp. In other 
words, we shall prescribe a deterministic function typ and take 
cp = t y p ( f , g , w ) .  If ( F , G )  is a random set of codewords, 
we can generate a random code U = (F ,G,Q,)  by taking 
Q, = typ ( F ,  G ,  w). 

For s E S", let (r x P x Q x Eslv x W)(v,x ,y , s ,z )  
denote the distribution 

Then let 

and set 

K := U K(s ' ) .  (17) 
S' E§" ( L )  

Now, to define a decoder on Z", we use the sets 

Kij := (2: (Zi,Yj,Z) E K }  

as follows. Let 

i'#i, j ' # j  

Clearly, the {E i j )  are disjoint. Let cp be any mapping such that 
z E Eij implies cp(z) = (i,j).  This ensures that p(z) # (z, j)  
implies z E E&. 

The Codewords: In order for the decoder to work well, we 
need to restrict the choice of codewords as follows. Recalling 
that E,, = I?, we let (cf. [3, p. 311) 

T ~ ( ~ )  := {Z E xn : 

u Q ( W )  := {y E K" : 

= r x P I  

= r x Q ) .  
where (r x P)(w, z) := r(w)P(zlv). Similarly, we let 

We require that 

zi E Up(w) and yj E TQ(w). (19) 

It is important to note here that z E Tp(v) implies 

= r ( v )  (E X u ( z ) P ( 4 v ) )  

= E [ a ( X ) ]  
5 A ,  by (15). (20) 

Thus all our codewords satisfy (3a) and (3b). 
RemainderofProof: For any code U E U,"" whose de- 

coder is as just described, and for any s E S"(L),  we can 
always write 

eij(s,u) 5 W"(E,~lzil~j,~) 
I W" (K,c, 1x2 , Yj , 3) (214 

+ W"(K2fj 152, Yjl s) (2 1 b) 
i '#i 

+ E Wn(KijlIzi,Yj;S) (21c) 
j' # j  

+ W"(Kifj/I~i,yj,~). (214  

We first examine the term in (21a). If we set Kij(s) := { z  : 
(z;,yj,z) E K ( s ) ) ,  then for s E S"(L),  K& C Kij(s)". 
Using the method of types, along with (19), it is then easy to 
show that for sufficiently large n (cf., e.g., [6, ineq. (A.19)]) 

Z'#i,j'#j 

Wn(K:jl~ilYj,S) 

I W"(Kzj(S)cIzi,Yj,s) 
= W"(ZIZi,Yj,S) (22a) 

Z:(% ,y3 ,Z)EK(S)C 

5 exp [-n(36/4 - l ( z i  A S ~ W )  

- I ( Y j  A %.I.))] 
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where I(%; A slw) and I(yj A z is lw)  are shorthand for the 
obvious mutual informations computed with the distribution 

Now consider a term in the sum in (21b). We can write 
&v,x,,y3.s. 

W" (K;!j  12; , yj , s) = W" (zlx;, Yj 1 3). (22b) 
z:(x,i ,y, J)EK 

Similarly, the terms in (21c) and (21d) can be written, respec- 
tively, as 

(22c) W"(Kij1 1x2 y j  s) = W" (ZIZi 1 Yj , .) 
z: (2, ,Y3, J) E K  

and 

W"(Ki'j'(z;,yj1s) = W"(ZIZi1 Yj, 3). 
Z:(Z, ,  ,y3, , Z ) E K  

(224  
To make further progress in bounding the probability of 

error, we use the following random code. Recalling (19), we 
take 

F = ( X I , .  . . , X N )  and 

where F and G are independent and where the { X i }  are 
independent and uniformly distributed on Tp(w)  and the {Yj }  

are independent and uniformly distributed on TQ(w). On 
account of (20), all our random codewords satisfy (3a) and 
(3b). 

Remark: In general outline, our proof is very similar to 
Jahn's proof of the forward result for the unconstrained two- 
user AVC [ 1 I ,  sec. 111-C]. However, a major difference is in 
the randomization of the codewords. Jahn required that the 
letters of each codeword be independent; however, this will 
not guarantee that (3a) and (3b) will hold almost surely even 
if E[a(Xi ,k) ]  5 A and E [  b ( C , k ) ]  5 B hold for all i, j ,  I C .  

Let ea(xilyj,s) denote the right-hand side of (22a). It is 
clearly upper bounded by 1. Hence 

G = ( Y l , .  . . ,YM) 

E [ e a ( X i , Y j , s ) ]  I exp(--716/4) 

+ Pr (x;  E (2 : I (% A slw) > 6/41) 

+ pr ((Xi, Y J )  E {(E, Y) : I(!/ A 2.1.) > 6/4}). (23) 

An easy calculation using the method of types shows that 
for sufficiently large n, these last two probabilities are each 
upper-bounded uniformly in s and w by exp ( -n6/8) .  

Let eb(Z2r y j l  zit), ec(x;, yj1 Yjr), and ed(Z; ,  y j 1  z i t ,  yj))  
denote the right-hand sides of (22b)-(22d), respectively. Each 
is clearly upper bounded by 1. We treat only e d  as the others 
can be treated similarly. For i' # i and j' # j ,  we can use 
independence to compute 

E [ e d ( X i , Y j , X i J , Y j j )  I X i  =xi, Yj = y j ]  

= E [  
= W n ( Z I Z i l Y j , s )  

(24) 
, Yj , xzt, Yjr) I 

ZEZ" 

Since Pr(Xi/  = x,Yjr  = y) = l/(lTp(w)I ~TQ(V)[),  and 
since the cardinality of { (z ly)  : (z,y,z) E K }  is upper 
bounded by (recall (17), (14), and the 6-6 convention) 

(n  + l)lvllxllullzlexp [ ~ ( H ~ ( X Y ~ Z V )  + ~ / 2 ) 1  

where 

the inner sum in (25) is then bounded above by 

exp [ - n ( P ( X Y  A ZlV)  - E ) ]  

when n is large enough. Since this bound does not depend on 
z (recall (14)), the conditional expectation in (24) is upper- 
bounded by the same quantity. Since the bound does not 
depend on x; or yj, we have 

By a completely analogous procedure, one can show that 

and 

~ [ e , ( ~ i , ~ j , ~ j f ) ]  5 exp[-n(IL(Y A Z l X V )  - € 1 1 .  
We now see that 

E [  e i j ( s ,  U )  I 
5 3 exp (-nS/8) 

+ N exp [ - n ( 1 ~ ( 2  A ZlYV) - E)] 

+ Mexp[-n( IL(Y A Z ~ X V )  - E ) ]  

+ N M e x p  [ - n ( P ( X Y  A ZlV) - €11 

- 

from which (16) follows. This establishes the forward result. 

B. Proof of the Weak Converse 

Suppose (RI  , Rz) is an achievable rate pair. We must show 
it belongs to the closure of R(L,A,B) .  It suffices to prove 
that, for every 0 < S < L, ( R I ,  Rz) belongs to the closure 
of R ( L  - 6, A , B )  (cf. [8, Lemma 3.11). Fix 0 < S < L. Let 
0 < X < 1 and AR > 0 be arbitrary. Then by Definition 1, 
for all sufficiently large n, there exist positive integers N and 
M such that 

log N log M 
- > R I  - A R  and - > R2 - AR (26) 

n n 

and such that there exists a random code U = ( F ,  G, a) with F 
and G independent and satisfying (3a) and (3b) almost surely 
and 

m;x E [ e ( s , U ) ]  5 X / 2 .  
SE§ ( L )  

Now, let rl, . . . , T,  be any elements of D ( S )  such that 



8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 1, JANUARY 1995 

and set Using (30) and Fano's inequality [3, p. 531, we can write 

(Cf. [8, eq. (3.3)] in which the stronger requirement T k  E 
D L P 6 ( S )  for each IC was imposed.) 

Let a be a { 1, . . . , N}-valued random variable and p a 
{ 1, . . . , M}-valued random variable. Let X = ( X l  , . . . , X,) 
be an X"-valued random variable, and similarly, let Y,  S,  and 

whose joint distribution, conditioned on the random code 
U = U ,  is given by 

Rearranging, we have 

( 1 - x ) l o g N M s  I ( aPA@(Z) )+ l  

and by (26) 

Z be Y"-, S"-, and Z"-valued random variables, respectively, R1+ R2 5 l(aP A + + 2AR. (33) 
n(1 - A) 

Now write 

. n  

(314  
1 
- a(x; ,k)  5 A ,  n 

i = 1,. . . , N ,  
k = l  

and 

, M .  (31b) 

Observe that S does not necessarily satisfy the state constraint 
L. If we can show, however, that (27) implies 

1 "  
-Ch(2/j,k) 5 B,  j = I , . . .  

k = l  
n 

Pr (@a(Z) # (alp)) I A (32) 

then a Fano-type weak converse can be carried out. 
Using (28) and a Chebyshev bound as in [8, p. 281, we 

can easily show that Pr ( l , (S )  > LIU = U )  5 X / 2  for 
sufficiently large n for all U E U,"". It then follows that 
Pr ( l , (S )  > L )  5 X/2 as well. Note that this bound is 
uniform in { T ~ C } : , ~  satisfying (28). By (30) 

Pr (Z = z,a = i, P = jlU = U )  

Thus 

and 

U 

/ 

n. 
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Furthermore, note that E [ e ( S ) ]  5 L - 6 by (28). Also EX = 1, otherwise. If V, X ,  Y ,  S ,  and Z have joint distribution 

By (30) anc (31a), we have 

- < A .  

Thus E[a(X) ]  5 A,  and therefore 

From (33) we can now write 

In a similar manner, one can obtain 

and 

Remark: If we replace (31a) by 

(which is called a message-average constraint, cf. [4, p. 281) 
and similarly for (31b), then (36) still holds, and the converse 
proof goes through unchanged. 

I v .  EXAMPLE AND DISCUSSION 
Consider a noiseless erasure channel in which X = Y = 

{ O , . . . , p -  1) and S = {0,1}. For z E X, y E Y, and s E S ,  
the channel output is given by 

z = {  z+y, i f z y = s = O  

where z E Z = (0, . . .  , p } .  In other words, if zy = s = 0 
and z = z + y, then W(zlz, y, s) = 1. If zy # 0 or s # 0, 
then W ( p l z , y , s )  = 1. In all other cases W(zlz,y,s) = 0. 
The state constraint is l ( s )  = s with 0 5 L 5 1. No input 
constraints are imposed (or equivalently the constraints are 
inactive). To reflect this, in this section, we write R ( L )  instead 
of R ( L ,  A ,  B) .  

It is difficult to determine R ( L )  exactly for this channel; 
instead we give inner and outer bounds that are tight for large 
p. For any random variable X, let Ex = 0, if X = 0 and 

p, otherwise 

where 

where 

Ri(L) := {(Ri,R2) : RI L 0,R2 L 0, 

(a+ a)2 I (1 - L)log ( P  - I ) }  

and where, letting x = 1 - X and E = 1 - L 

R z ( L ) : = { ( R 1 , R 2 ) : 0 < R 1 5 ( X - L ) s l o g ( p - l ) ,  

0 5  R25 [ ( X - L ) + x ( 1 - & ) 2 ] l o g ( p - 1 ) ,  

for some L I X 5 E , o  5 s 5 1 

R3(L) := { (R1, R2) : (R2, R1) E R2(L)}. 

The bound (37) reveals several interesting features of R ( L )  
which are unique to the MAVC. As illustrated in Fig. 1, the 
capacity region is not convex in general. To our knowledge, 
this is the first example of a synchronous multiple-access 

} 
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1oc 

60 

R2 
40 

2 0  

0 

Fig. 1. Inner and outer bounds for L = 0.5 and log ( p  - 1) = 200. 

channel with this property. The lack of convexity is due to 
the state constraint; when this constraint is inactive, R ( L )  is 
always convex. 

Perhaps the two best-known prior examples of nonconvexity 
are the capacity region of the frame-asynchronous multiple- 
access channel and the capacity region per unit cost of the 
multiple-access channel subject to input constraints. The first 
example was obtained independently by Hui and Humblet [ 101 
and Poltyrev [ 121. This capacity region is not generally convex 
because the lack of a common time reference between asyn- 
chronous encoders precludes time-sharing. In sharp contrast, 
for certain MAVC's, time-sharing with the auxiliary variable 
V enlarges the set of achievable rate pairs, but fails to achieve 
the full convex hull. The second example, the capacity region 
per unit cost obtained by Verdd [ 13, eq. (19)], is not the same 
as the capacity region itself of the conventional MAC subject 
to input constraints, which is always convex. 

To show how time-sharing with the auxiliary variable Vcan 
enlarge the set of achievable rate pairs but not achieve the 
full convex hull, let R,(L) consist of those rate pairs that are 
achievable without time-sharing; i.e., the right side of (9) with 
the union restricted to V such that [VI = 1. From Appendix I, 
it is straightforward to show, for all 0 < L 5 1, that R l ( L )  
similarly equals the right side of (38) with the union restricted 
to V such that [VI = 1. As in (37), it is then easily seen that 

where R1,o ( L )  is defined similar to Ro ( L )  except that RI( L )  
is replaced by R1(L). In Fig. 2, R l ( L )  and R I ( L )  are 
depicted for log ( p  - 1) = 1000. For this value of p. the three 
regions in (37) coincide to within the thickness of the plot 
lines, as do the three regions in (40). From Fig. 2, we see that 

R, ( L )  c R( L )  c convex hull of R, ( L )  

where the inclusions are strict. Thus R ( L ) ,  although non- 
convex, contains some rate pairs which are achievable only 
through time-sharing with the auxiliary variable V .  

RI 

Fig. 2. R ' ( L )  and R ' ( L )  for L = 0.2 and log(p - 1 )  = 1000 

APPENDIX I 
PROOF OF (39) 

Let V, IVI < 03, y E D(V),  P E D(xlV), q E W l V )  
be arbitrary. Our approach is to derive an outer bound to 
R ~ ( L , y , p , y )  and then to show this bound is achieved by 
a particular choice of y, p ,  and q.  

Fix T E D L ( S ( y )  and observe for this channel that 

I ( x Y  A Z I V E x E y )  = I ( x  A Z l Y V E x E y )  
+ I (Y A Z I X V E x E y ) .  

Taking the infimum over T E D L ( S l y ) ,  we obtain 

I L ( x Y  A Z I V E x E y )  2 IL(x A Z l Y V E x E y )  
+ I L ( Y  A Z l X V E x E y ) .  

The RI + Rz bound in R ~ ( L , y , p , q )  is therefore redundant 
and can be omitted. 

Next we write 

I(x A Z l Y V E x E y )  

= Y ( v ) q ( 0 l w ) [ l  - P(0lW)l 
VEV 

. I ( X  A ZIY, V = W, E x  = 1, E y  = 0 )  

I Y ( V ) q ( o b ) [ l  - P(Olw)lr(oIv) 1% ( P  - 1). (41) 
V € V  

The inequality follows by recognizing that, given V = 
w, E x  = 1, and E y  = 0, the random variable X ,  taking 
values in { 1, . . . , p - l}, is connected to Z by a single-user 
erasure channel with probability of erasure T (  l lv) .  Hence, 
the conditional mutual information on the right is at most 
T(0I'u) 1% ( P  - 1). 

Similarly, it can be shown that 

I ( Y  A Z I X V E x E y )  

I Y(v)P(Olv)[l - q(O lv ) l~ (o l~ )  log ( P  - 1). (42) 
V € V  

Observe that if a ,  b E [0,1] and t := ab, then ( 1 - a ) ( l - b )  I 
(1 - & ) 2 ,  with equality if and only if a = b = &. So, if 
we set 

(43) t(.) := Y ( O l V ) [ l  - P(Ol.)l, 
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The four preceding inequalities imply R I ( L ,  y, p ,  q )  C 
R1(L;  t ) ,  where 

R I ( L ; t )  := { ( R I ,  Rz) : 0 5 RI 5 (1 - L)tlog ( p  - I), 

0 5 R2 5 (1 - L ) ( l  - &)’log ( p  - l)}. . T(0lv)lOg (P - 11, (44) 

A ZIXVExEy) y(v) (’ - m) From (38), it then follows that R I ( L )  C UtE[o,11 R i ( L ;  t ) .  
Conversely, for each 0 5 t 5 1, it is easy to show that the 
choice W = { t} ,  j ( t )  = 1 

U E V  

. T ( 0 I V )  log ( p  - 1). (45) 

Let TI < . . .  < TK denote the distinct values that t (V )  
takes with positive probability. For L > 0, we can always 
choose s = T; and t = Tj for some i and j and such that 

Pr{t(V) < s} < E 5 Pr{t(V) 5 s} 

Pr{t(V) > t }  < E 5 Pr{t(V) 2 t } .  

Here and throughout this Appendix, for any z E [0,1], we 
define G := 1 - z. With this choice of t and s, it follows 
that s 5 t when L 2 1/2, and s 2 t when 0 < L < 1/2. 
Moreover, there exist a,  b E [0,1] such that 

Pr { t (V)  < s }  + aPr { t (V)  = s} = 2, 
P r { t ( V ) > t } + b P r { t ( V ) = t } =  Z. 

If we set 

0, t(v) < t 

1, t ( v )  > t 

and 

ij(O(v) = 1 - fi(0l.) = fi 
ij (Y lV )  = [I- f i I / ( P  - I ) ,  
P(zlv) = &/(P - 11, 5 # 0 (47) 

Y f 0 

achieves R r ( L ,  ;U,@, ij) = R1(L;  t ) ;  hence, 

R I ( L )  = U R 1 ( L ; t )  = R l ( L ) .  
O < t < l  

This completes the proof of (39) for L 2 1/2. 

the probability mass functions 
We now treat the case 0 < L < 1/2. To this end, define 

UEV WEV 

0, t ( v )  > s + (1  - 2L) 72(v)t(’U) 

1, t(v) < s 

Ts(01v) := a ,  t ( v )  = s WEV 

5 Lt + (1 - 2L) C r z ( v ) t ( v ) .  
U E V  

Using 73 instead of 71, we similarly obtain 

{ 
then both yield E[k(S)]  = L. Since any T E DL(S17) provides 
an upper bound on the infimum, we have 

. log (p  - 1).  (46) 

We now restrict attention to the case L 2 1/2. In this case, 

Since y2(w) is nonzero only for t 5 t(v> 5 s, we can write 

t(.) = a(v) t  + Q ( W ) S  

for some 0 5 a(.) 5 1. It follows that t 2 s and so 

Y2(V)t(ZI) = at + z s  
WEV 

+ aPr { t ( ~ )  = s>]s where 

5 (1 - L) t .  a! := Crz(v)a(.). 
2, 

Similarly, we obtain 
Since (1  - fi)2 is convex on [ t , ~ ] ,  we have 

5 (1  - L)(1  - &)? 
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and thus Lemma 1: Suppose IVI < CO and that p E D(XlV) and 
q E D(YlV) are given. Fix any positive integer n. Then 

Substituting into (46), we obtain 

+ L(1 - &)Z}. log(p - 1). 

Y Y 
Upon setting A := (1 - 2L)a + L, we conclude that 

There are two immediate implications of Lemma 1. First, 
the sum of the two upper bounds in (49) is equal to On, and 
second, for any y E D ( V ) ,  if p E DA(Xly) and q E DB(Yly), 
then p’ E DA(Xly) and q’ E DE(Yly). 

Lemma 2: For JVI < 00, y E D ( V ) ,  p E DA(Xly), and 
q E DB(Yly), let P V X Y S Z  be as in (5) .  For n L 41x1 + IYl), 
let p’ and q’ be as in Lemma 1, and set 

Y,P, 4 )  C Rz(L;  A, t ,  s) where 

R2(L; A, t ,  s) 

:= {(RI, Rz) : 0 I: R1 I [ A t  + (1 - L)s]  log ( p  - l), 

0 5 R2 5 [(A - L)(1 - &)’+ X ( l  - &)’I 

:= r(’U)P’(zl’U)4’(YI’U)T(SIV)W(ZIZ, Y, 8). (50) 
L I A 5 E ,  and 0 I t I s 5 1. Conversely, for each choice 
of L 5 A I and 0 5 t 5 s 5 1, it is straightforward to 
verify that R I ( L ,  T , f i ,  e) = Rz(L;  A, t ,  s), where V = {t, s}, 

Then 

I L ( x  A Z I Y V )  5 I L ( x ’  A Z’IY’V) + pn 
“ut) = 1 - y(s) = A, and e and fi are as in (47). From (38), 
we conclude that 

I L ( Y  A zlxv) I IL(Y’  A z’lx’v) + p n  

I L ( x Y  A Z l V )  5 IL (x ’Y ’  A z’lv) + pn.  

R I ( L )  = U Rz(L;  A, t, 3). (48) Proofi Observe that P z l x y v  = P z ~ I x ~ y ~ v .  Then using 
LIXIL,O<t<s<l (49) and (50) 

( H ( Z l X Y V )  - H(Z’IX’Y’V)I I on log IZI. 

d(PXYSZIV(.I’U),  PX/Y5Z,IV(.I’UU)) I en. 

To complete the proof, it only remains to show that the union 
reduces to the right side of (39) when 0 < L < 1/2. TO this 
end,observethatforfixedA, (A-L)(1-&)2+x(1-,/ii)2 is 

RI /log ( p  - 1) is a line segment in this region. The maximum 

Next, note that (49) implies that for each ‘U E V 

c o n v e x i n t h e r e g i o n O < t I s <  l , a n d t h a t A t + ( X - L ) s =  

on this line is therefore achieved on the boundary, so that 
either s = t, t = 0, or s = 1. Hence Since for 

33, Lemma 2.71 and show that 
4(lXI + IYl), en I 1/2, we can follow [3, p. 

R I ( L )  = Rl(L) U R2(L) U R3(L) 

where RI ( L ) ,  R2 ( L ) ,  and R3 ( L )  are obtained by restricting 

of variable t^ = (1 - fi)z and = 1, R s ( L )  also reduces to 

IH(ZIV) - H(Z’IV)I I &log( lZI /~n)  
IfqYIV) - H(Y’IV)I I on log (PI/&) 
IH(XIV)  - H(X’IV)I I en 1% (IW&) 

IH(YZIV)  - H(Y’2’lV)l L en log (lYllZl/&) 

I H ( X Z l V )  - H(X’Z’lV)l I en log(Ixllzl/en). 

the right-side of (48) to s = t ,  t = 0, and s = 1, respectively. 
R l ( L )  and Rz(L)  are then as given in (39). After the change 

the corresponding region in (39). Then writing, for example, I ( x  A Z I Y V )  = H ( Z I Y V )  - 
H ( Z 1 X Y V )  = H(YZ1V)  - H ( Y I V )  - H ( Z l X Y V ) ,  the 

When p’ and q’ are as in Lemma 1, note that as ‘U 

runs though V, there are only lDn(X)I possibilities for 
The proof is an easy consequence the following two lemmas. p‘( .I.) and lDn(Y)l possibilities for q’(.lv). If we let 
Recall our assumption that min,a(z) = minyb(y) = 0. m := lDn(X)llDn(Y)l, then by [3, p. 391, m is equal to 

Then Lemma 1 is straightforward. In the lemma, d is the the right-hand side of (12). Hence, in an obvious way, we 
variational distance [3, p. 581. can partition V into m equivalence classes, say VI, . . . , V,. 

lemma follows easily. 
APPENDIX I1 

PROOF OF THE APPROXIMATION WEOREM 
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Recalling (7), we set I&(Y’Az’lx’V) := infI(Y’AZ’IX’V), 
where the infimum is restricted to those T E DL(SJy) 
such that .(.\‘U) is a constant of v on each V,. Note that 
I L ( y ’  A z’lx’v) 5 I ~ ( Y ’  A Z’lx’v). If we now return 
to (50), we see that Payr I r r~z , lv ( . l v )  is constant for li on 
each equivalence class. Hence, we may identify the v in the 
theorem with the collection of equivalence classes of W, and 
in an obvious way construct 

Pi.*qysz(,k 2,  Y, s, .) 
:= ?( 6)@( 2 16) @( y I6)TI( s 16) W (  z 12, y , s )  

where if .i, = V, 

V Z )  = Y ( V )  
VEV, 

@(4V,) = P’(2l’UJ 

8 Y l V Z )  = 9’(Yl’U,) 

f(SIV,) = T(S1’UZ) 

and ‘U, is any element of the equivalence class V,. Furthermore, 
it is not hard to see that Ik(Y’ A Z’lX’V) = I L ( Y  A Z l X V ) .  
Thus for any R ( L , y , p , y )  on the right-hand side of (9), we 
have 

R ( L .  7.  P ,  9 )  c R ( L ,  7,  P’, 4’) + PnU 
c R ( L .  ;U, fi, ii) + PnU 

and then (13) follows. 
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